1
|
Musazadeh V, Alinejad H, Esfahani NK, Kavyani Z, Keramati M, Roshanravan N, Mosharkesh E, Dehghan P. The effect of L-carnitine supplementation on lipid profile in adults: an umbrella meta-analysis on interventional meta-analyses. Front Nutr 2023; 10:1214734. [PMID: 37727632 PMCID: PMC10506516 DOI: 10.3389/fnut.2023.1214734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Previous meta-analyses investigating the therapeutic effects of L-carnitine on lipid profiles have demonstrated inconsistent results. The present umbrella meta-analysis aimed to investigate the impact of efficacy of L-carnitine on lipid profiles in adults. Methods Databases including PubMed, Scopus, and Embase, Web of Science, and Google Scholar were searched up to June 2023. Meta-analysis was performed using a random-effects model. Results Our results from thirteen meta-analyses indicated that L-carnitine supplementation significantly total cholesterol (TC) (ES = -1.05 mg/dL, 95% CI: -1.71, -0.39; p = 0.002), triglycerides (TG) (ES = -2.51 mg/dL; 95% CI: -3.62, -1.39, p < 0.001), and low-density lipoprotein-cholesterol (LDL-C) (ES = -4.81 mg/dL; 95% CI: -6.04, -3.59; p < 0.001). It also increased high-density lipoprotein-cholesterol (HDL-C) (ES: 0.66 mg/dL, 95% CI: 0.20, 1.12, p = 0.005) levels. Conclusion The present umbrella meta-analysis suggests supplementation with L-carnitine in a dosage of more than 2 g/day can improve lipid profile. Thus, L-carnitine supplementation can be recommended as an adjuvant anti-hyperlipidemic agent.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanie Alinejad
- Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | | | - Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Keramati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mosharkesh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Francisco AJ. Helicobacter Pylori Infection Induces Intestinal Dysbiosis That Could Be Related to the Onset of Atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9943158. [PMID: 36317116 PMCID: PMC9617700 DOI: 10.1155/2022/9943158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
Cardiovascular diseases represent one of the first causes of death around the world, and atherosclerosis is one of the first steps in the development of them. Although these problems occur mainly in elderly, the incidence in younger people is being reported, and an undetermined portion of patients without the classic risk factors develop subclinical atherosclerosis at earlier stages of life. Recently, both the H. pylori infection and the intestinal microbiota have been linked to atherosclerosis. The mechanisms behind those associations are poorly understood, but some of the proposed explanations are (a) the effect of the chronic systemic inflammation induced by H. pylori, (b) a direct action over the endothelial cells by the cytotoxin associated gene A protein, and (c) alterations of the lipid metabolism and endothelial dysfunction induced by H. pylori infection. Regarding the microbiota, several studies show that induction of atherosclerosis is related to high levels of Trimethylamine N-oxide. In this review, we present the information published about the effects of H. pylori over the intestinal microbiota and their relationship with atherosclerosis and propose a hypothesis to explain the nature of these associations. If H. pylori contributes to atherosclerosis, then interventions for eradication and restoration of the gut microbiota at early stages could represent a way to prevent disease progression.
Collapse
Affiliation(s)
- Avilés-Jiménez Francisco
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría. Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, Mexico
| |
Collapse
|
3
|
Berry T, Abohamza E, Moustafa AA. A disease-modifying treatment for Alzheimer's disease: focus on the trans-sulfuration pathway. Rev Neurosci 2020; 31:319-334. [PMID: 31751299 DOI: 10.1515/revneuro-2019-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
Abstract
High homocysteine levels in Alzheimer's disease (AD) result from low activity of the trans-sulfuration pathway. Glutathione levels are also low in AD. L-cysteine is required for the synthesis of glutathione. The synthesis of coenzyme A (CoA) requires L-cysteine, which is synthesized via the trans-sulfuration pathway. CoA is required for the synthesis of acetylcholine and appropriate cholinergic neurotransmission. L-cysteine is required for the synthesis of molybdenum-containing proteins. Sulfite oxidase (SUOX), which is a molybdenum-containing protein, could be dysregulated in AD. SUOX detoxifies the sulfites. Glutaminergic neurotransmission could be dysregulated in AD due to low levels of SUOX and high levels of sulfites. L-cysteine provides sulfur for iron-sulfur clusters. Oxidative phosphorylation (OXPHOS) is heavily dependent on iron-sulfur proteins. The decrease in OXPHOS seen in AD could be due to dysregulations of the trans-sulfuration pathway. There is a decrease in aconitase 1 (ACO1) in AD. ACO1 is an iron-sulfur enzyme in the citric acid cycle that upon loss of an iron-sulfur cluster converts to iron regulatory protein 1 (IRP1). With the dysregulation of iron-sulfur cluster formation ACO1 will convert to IRP1 which will decrease the 2-oxglutarate synthesis dysregulating the citric acid cycle and also dysregulating iron metabolism. Selenomethionine is also metabolized by the trans-sulfuration pathway. With the low activity of the trans-sulfuration pathway in AD selenoproteins will be dysregulated in AD. Dysregulation of selenoproteins could lead to oxidant stress in AD. In this article, we propose a novel treatment for AD that addresses dysregulations resulting from low activity of the trans-sulfuration pathway and low L-cysteine.
Collapse
Affiliation(s)
- Thomas Berry
- School of Social Sciences and Psychology, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia
| | - Eid Abohamza
- Department of Social Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Yang K, Wang N, Guo HT, Wang JR, Sun HH, Sun LZ, Yue SL, Zhou JB. Effect of L-carnitine on sperm quality during liquid storage of boar semen. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1763-1769. [PMID: 32054191 PMCID: PMC7649068 DOI: 10.5713/ajas.19.0455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Objective This study was conducted to investigate the effect of L-carnitine on the pig semen characteristics during storage. Methods Spermatozoa samples were examined for spermatozoa quality and then randomly divided into 5 groups: 0 (control), 12.5, 25, 50, and 100 mM L-carnitine. Sperm motility, plasma membrane integrity and antioxidant parameters (total reactive oxygen species, total antioxidant capacity, and malondialdehyde) were evaluated after 0, 3, 5, and 10 day cooled-storage at 17°C. Moreover, ATP content, mitochondria activity as well as sperm-binding and in vitro fertilizing ability of preserved boar sperm were also investigated. Results Supplementation with 50 mM L-carnitine could effectively maintain boar sperm quality parameters such as sperm motility and membrane integrity. Besides, we found that L-carnitine had positive effects on boar sperm quality mainly through improving antioxidant capacities and enhancing ATP content and mitochondria activity. Interestingly, by assessing the effect of L-carnitine on sperm fertility and developmental potential, we discovered that the extender containing L-carnitine could improve sperm quality and increase the number of sperms bounding to zona pellucida, without improving in vitro fertility and development potential. Conclusion These findings suggested that the proper addition of L-carnitine to the semen extender improved boar sperm quality during liquid storage at 17°C.
