1
|
Sgambellone S, Lucarini L, Lanzi C, Masini E. Novel Insight of Histamine and Its Receptor Ligands in Glaucoma and Retina Neuroprotection. Biomolecules 2021; 11:1186. [PMID: 34439851 PMCID: PMC8392511 DOI: 10.3390/biom11081186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
Glaucoma is a multifactorial neuropathy characterized by increased intraocular pressure (IOP), and it is the second leading cause of blindness worldwide after cataracts. Glaucoma combines a group of optic neuropathies characterized by the progressive degeneration of retinal ganglionic cells (RGCs). Increased IOP and short-term IOP fluctuation are two of the most critical risk factors in glaucoma progression. Histamine is a well-characterized neuromodulator that follows a circadian rhythm, regulates IOP and modulates retinal circuits and vision. This review summarizes findings from animal models on the role of histamine and its receptors in the eye, focusing on the effects of histamine H3 receptor antagonists for the future treatment of glaucomatous patients.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (S.S.); (E.M.)
| | - Laura Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (S.S.); (E.M.)
| | - Cecilia Lanzi
- Toxicology Unit, Emergency Department, Careggi University Hospital, 50139 Florence, Italy;
| | - Emanuela Masini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (S.S.); (E.M.)
| |
Collapse
|
2
|
Rusanen J, Frolov R, Weckström M, Kinoshita M, Arikawa K. Non-linear amplification of graded voltage signals in the first-order visual interneurons of the butterfly Papilio xuthus. ACTA ACUST UNITED AC 2018; 221:jeb.179085. [PMID: 29712749 DOI: 10.1242/jeb.179085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/26/2018] [Indexed: 11/20/2022]
Abstract
Lamina monopolar cells (LMCs) are the first-order visual interneurons of insects and crustacea, primarily involved in achromatic vision. Here, we investigated morphological and electrophysiological properties of LMCs in the butterfly Papilio xuthus Using intracellular recording coupled with dye injection, we found two types of LMCs. Cells with roundish terminals near the distal surface of the medulla demonstrating no or small depolarizing spikes were classified as L1/2. Cells with elongated terminals deep in the medulla that showed prominent spiking were classified as L3/4. The majority of LMCs of both types had broad spectral sensitivities, peaking between 480 and 570 nm. Depending on the experimental conditions, spikes varied from small to action potential-like events, with their amplitudes and rates decreasing as stimulus brightness increased. When the eye was stimulated with naturalistic contrast-modulated time series, spikes were reliably triggered by high-contrast components of the stimulus. Spike-triggered average functions showed that spikes emphasize rapid membrane depolarizations. Our results suggest that spikes are mediated by voltage-activated Na+ channels, which are mainly inactivated at rest. Strong local minima in the coherence functions of spiking LMCs indicate that the depolarizing conductance contributes to the amplification of graded responses even when detectable spikes are not evoked. We propose that the information transfer strategies of spiking LMCs change with light intensity. In dim light, both graded voltage signals and large spikes are used together without mutual interference, as a result of separate transmission bandwidths. In bright light, signals are non-linearly amplified by the depolarizing conductance in the absence of detectable spikes.