Collapse
Affiliation(s)
- Kang Yang
- Department of Biotechnology, College of Life Science Northeast Agricultural University, Harbin 150030, China
| | - Na Wang
- Department of Biotechnology, College of Life Science Northeast Agricultural University, Harbin 150030, China
| | - Hai-Tao Guo
- Department of Biotechnology, College of Life Science Northeast Agricultural University, Harbin 150030, China
| | - Jing-Ran Wang
- Department of Biotechnology, College of Life Science Northeast Agricultural University, Harbin 150030, China
| | - Huan-Huan Sun
- Department of Biotechnology, College of Life Science Northeast Agricultural University, Harbin 150030, China
| | - Liang-Zhen Sun
- Department of Biotechnology, College of Life Science Northeast Agricultural University, Harbin 150030, China
| | - Shun-Li Yue
- Department of Biotechnology, College of Life Science Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Bo Zhou
- Department of Biotechnology, College of Life Science Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
|
6
|
Fattah A, Sharafi M, Masoudi R, Shahverdi A, Esmaeili V. L-carnitine is a survival factor for chilled storage of rooster semen for a long time. Cryobiology 2017; 74:13-18. [DOI: 10.1016/j.cryobiol.2016.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/03/2016] [Accepted: 12/28/2016] [Indexed: 11/16/2022]
|
7
|
Gibb Z, Lambourne SR, Quadrelli J, Smith ND, Aitken RJ. L-carnitine and pyruvate are prosurvival factors during the storage of stallion spermatozoa at room temperature. Biol Reprod 2015; 93:104. [PMID: 26316064 DOI: 10.1095/biolreprod.115.131326] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/26/2015] [Indexed: 11/01/2022] Open
Abstract
The spermatozoa of many stallions do not tolerate being cooled, restricting the commercial viability of these animals and necessitating the development of a chemically defined room temperature (RT) storage medium. This study examined the impact of two major modulators of oxidative phosphorylation, pyruvate (Pyr) and L-carnitine (L-C), on the storage of stallion spermatozoa at RT. Optimal concentrations of Pyr (10 mM) and L-C (50 mM) were first identified and these concentrations were then used to investigate the effects of these compounds on sperm functionality and oxidative stress at RT. Mitochondrial and cytosolic reactive oxygen species, along with lipid peroxidation, were all significantly suppressed by the addition of L-C (48 h MitoSOX Red negative: 46.2% vs. 26.1%; 48 and 72 h dihydroethidium negative: 61.6% vs. 43.1% and 64.4% vs. 46.9%, respectively; 48 and 72 h 4-hydroxynonenal negative: 37.1% vs. 23.8% and 41.6% vs. 25.7%, respectively), while the Pyr + L-C combination resulted in significantly higher motility compared to the control at 72 h (total motility: 64.2% vs. 39.4%; progressive motility: 34.2% vs. 15.2%). In addition, supplementation with L-C significantly reduced oxidative DNA damage at 72 h (9.0% vs. 15.6%). To investigate the effects of L-C as an osmolyte, comparisons were made between media that were osmotically balanced with NaCl, choline chloride, or L-C. This analysis demonstrated that spermatozoa stored in the L-C balanced medium had significantly higher total motility (55.0% vs. 39.0%), rapid motility (44.0% vs. 25.7%), and ATP levels (70.9 vs. 12.8 ng/ml) following storage compared with the NaCl treatment, while choline chloride did not significantly improve these parameters compared to the control. Finally, mass spectrometry was used to demonstrate that a combination of Pyr and L-C produced significantly higher acetyl-L-carnitine production than any other treatment (6.7 pg/10(6) spermatozoa vs. control at 4.0 pg/10(6) spermatozoa). These findings suggest that Pyr and L-C could form the basis of a novel, effective RT storage medium for equine spermatozoa.
Collapse
Affiliation(s)
- Zamira Gibb
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sarah R Lambourne
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Julianne Quadrelli
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, Central Scientific Services, Research Services, University of Newcastle, Callaghan, New South Wales, Australia
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
8
|
Mehrotra A, Sandhir R. Mitochondrial cofactors in experimental Huntington's disease: behavioral, biochemical and histological evaluation. Behav Brain Res 2014; 261:345-55. [PMID: 24393741 DOI: 10.1016/j.bbr.2013.12.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 01/14/2023]
Abstract
The present study was carried out to evaluate the beneficial effect of mitochondrial cofactors; alpha-lipoic acid (ALA) and acetyl-l-carnitine (ALCAR) in 3-nitropropionic acid (3-NP) induced experimental model of Huntington's disease (HD). HD was developed by administering sub-chronic doses of 3-NP, intraperitoneally, twice daily for 17 days. The animals were assessed for their behavioral performance in terms of motor (spontaneous locomotor activity, narrow beam walk test, footprint analysis and rotarod test) and cognitive (elevated plus maze and T-maze tests) functions. 3-NP treated animals showed impairment in motor coordination such as decreased stride length, increased distance between inner toes, and increased gait angle. Increased transfer latency on elevated plus maze and T-maze tasks revealed cognition deficits in 3-NP treated animals. Increased lipid peroxidation and concomitant decrease in thiol levels were also observed. 3-NP administration also induced histopathological changes in terms of enhanced striatal lesion volume, presence of pyknotic nuclei and astrogliosis. However, combined supplementation with ALA+ALCAR to 3-NP administered animals for 21 days was able to efficiently improve behavioral deficits, attenuate oxidative stress and histological changes, suggesting a putative role of these two supplements if given together in ameliorating 3-NP induced impairments and thus could be engaged in managing HD.
Collapse
Affiliation(s)
- Arpit Mehrotra
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Sector-14, Chandigarh 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Sector-14, Chandigarh 160014, India.
| |
Collapse
|
9
|
Demirel M, Kaya B, Cerkez C, Ertunc M, Sara Y. L-carnitine pretreatment protects slow-twitch skeletal muscles in a rat model of ischemia-reperfusion injury. Vasc Endovascular Surg 2013; 47:540-5. [PMID: 23873671 DOI: 10.1177/1538574413496481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ischemia-reperfusion (I/R) injury negatively affects the outcome of surgical interventions for amputated or severely traumatized extremities. This study aimed to evaluate the protective role of l-carnitine on the contractile properties of fast-twitch (extensor digitorum longus [EDL]) and slow-twitch (soleus [SOL]) skeletal muscles following I/R-induced injury in a rat model. Rats were divided into 4 groups (1) saline pretreatment, (2) l-carnitine pretreatment, (3) saline pretreatment and I/R, and (4) l-carnitine pretreatment and I/R. Twitch and tetanic contractions in the EDL and SOL muscles in each group were recorded. Additionally, a fatigue protocol was performed in these muscles. Twitch and tetanic contraction amplitudes were lower in the EDL and SOL muscles in which I/R was induced (P < .01). l-Carnitine pretreatment significantly increased tetanic contraction amplitude in the SOL muscles following I/R (P < .01) but not in the EDL muscles. l-Carnitine pretreatment did not alter the fatigue response in any of the muscles.
Collapse
Affiliation(s)
- Mert Demirel
- 1Department of Plastic Reconstructive and Aesthetic Surgery, Lokman Hekim Hospital, Ankara, Turkey
| | | | | | | | | |
Collapse
|
10
|
Roesmann A, Afify M, Panse J, Eisert A, Steitz J, Tolba RH. L-Carnitine Ameliorates L-Asparaginase-Induced Acute Liver Toxicity in Steatotic Rat Livers. Chemotherapy 2013; 59:167-75. [DOI: 10.1159/000353402] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/28/2013] [Indexed: 11/19/2022]
|
11
|
Yuksel S, Sezer MT, Sahin O, Sutcu R, Koçogullari C, Yilmaz HR, Uz E, Kara Y, Aydin B, Altuntas A. The Role of Carnitine in Preventing Renal Damage Developed as a Result of Infrarenal Aortic Ischemia–Reperfusion. Ren Fail 2011; 33:440-9. [DOI: 10.3109/0886022x.2011.568148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Irat AM, Aktan F, Ozansoy G. Effects of L-carnitine treatment on oxidant/antioxidant state and vascular reactivity of streptozotocin-diabetic rat aorta. J Pharm Pharmacol 2010; 55:1389-95. [PMID: 14607021 DOI: 10.1211/0022357021909] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
In this study, the effects of L-carnitine treatment on lipids, lipid peroxidation of plasma, reactivity and antioxidant enzyme activity of aorta were evaluated in streptozotocin (STZ)-diabetic rats. Treatment with L-carnitine (0.6 g kg−1 daily, i.p.) was started 8 weeks after the induction of diabetes and continued for 2 weeks. Diabetes was induced by a single injection of streptozotocin (45 mg kg−1, i.p.). Plasma cholesterol, triglyceride and thiobarbituric acid reactive substance (TBARS) levels and blood glucose levels were significantly increased, although free carnitine levels were markedly decreased in diabetic rats. L-Carnitine treatment completely normalized plasma cholesterol, triglyceride, free carnitine and TBARS levels but partially restored blood glucose levels of diabetic rats. STZ-diabetes caused a significant reduction in the endothelium-dependent relaxation response to acetylcholine (ACh). In diabetic aorta, TBARS levels and catalase (CAT) activity were significantly increased but glutathione peroxidase (GSH-Px) activity was unchanged. Treatment of diabetic rats with L-carnitine resulted in partial restoration of the endothelium-dependent relaxation response to ACh and completely normalized the oxidant/antioxidant state. These results suggested that the beneficial effects of L-carnitine treatment partially improve vascular reactivity and antioxidant property beyond its reduction of plasma lipids and it may have an important therapeutic approach in the treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Ali Murat Irat
- Ankara University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | | | | |
Collapse
|
13
|
Derin N, Aydin S, Yargiçoglu P, Agar A. CHANGES IN VISUAL EVOKED POTENTIALS, LIPID PEROXIDATION AND ANTIOXIDANT ENZYMES IN RATS EXPOSED TO RESTRAINT STRESS: EFFECT OF L-CARNITINE. Int J Neurosci 2009; 116:205-21. [PMID: 16484050 DOI: 10.1080/00207450690969805] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The purpose of our study was to investigate the effects of L-carnitine on lipid peroxidation, Visual Evoked Potentials (VEPs) and antioxidant enzyme activities such as superoxide dismutase and catalase in rats exposed to chronic restraint stress. Forty male Wistar rats, aged three months were used. They were equally divided into four groups: control (C), the group exposed to restraint stress (R), the group treated with L-carnitine(L) and the group exposed to stress and treated with L-carnitine (RL). Chronic restraint stress was applied for 21 days (1 h/day) and L-carnitine (50 mg/kg/day) was given by gavage to the L and RL groups for the same period. Brain and retina levels of thiobarbituric acid reactive substances (TBARS) were significantly increased in the R group and were not altered in the L group compared to the C group. Brain and retina TBARS levels were lower in the RL group than in the R group. Brain and retina superoxide dismutase and catalase activities were significantly decreased in the L and R groups compared to the C group. L-carnitine pretreatment had no significant effect on superoxide dismutase and catalase activity in the RL group. All latencies of VEP components were prolonged in the R and L groups with respect to the C group. L-carnitine increased the latencies of all VEP components in the L group whereas shortened them in the RL group compared to their control groups. L-carnitine may be a promising agent for the prevention of VEP and TBARS alterations caused by stress.
Collapse
Affiliation(s)
- Narin Derin
- Department of Biophysics, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | | | | | | |
Collapse
|
14
|
Bloomer RJ, Fisher-Wellman KH, Tucker PS. Effect of oral acetyl L-carnitine arginate on resting and postprandial blood biomarkers in pre-diabetics. Nutr Metab (Lond) 2009; 6:25. [PMID: 19490608 PMCID: PMC2697148 DOI: 10.1186/1743-7075-6-25] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 06/02/2009] [Indexed: 12/26/2022] Open
Abstract
Background Resting and postprandial oxidative stress is elevated in those with metabolic disorders such as diabetes. Antioxidant supplementation may attenuate the rise in oxidative stress following feeding. Therefore we sought to determine the effects of acetyl L-carnitine arginate (ALCA) on resting and postprandial biomarkers of glucose and lipid metabolism, as well as oxidative stress. Methods Twenty-nine pre-diabetic men and women were randomly assigned to either 3 g·day-1 of ALCA (n = 14; 31 ± 3 yrs) or placebo (n = 15; 35 ± 3 yrs) in a double-blind design, to consume for eight weeks. Fasting blood samples were taken from subjects both pre and post intervention. After each fasting sample was obtained, subjects consumed a high fat, high carbohydrate meal and additional blood samples were taken at 1, 2, 4, and 6 hours post meal. Samples were analyzed for a variety of metabolic variables (e.g., glucose, HbA1c, lipid panel, C-reactive protein, nitrate/nitrite, and several markers of oxidative stress). Area under the curve (AUC) was calculated for each variable measured post meal, both pre and post intervention. Results ALCA, but not placebo, resulted in an increase in nitrate/nitrite (25.4 ± 1.9 to 30.1 ± 2.8 μmol·L-1) from pre to post intervention, with post intervention values greater compared to placebo (p = 0.01). No other changes of statistical significance were noted (p > 0.05), although ALCA resulted in slight improvements in glucose (109 ± 5 to 103 ± 5 mg·dL-1), HbA1c (6.6 ± 1.1 to 6.2 ± 1.2%), and HOMA-IR (3.3 ± 1.3 to 2.9 ± 1.2). AUC postprandial data were not statistically different between ALCA and placebo for any variable (p > 0.05). However, nitrate/nitrite demonstrated a moderate effect size (r = 0.35) for increase from pre (139.50 ± 18.35 μmol·L-1·6 hr-1) to post (172.40 ± 21.75 μmol·L-1·6 hr-1) intervention with ALCA, and the magnitude of decrease following feeding was not as pronounced as with placebo. Conclusion Supplementation with ALCA results in an increase in resting nitrate/nitrite in pre-diabetics, without any statistically significant change in other metabolic or oxidative stress variables measured at rest or post meal.
Collapse
Affiliation(s)
- Richard J Bloomer
- Cardiorespiratory/Metabolic Laboratory, The University of Memphis, Memphis, Tennessee 38152, USA.
| | | | | |
Collapse
|
15
|
Bloomer RJ, Smith WA. Oxidative Stress in Response to Aerobic and Anaerobic Power Testing: Influence of Exercise Training and Carnitine Supplementation. Res Sports Med 2009; 17:1-16. [DOI: 10.1080/15438620802678289] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Richard J. Bloomer
- a Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences , The University of Memphis , Memphis, Tennessee, USA
| | - Webb A. Smith
- a Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences , The University of Memphis , Memphis, Tennessee, USA
| |
Collapse
|
16
|
Sitta A, Barschak AG, Deon M, de Mari JF, Barden AT, Vanzin CS, Biancini GB, Schwartz IVD, Wajner M, Vargas CR. L-carnitine blood levels and oxidative stress in treated phenylketonuric patients. Cell Mol Neurobiol 2009; 29:211-8. [PMID: 18814025 PMCID: PMC11506149 DOI: 10.1007/s10571-008-9313-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
AIMS L-carnitine exerts an important role by facilitating the mitochondrial transport of fatty acids, but is also a scavenger of free radicals, protecting cells from oxidative damage. Phenylketonuria (PKU), an inborn error of phenylalanine (Phe) metabolism, is currently treated with a special diet consisting of severe restriction of protein-enriched foods, therefore potentially leading to L-carnitine depletion. The aim of this study was to determine L-carnitine levels and oxidative stress parameters in blood of two groups of PKU patients, with good and poor adherence to treatment. METHODS Treatment of patients consisted of a low protein diet supplemented with a synthetic amino acids formula not containing Phe, L-carnitine, and selenium. L-carnitine concentrations and the oxidative stress parameters thiobarbituric acid reactive species (TBARS) and total antioxidant reactivity (TAR) were measured in blood of the two groups of treated PKU patients and controls. RESULTS We verified a significant decrease of serum L-carnitine levels in patients who strictly adhered to the diet, as compared to controls and patients who did not comply with the diet. Furthermore, TBARS measurement was significantly increased and TAR was significantly reduced in both groups of phenylketonuric patients relatively to controls. We also found a significant negative correlation between TBARS and L-carnitine levels and a significant positive correlation between TAR and L-carnitine levels in well-treated PKU patients. CONCLUSIONS Our results suggest that L-carnitine should be measured in plasma of treated PKU patients, and when a decrease of this endogenous component is detected in plasma, supplementation should be considered as an adjuvant therapy.
Collapse
Affiliation(s)
- Angela Sitta
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2700, Porto Alegre, RS 90035-003 Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Alethéa G. Barschak
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2700, Porto Alegre, RS 90035-003 Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Marion Deon
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2700, Porto Alegre, RS 90035-003 Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Jurema F. de Mari
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Amanda T. Barden
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Camila S. Vanzin
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Giovana B. Biancini
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Ida V. D. Schwartz
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2700, Porto Alegre, RS 90035-003 Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
| | - Carmen R. Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2700, Porto Alegre, RS 90035-003 Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS 90035-903 Brazil
- Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Ipiranga 2752, Porto Alegre, RS 90610-000 Brazil
| |
Collapse
|
17
|
Citil M, Karapehlivan M, Erdogan HM, Yucayurt R, Atakisi E, Atakisi O. Effect of orally administered l-carnitine on selected biochemical indicators of lactating Tuj-ewes. Small Rumin Res 2009. [DOI: 10.1016/j.smallrumres.2008.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Oka T, Itoi T, Terada N, Nakanishi H, Taguchi R, Hamaoka K. Change in the membranous lipid composition accelerates lipid peroxidation in young rat hearts subjected to 2 weeks of hypoxia followed by hyperoxia. Circ J 2008; 72:1359-66. [PMID: 18654026 DOI: 10.1253/circj.72.1359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The effects of chronic hypoxia on cardiac membrane fatty acids and on lipid peroxidation were examined, as well as the effect of l-carnitine (LCAR), which suppresses lipid peroxidation, on this process. METHODS AND RESULTS Four-week-old Sprague-Dawley rats were exposed to 10% oxygen for 14 days ("Hypoxia"), and then to 100% oxygen for 12 h (O2). LCAR (200 mg/kg) was administered by intraperitoneal injection daily for 2 weeks. Fatty acid composition, malondialdehyde (MDA) as a lipid peroxidation product, and antioxidants (superoxide dismutase (SOD), glutathione peroxidase and catalase) were measured. The concentration of linoleic acid was lower, and that of docosahexaenoic acid, which has more double bonds than linoleic acid, was increased in hypoxic hearts. SOD activity decreased in hypoxia, whereas MDA was unchanged, but significantly increased in "Hypoxia"+O2. LCAR reduced the increase in MDA, and had no effect on SOD activity or fatty acid composition. The administration of LCAR caused an increase in the ventricular levels of acetylcarnitine. CONCLUSIONS These results suggest that chronic hypoxia changes the cardiac fatty acid composition of juvenile rats to fatty acids that contain more double-bonds and reduce SOD activity, and that lipid peroxidation was augmented by exposure to oxygen.
Collapse
Affiliation(s)
- Tatsujiro Oka
- Department of Pediatric Cardiology and Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Augustyniak A, Stankiewicz A, Skrzydlewska E. The Influence of L-Carnitine on Oxidative Modification of LDL In Vitro. Toxicol Mech Methods 2008; 18:455-462. [PMID: 19696940 PMCID: PMC2728756 DOI: 10.1080/15376510701623508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 08/03/2007] [Indexed: 10/28/2022]
Abstract
Owing to their structure and function, low-density lipoproteins (LDLs) are particularly susceptible to the oxidative modifications. To prevent against oxidative modification of LDL, L-carnitine, with endogenous small water-soluble quaternary amine possessing antioxidative properties, was used. The aim of this paper was to prove the in vitro influence of L-carnitine on the degree of oxidative modification of the lipid part (estimated by conjugated dienes, lipid hydroperoxides, and malondialdehyde levels) and the protein part (estimated by dityrosine and tryptophan levels) of LDL native and oxidized by cooper ions. The level of lipophylic LDL antioxidant-alpha-tocopherol was also measured.Oxidation of LDL by Cu(2+) enhanced lipid peroxidation. That was manifested by a statistically significant increase in the content of malondialdehyde (threefold), conjugated dienes (up to about 30%), and lipid hydroperoxides (up to about 50%). Cu(2+) ions were also the cause of oxidative modifications of the protein part of LDLs. It was manifested by a significant increase in dityrosine (by about 50%), whereas the level of tryptophan was significantly decreased threefold in relation to native LDL. Incubation of LDL with Cu(2+) ions also caused a significant sixfold decrease of alpha-tocopherol content in oxidized LDL. However, L-carnitine caused a decrease in the level of conjugated dienes, lipid hydroperoxide, malondialdehyde, and dityrosine by about 20% to 30%, and a significant increase (by about 50%) in the content of tryptophan in comparison with oxidative LDL and in a smaller degree significant changes with native LDL. Additionally, L-carnitine caused a significant twofold increase in alpha-tocopherol content in oxidized LDL.The above results indicate that L-carnitine protects the lipid as well as protein part of LDL particles against oxidative modifications, and this natural antioxidant might be used to prevent against diseases of oxidative origin.
Collapse
Affiliation(s)
- Agnieszka Augustyniak
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2a, Box 1415-230, Bialystok, Poland
| | | | | |
Collapse
|
20
|
Elanchezhian R, Ramesh E, Sakthivel M, Isai M, Geraldine P, Rajamohan M, Jesudasan CN, Thomas PA. Acetyl-L-carnitine prevents selenite-induced cataractogenesis in an experimental animal model. Curr Eye Res 2008; 32:961-71. [PMID: 18027172 DOI: 10.1080/02713680701673470] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate whether acetyl-L-carnitine (ALCAR) retards selenite-induced cataractogenesis in vivo. METHODS On postpartum day 10, group I pups received intraperitoneal saline and group II and group III pups received subcutaneous sodium selenite; Group III pups also received intraperitoneal ALCAR once daily on postpartum days 9-14. Both eyes of each pup were examined up to postpartum day 30. After sacrifice, extricated pup lenses were analyzed for antioxidant and redox system components. RESULTS There was dense lenticular opacification in all group II pups, minimal opacification in 33% of group III pups, and no opacification in 67% of group III and in all group I pups. Group II lenses exhibited significantly lower values of antioxidant and redox system components and higher malondialdehyde concentrations than group I or group III lenses. CONCLUSION ALCAR prevents selenite-induced cataractogenesis in Wistar rat pups, possibly by inhibiting depletion of antioxidant enzyme and redox system components and inhibiting lipid peroxidation.
Collapse
Affiliation(s)
- R Elanchezhian
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sener G, Ekşioğlu-Demiralp E, Cetiner M, Ercan F, Sirvanci S, Gedik N, Yeğen BC. L-Carnitine ameliorates methotrexate-induced oxidative organ injury and inhibits leukocyte death. Cell Biol Toxicol 2007; 22:47-60. [PMID: 16463019 DOI: 10.1007/s10565-006-0025-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/20/2005] [Indexed: 12/15/2022]
Abstract
Methotrexate (MTX), a folic acid antagonist widely used for the treatment of a variety of tumors and inflammatory diseases, affects normal tissues that have a high rate of proliferation, including the hematopoietic cells of the bone marrow and the gastrointestinal mucosal cells. To elucidate the role of free radicals and leukocytes in MTX-induced oxidative organ damage and the putative protective effect of L-carnitine (L-Car), Wistar albino rats were administered a single dose of MTX (20 mg/kg) followed by either saline or L-Car (500 mg/kg) for 5 days. After decapitation of the rats, trunk blood was obtained, and the ileum, liver, and kidney were removed for histological examination and for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and collagen content. Our results showed that MTX administration increased the MDA and MPO activities and collagen content and decreased GSH levels in all tissues, while these alterations were reversed in L-Car-treated group. The elevated serum TNF-alpha level observed following MTX treatment was depressed with L-Car. The oxidative burst of neutrophils stimulated by Annexin V was reduced in the saline-treated MTX group, while L-Car abolished this inhibition. Similarly, flow cytometric measurements revealed that leukocyte apoptosis was increased in MTX-treated animals, while L-Car reversed these effects. Severe degeneration of the intestinal mucosa, liver parenchyma, and glomerular and tubular epithelium observed in the saline-treated MTX group was improved by L-Car treatment. These results suggest that L-Car, possibly via its free radical scavenging and antioxidant properties, ameliorates MTX-induced oxidative organ injury and inhibits leukocyte apoptosis. Thus, supplementation with L-Carnitine as an adjuvant therapy may be promising in alleviating the systemic side-effects of chemotherapeutics.
Collapse
Affiliation(s)
- G Sener
- Department of Pharmacology, School of Pharmacy, Marmara University, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dose-dependent effects of L-carnitine on blood sialic acid, mda and gsh concentrations in BALB/c mice. ACTA VET-BEOGRAD 2007. [DOI: 10.2298/avb0704321y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
Geraldine P, Sneha BB, Elanchezhian R, Ramesh E, Kalavathy CM, Kaliamurthy J, Thomas PA. Prevention of selenite-induced cataractogenesis by acetyl-l-carnitine: An experimental study. Exp Eye Res 2006; 83:1340-9. [PMID: 16962580 DOI: 10.1016/j.exer.2006.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 06/04/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Several studies have suggested that antioxidants retard the process of cataractogenesis by scavenging free oxygen radicals. The present study sought to assess the efficacy of the antioxidant acetyl-L-carnitine (ALCAR) in preventing selenite-induced cataractogenesis in an experimental setting. The first, in vitro phase of the study was performed on lenses from Wistar rats incubated for 24 h at 37 degrees C in Dulbecco's Modified Eagle Medium (DMEM) alone (control, Group I), or in DMEM containing 100 microM of selenite (Group II) or in DMEM containing 100 microM of selenite and 200 microM/ml ALCAR added at the same time as selenite (Group IIIa) or 30 min, 1 h or 2 h later (Groups IIIb, IIIc and IIId, respectively). Gross morphological examination of these lenses revealed dense opacification (cataract formation) in Group II, minimal opacification in some Group IIIa lenses and no opacification in Group I. The mean activities of the antioxidant enzymes catalase and glutathione peroxidase were significantly lower in Group II than in Group I or Group IIIa lenses, while malondialdehyde concentration (an indicator of lipid peroxidation) was significantly higher in Group II lenses than that in Group I or Group IIIa lenses. The second, in vivo phase of the study revealed dense opacification (cataract formation) in 100% of Wistar rat pups receiving subcutaneous sodium selenite alone (19 microM/kg body weight) but in only 37.5% of those receiving subcutaneous selenite and intraperitoneal ALCAR. These data suggest that ALCAR is able to significantly retard experimental selenite-induced cataractogenesis.
Collapse
Affiliation(s)
- P Geraldine
- Department of Animal Science, Bharathidasan University, Tiruchirapalli, India.
| | | | | | | | | | | | | |
Collapse
|
24
|
Derin N, Agac A, Bayram Z, Asar M, Izgut-Uysal VN. Effects of L-carnitine on neutrophil-mediated ischemia-reperfusion injury in rat stomach. Cell Biochem Funct 2006; 24:437-42. [PMID: 16130180 DOI: 10.1002/cbf.1251] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reactive oxygen metabolites play an important role in ischemia-reperfusion related gastric injury. Primary sources of reactive oxygen metabolites seem to be the xanthine/xanthine oxidase system and neutrophils accumulating within the reperfused tissue. Tissue myeloperoxidase activity is an important index of neutrophil accumulation. The purpose of the present study was to clarify the effect of L-carnitine on the accumulation of neutrophils and neutrophil-induced gastric mucosal damage in rats exposed to ischemia-reperfusion. Rats were randomly divided into three groups: sham-operated, ischemia-reperfusion and ischemia-reperfusion plus L-carnitine groups. Ischemia was induced by clamping the celiac artery for 30 min and then reperfusion was established for 60 min. Gastric injury was assessed by measuring myeloperoxidase activity in gastric tissue. The neutrophil accumulation and hemorrhagic lesions due to ischemia-reperfusion in gastric mucosa were ascertained in a histological study. L-Carnitine (100 mg kg(-1)) administrated intravenously 5 min before ischemia significantly reduced both the gastric injury and myeloperoxidase activity compared with the ischemia-reperfusion group. The results suggest that L-carnitine provides marked protection against ischemia-reperfusion-related gastric injury which could be due to its ability to reduce neutrophil accumulation in ischemic tissue.
Collapse
Affiliation(s)
- Narin Derin
- Akdeniz University, Medicine Faculty, Department of Physiology, Antalya, Turkey.
| | | | | | | | | |
Collapse
|
25
|
Kocer I, Taysi S, Ertekin MV, Karslioglu I, Gepdiremen A, Sezen O, Serifoglu K. The effect of L-carnitine in the prevention of ionizing radiation-induced cataracts: a rat model. Graefes Arch Clin Exp Ophthalmol 2006; 245:588-94. [PMID: 16915402 DOI: 10.1007/s00417-005-0097-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 07/15/2005] [Accepted: 07/18/2005] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND The objective was to determine the antioxidant role of L-carnitine (LC) against ionizing radiation-induced cataracts in lens after total cranium irradiation of rats with a single dose of 5 Gy. METHODS Sprague-Dawley rats were used in this experiment and were divided into three groups. Group 1 did not receive LC or irradiation (control group). Group 2 received a 5 Gy gamma irradiation as a single dose to the total cranium (RT group). Group 3 received total cranium irradiation plus 100 mg/kg body weight/day LC (RT+LC group). The rats were irradiated using a cobalt-60 teletherapy unit. At the end of the 10th day, the rats were sacrificed and their eyes were enucleated. The lenticular activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured. Furthermore, the lenticular content of an indicator of lipid peroxidation, malondialdehyde (MDA), was measured. RESULTS Irradiation significantly increased the MDA level as an end product of lipid peroxidation. Irradiation also significantly decreased SOD activity and increased GSH-Px activity, indicating the generation of oxidative stress and an early protective response to oxidative damage. Irradiation with 5 Gy to the total cranium as a single fraction formed cataracts in the rat lenses. Cataract development was detectable in 9 rats in the RT group, and in only 4 rats in the RT+LC group 10 days after irradiation. LC administration plus irradiation significantly decreased the MDA level and increased the activity of SOD and GSH-Px enzymes, which might indicate the protection of the lenses from gamma radiation-induced cataracts. CONCLUSIONS L-carnitine may protect against the damage produced by gamma radiation by increasing the activity of the SOD enzyme and by scavenging free radicals generated by ionizing radiation. As a result of this process, MDA as an indicator of lipid peroxidation may decrease.
Collapse
Affiliation(s)
- Ibrahim Kocer
- Department of Ophthalmology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey.
| | | | | | | | | | | | | |
Collapse
|
26
|
Elmas O, Aslan M, Cağlar S, Derin N, Agar A, Alicigüzel Y, Yargiçoğlu P. The prooxidant effect of sodium metabisulfite in rat liver and kidney. Regul Toxicol Pharmacol 2005; 42:77-82. [PMID: 15896446 DOI: 10.1016/j.yrtph.2005.01.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 01/28/2005] [Accepted: 01/30/2005] [Indexed: 02/07/2023]
Abstract
Sodium metabisulfite (Na2S2O5) is used as an antioxidant and antimicrobial agent in a variety of drugs and functions as a preservative in many food preparations. In addition to their antioxidant activity, sulfites oxidize to sulfite radicals (SO3-) initiating lipid peroxidation. This study was performed to elucidate the effect of subchronic Na2S2O5 (520 mg/kg/day) ingestion on hepatic and renal antioxidant enzyme activities and lipid peroxidation in albino rats. The antioxidant effect of l-carnitine was also tested in rats treated with Na2S2O5. Plasma uric acid levels were monitored in all rats included in the study. Malondialdehyde (MDA) levels significantly increased in Na2S2O5 treated rats vs. controls, with kidney values of 2.21+/-0.21 vs. 1.22+/-0.35 and liver values of 79.85+/-19.5 vs. 31.36+/-5.0 nmol/mg protein, respectively. Selenium-glutathione peroxidase (GPx) activity was significantly increased in Na2S2O5 treated rats vs. controls, with kidney values of 38.22+/-2.21 vs. 8.09+/-0.76 and liver values of 31.11+/-6.37 vs. 11.70+/-1.02 U/g protein, respectively. Sodium metabisulfite treatment increased plasma uric acid levels in rats that were included in the study. No protective effect of l-carnitine was observed against lipid peroxidation in both liver and kidneys of rats treated with Na2S2O5. The presented data confirm the prooxidant activity of sulfites and suggest that increased GPx activity and plasma uric acid levels may partially reduce the observed renal and hepatocellular oxidative damage caused via the ingestion of sulfites.
Collapse
Affiliation(s)
- Oğuz Elmas
- Department of Biochemistry, Akdeniz University Medical School, Antalya, Turkey
| | | | | | | | | | | | | |
Collapse
|
27
|
Liu J, Head E, Kuratsune H, Cotman CW, Ames BN. Comparison of the effects of L-carnitine and acetyl-L-carnitine on carnitine levels, ambulatory activity, and oxidative stress biomarkers in the brain of old rats. Ann N Y Acad Sci 2005; 1033:117-31. [PMID: 15591009 DOI: 10.1196/annals.1320.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
L-carnitine and acetyl-L-carnitine (ALC) are both used to improve mitochondrial function. Although it has been argued that ALC is better than l-carnitine in absorption and activity, there has been no experiment to compare the two compounds at the same dose. In the present experiment, the effects of ALC and L-carnitine on the levels of free, acyl, and total L-carnitine in plasma and brain, rat ambulatory activity, and biomarkers of oxidative stress are investigated. Aged rats (23 months old) were given ALC or L-carnitine at 0.15% in drinking water for 4 weeks. L-carnitine and ALC were similar in elevating carnitine levels in plasma and brain. Both increased ambulatory activity similarly. However, ALC decreased the lipid peroxidation (malondialdehyde, MDA) in the old rat brain, while L-carnitine did not. ALC decreased the extent of oxidized nucleotides (oxo8dG/oxo8G) immunostaining in the hippocampal CA1 and cortex, while L-carnitine did not. ALC decreased nitrotyrosine immunostaining in the hippocampal CA1 and white matter, while L-carnitine did not. In conclusion, ALC and L-carnitine were similar in increasing ambulatory activity in old rats and elevating carnitine levels in blood and brain. However, ALC was effective, unlike L-carnitine, in decreasing oxidative damage, including MDA, oxo8dG/oxo8G, and nitrotyrosine, in old rat brain. These data suggest that ALC may be a better dietary supplement than L-carnitine.
Collapse
Affiliation(s)
- Jiankang Liu
- Department of Molecular and Cell Biology, Uniersity of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
28
|
Kabaroglu C, Akisu M, Habif S, Mutaf I, Turgan N, Parildar Z, Ozmen D, Bayindir O. Effects of L-arginine and L-carnitine in hypoxia/reoxygenation-induced intestinal injury. Pediatr Int 2005; 47:10-4. [PMID: 15693859 DOI: 10.1111/j.1442-200x.2005.01999.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND This study was designed to show the role of oxidative stress, nitric oxide and glutathione-related antioxidant enzymes in hypoxia/reoxygenation (H/R)-induced intestinal injury model in mice and to evaluate the potential benefits of arginine and carnitine supplementation. METHODS A total of 28 young Balb/c mice were divided into four groups: Group 1 (untreated) was given physiological saline before the experiment; group 2 H/R mice were supplemented with L-arginine; group 3 H/R mice were given L-carnitine for 7 days; and group 4 mice served as controls. At the end of day 7, H/R injury was induced and intestinal tissue malondialdehyde (MDA), nitrate levels and glutathione peroxidase (GSH-Px), glutathione reductase (GR) and glutathione-S-transferase (GST) activities were measured. RESULTS MDA levels were higher in the untreated animals than in the other three groups. MDA levels were higher in the L-arginine-treated animals than in the L-carnitine-treated animals. Nitrate levels were found to be increased in the L-arginine-treated group when compared to the controls. GSH-Px and GR activities were increased in the untreated, the L-arginine and the L-carnitine-treated H/R groups when compared to the control group. GST activities were indifferent between the groups. CONCLUSIONS Oxidative stress contributes to the pathogenesis of H/R-induced intestinal injury. The glutathione redox cycle may have a crucial role in the H/R-induced intestinal injury. L-arginine and L-carnitine supplementations ameliorate the histological evidence of H/R-induced intestinal injury and decrease lipid peroxidation but do not alter the glutathione-related antioxidant enzyme activities.
Collapse
Affiliation(s)
- Ceyda Kabaroglu
- Department of Clinical Biochemistry, Ege University Faculty of Medicine, 35100 Bornova, Izmir, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Loots DT, Mienie LJ, Bergh JJ, Van der Schyf CJ. Acetyl-L-carnitine prevents total body hydroxyl free radical and uric acid production induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the rat. Life Sci 2004; 75:1243-53. [PMID: 15219812 DOI: 10.1016/j.lfs.2004.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 03/11/2004] [Indexed: 12/17/2022]
Abstract
Acetyl-L-carnitine (ALCAR) is intimately involved in the transport of long chain fatty acids across the inner mitochondrial membrane during oxidative phosphorylation. ALCAR also has been reported to attenuate the occurrence of parkinsonian symptoms associated with 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) in vivo, and protects in vitro against the toxicity of the neurotoxic 1-methyl-4-phenylpyridinium (MPP+) metabolite of MPTP. The mechanism for these protective effects remains unclear. ALCAR may attenuate hydroxyl (HO*) free radical production in the MPTP/MPP+ neurotoxic pathway through several mechanisms. Most studies on MPTP/MPP+ toxicity and protection by ALCAR have focused on in vivo brain chemistry and in vitro neuronal culture studies. The present study investigates the attenuative effects of ALCAR on whole body oxidative stress markers in the urine of rats treated with MPTP. In a first study, ALCAR totally prevented the MPTP-induced formation of HO* measured by salicylate radical trapping. In a second study, the production of uric acid after MPTP administration-a measure of oxidative stress mediated through xanthine oxidase-was also prevented by ALCAR. Because ALCAR is unlikely to be a potent radical scavenger, these studies suggest that ALCAR protects against MPTP/MPP+-mediated oxidative stress through other mechanisms. We speculate that ALCAR may operate through interference with organic cation transporters such as OCTN2 and/or carnitine-acylcarnitine translocase (CACT), based partly on the above findings and on semi-empirical electronic similarity calculations on ALCAR, MPP+, and two other substrates for these transporters.
Collapse
Affiliation(s)
- Du Toit Loots
- Department of Biochemistry, North West University, Potchefstroom 2520, South Africa
| | | | | | | |
Collapse
|
30
|
Czech E, Olszowy Z, Nowicka J. The influence of L-carnitine on methanol biotransformation in rats. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2004; 55:367-77. [PMID: 15088638 DOI: 10.1078/0940-2993-00340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
There persists a need for potent and safe inhibitors of alcohol dehydrogenase (ADH), to effectively treat methanol poisoning by slowing its rate of biotransformation to there toxic products, formaldehyde and formic acid. Only a few former papers have reported on the significant effectiveness of L-carnitine in treating ethanol poisoning as well as alcohol abuse. As are no reports on the effectiveness of L-carnitine in treating methanol poisoning till now, the current studies were conducted to investigate the influence of L-carnitine on both oxydative metabolism and elimination of methanol in rats. Male Sprague-Dawley rats, aged 3 months with the body weight of 200-230 g were divided into 6 groups at random, with two of the groups considered to be control. Rats were given drinking water (control) or methanol in two different doses of 3220 mg/kg b.m. or 6440 mg/kg b.m. intragastrically and 0.9% NaCl (control) or 6.2 mmol/kg b.m. of L-carnitine intraperitionelly. Within 96 hours after the administration of methanol and 0.9% NaCl or L-carnitine, the urine was collected and then the animals were decapitated. To determine methanol there were taken blood samples for clot, and to determine carnitine and its derivatives blood was taken into heparinized test tubes. During the autopsy liver was also secured. In all the experimental time points stated the methanol concentrations in blood, urine and liver homogenate were determined by a head-space gas chromatography.
Collapse
Affiliation(s)
- Ewa Czech
- Department of Nuclear Medicine, Medical University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
31
|
|
32
|
Chang B, Nishikawa M, Sato E, Utsumi K, Inoue M. L-Carnitine inhibits cisplatin-induced injury of the kidney and small intestine. Arch Biochem Biophys 2002; 405:55-64. [PMID: 12176057 DOI: 10.1016/s0003-9861(02)00342-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although cis-diamminedichloroplatinum (II) (cisplatin) is a potent anticancer drug, clinical use of this agent is highly limited predominantly because of its strong side effects on the kidney and gastrointestinal tracts. We found that cisplatin impaired respiratory function and DNA of mitochondria in renal proximal tubules and small intestinal mucosal cells, thereby inducing apoptosis of epithelial cells. Cisplatin-induced mitochondrial dysfunction and DNA (mtDNA) injury, lipid peroxidation, and apoptosis of epithelial cells in the kidney and small intestine were strongly inhibited by L-carnitine. However, carnitine had no appreciable effect on the tumoricidal action of cisplatin against cancer cells inoculated in the peritoneal cavity. These results indicate that L-carnitine may have therapeutic potential for inhibiting the side effects of cisplatin and other anticancer agents in the kidney and small intestine.
Collapse
Affiliation(s)
- BaoJun Chang
- Department of Biochemistry and Molecular Pathology, Osaka City University Medical School, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan
| | | | | | | | | |
Collapse
|
33
|
Liu J, Atamna H, Kuratsune H, Ames BN. Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann N Y Acad Sci 2002; 959:133-66. [PMID: 11976193 DOI: 10.1111/j.1749-6632.2002.tb02090.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitochondria decay with age due to the oxidation of lipids, proteins, RNA, and DNA. Some of this decay can be reversed in aged animals by feeding them the mitochondrial metabolites acetylcarnitine and lipoic acid. In this review, we summarize our recent studies on the effects of these mitochondrial metabolites and mitochondrial antioxidants (alpha-phenyl-N-t-butyl nitrone and N-t-butyl hydroxylamine) on the age-associated mitochondrial decay of the brain of old rats, neuronal cells, and human diploid fibroblast cells. In feeding studies in old rats, these mitochondrial metabolites and antioxidants improve the age-associated decline of ambulatory activity and memory, partially restore mitochondrial structure and function, inhibit the age-associated increase of oxidative damage to lipids, proteins, and nucleic acids, elevate the levels of antioxidants, and restore the activity and substrate binding affinity of a key mitochondrial enzyme, carnitine acetyltransferase. These mitochondrial metabolites and antioxidants protect neuronal cells from neurotoxin- and oxidant-induced toxicity and oxidative damage; delay the normal senescence of human diploid fibroblast cells, and inhibit oxidant-induced acceleration of senescence. These results suggest a plausible mechanism: with age, increased oxidative damage to proteins and lipid membranes, particularly in mitochondria, causes a deformation of structure of enzymes, with a consequent decrease of enzyme activity as well as substrate binding affinity for their substrates; an increased level of substrate restores the velocity of the reaction and restores mitochondrial function, thus delaying mitochondrial decay and aging. This loss of activity due to coenzyme or substrate binding appears to be true for a number of other enzymes as well, including mitochondrial complex III and IV.
Collapse
Affiliation(s)
- Jiankang Liu
- Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
34
|
Kaur J, Sharma D, Singh R. Acetyl-L-carnitine enhances Na(+), K(+)-ATPase glutathione-S-transferase and multiple unit activity and reduces lipid peroxidation and lipofuscin concentration in aged rat brain regions. Neurosci Lett 2001; 301:1-4. [PMID: 11239702 DOI: 10.1016/s0304-3940(01)01576-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study investigated the effects of chronically administered acetyl-L-carnitine (ALC) on sodium potassium adenosine triphosphatase (Na(+), K(+)-ATPase), glutathione-S-transferase (GST), glutathione peroxidase (GPx), multiple unit activity (MUA) and lipid peroxidation (LP) and lipofuscin (LF) concentration in brain regions: cerebral cortex, hippocampus, striatum and thalamus, of 24-month-old rats. The activity of Na(+), K(+)-ATPase and GST was enhanced; that of GPx was unaffected. The MUA was increased while the levels of LP and LF were decreased. These novel data provide new additional evidence concerning the antiaging attributes of ALC.
Collapse
Affiliation(s)
- J Kaur
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, 110 067, New Delhi, India
| | | | | |
Collapse
|
35
|
Löster H, Böhm U. L-carnitine reduces malondialdehyde concentrations in isolated rat hearts in dependence on perfusion conditions. Mol Cell Biochem 2001; 217:83-90. [PMID: 11269669 DOI: 10.1023/a:1007255021484] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The study investigated the influence of L-carnitine on the formation of malondialdehyde, an indicator of lipid peroxidation, in isolated Langendorff rat hearts. Earlier investigations of hemodynamic parameters and the recovery of ATP and creatine phosphate, carried out by means of 31P-NMR spectroscopy, had demonstrated that, depending on the composition of the perfusates (content of glucose, fatty acids, and carnitine), quite strong differences may occur in the reperfusion period after ischemia. In order to determine a possible relationship between these differences and the addition of carnitine, the study investigated whether carnitine penetrated into the tissue during the experiments, and whether it was able to reduce the concentration of detrimental substances. The concentrations of free and total carnitine as well as the malondialdehyde content as an indicator of ischemia/reperfusion damage were determined in different parts of the cardiac tissue as follows: After the Langendorff-experiments the hearts were dissected, homogenized and reconditioned; then carnitine and malondialdehyde were determined. The study included 63 hearts, which were divided into 8 different perfusion groups. Carnitine concentrations in heart tissue perfused with L-carnitine were much higher than those of the controls. Since exogenous L-carnitine and formed esters could be found in the tissue after the experiment, they must have permeated the cellular membrane rapidly. The concentrations of malondialdehyde behaved in an inverted way; as expected they were lower in carnitine-perfused hearts. The favourable effects of L-carnitine, expressed both by improved cardiac dynamics and ATP and CrP recovery in the reperfusion period, are obviously due to the fact that L-carnitine reduces ischemic damage.
Collapse
Affiliation(s)
- H Löster
- Institute of Clinical Chemistry and Pathobiochemistry, University of Leipzig, Germany
| | | |
Collapse
|
36
|
Mawal YR, Rama Rao KV, Qureshi IA. Restoration of hepatic cytochrome c oxidase activity and expression with acetyl-L-carnitine treatment in spf mice with an ornithine transcarbamylase deficiency. Biochem Pharmacol 1998; 55:1853-60. [PMID: 9714304 DOI: 10.1016/s0006-2952(98)00051-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The sparse fur (spf) mutant mouse, with an X-linked ornithine transcarbamylase deficiency, is a model of congenital hyperammonemia in children. Our earlier studies indicated a deficiency of hepatic carnitine, CoA-SH, acetyl CoA, and ATP in spf mice. We have now studied the effects of a 7-day treatment with acetyl-L-carnitine (ALCAR) in the spf/Y mice on the activity and expression of the respiratory chain enzyme cytochrome c oxidase (COX; EC 1.9.3.1). We found decreased hepatic activity and expression of COX in the untreated hyperammonemic spf/Y mice, which was restored upon ALCAR treatment. Because COX is a mitochondrial membrane protein, we also carried out studies to explain the mechanism of ALCAR through its effect on membrane stability. Our results indicate a decrease of the mitochondrial membrane cholesterol/phospholipid molar ratio (CHOL/PL ratio) with the activity and expression of COX in untreated spf/Y mice. While ALCAR treatment normalized the ratios, it also restored the hepatic ATP production to normal. To study further if there was any effect of ALCAR on the mitochondrial matrix urea cycle enzymes, we measured the activity and expression of mutant ornithine transcarbamylase (OTC; EC 2.1.3.3) and normal carbamyl phosphate synthase-I (CPS-I; EC 6.3.4.16) in spf/Y mice. There was no general effect on the specific activities of the matrix enzymes upon ALCAR treatment, although their mRNA levels were enhanced. Our studies point towards the feasibility of an ALCAR treatment in conjunction with other treatment modalities, e.g. sodium benzoate and/or arginine, to improve the availability of cellular ATP and to counteract the effects of hereditary hyperammonemic syndromes in children.
Collapse
Affiliation(s)
- Y R Mawal
- Division of Medical Genetics, Sainte-Justine Hospital and University of Montréal, Québec, Canada
| | | | | |
Collapse
|
37
|
|