Collapse
Affiliation(s)
- Juha Rusanen
- Nano and Molecular Materials Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu 90014, Finland
| | - Roman Frolov
- Nano and Molecular Materials Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu 90014, Finland
| | - Matti Weckström
- Nano and Molecular Materials Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu 90014, Finland
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
3
|
Ueda A, Woods S, McElree I, O'Harrow TCDG, Inman C, Thenuwara S, Aftab M, Iyengar A. Two novel forms of ERG oscillation in Drosophila: age and activity dependence. J Neurogenet 2018; 32:118-126. [PMID: 29688104 DOI: 10.1080/01677063.2018.1461866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Over an animal's lifespan, neuronal circuits and systems often decline in an inherently heterogeneous fashion. To compare the age-dependent progression of changes in visual behavior with alterations in retinal physiology, we examined phototaxis and electroretinograms (ERGs) in a wild-type D. melanogaster strain (Canton-S) across their lifespan. In aged flies (beyond 50% median lifespan), we found a marked decline in phototaxis, while motor coordination was less disrupted, as indicated by relatively stronger negative geotaxis. These aged flies displayed substantially reduced ERG transient amplitudes while the receptor potentials (RP) remained largely intact. Using a repetitive light flash protocol, we serendipitously discovered two forms of activity-dependent oscillation in the ERG waveforms of young flies: 'light-off' and 'light-on' oscillations. After repeated 500 ms light flashes, light-off oscillations appeared during the ERG off-transients (frequency: 50-120 Hz, amplitude: ∼1 mV). Light-on oscillations (100-200 Hz, ∼0.3 mV) were induced by a series of 50 ms flashes, and were evident during the ERG on-transients. Both forms of oscillation were observed in other strains of D. melanogaster (Oregon-R, Berlin), additional Drosophila species (D. funerbris, D. euronotus, D. hydei, D. americana), and were evoked by a variety of light sources. Both light-off and light-on oscillations were distinct from previously described ERG oscillations in the visual mutant rosA in terms of location within the waveform and frequency. However, within rosA mutants, light-off oscillations, but not light-on oscillations could be recruited by the repetitive light flash protocol. Importantly though, we found that both forms of oscillation were rarely observed in aged flies. Although the physiological bases of these oscillations remain to be elucidated, they may provide important clues to age-related changes in neuronal excitability and synaptic transmission.
Collapse
Affiliation(s)
- Atsushi Ueda
- a Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Scott Woods
- a Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Ian McElree
- a Department of Biology , University of Iowa , Iowa City , IA , USA
| | | | - Casey Inman
- a Department of Biology , University of Iowa , Iowa City , IA , USA
| | | | - Muhammad Aftab
- a Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Atulya Iyengar
- a Department of Biology , University of Iowa , Iowa City , IA , USA
| |
Collapse
|
4
|
Akashi HD, Chen PJ, Akiyama T, Terai Y, Wakakuwa M, Takayama Y, Tominaga M, Arikawa K. Physiological responses of ionotropic histamine receptors, PxHCLA and PxHCLB, to neurotransmitter candidates in a butterfly, Papilio xuthus. J Exp Biol 2018; 221:jeb.183129. [DOI: 10.1242/jeb.183129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/03/2018] [Indexed: 11/20/2022]
Abstract
Histamine is the only known neurotransmitter released by arthropod photoreceptors. Synaptic transmission from photoreceptors to second order neurons is mediated by the activation of histamine-gated chloride channels (HCLs). These histaminergic synapses have been assumed to be conserved among insect visual systems. However, our understanding of the channels in question has thus far been based on studies in flies. In the butterfly Papilio xuthus, we have identified two candidate histamine-gated chloride channels, PxHCLA and PxHCLB, and studied their physiological properties using a whole-cell patch-clamp technique. We studied the responses of channels expressed in cultured cells to histamine as well as to other neurotransmitter candidates, namely GABA, tyramine, serotonin, D-/L- glutamate, and glycine. We found that histamine and GABA activated both PxHCLA and PxHCLB, while the other molecules did not. The sensitivity to histamine and GABA was consistently higher in PxHCLB than in PxHCLA. Interestingly, simultaneous application of histamine and GABA activated both PxHCLA and PxHCLB more strongly than either neurotansmitter individually; histamine and GABA may have synergistic effects on PxHCLs in the regions where they colocalize. Our results suggest that the physiological properties of the histamine receptors are basically conserved among insects, but that the response to GABA differs between butterflies and flies, implying variation in early visual processing among species.
Collapse
Affiliation(s)
- Hiroshi D. Akashi
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Pei-Ju Chen
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Tokiho Akiyama
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Motohiro Wakakuwa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yasunori Takayama
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
5
|
Pharmacological characterization of histamine-gated chloride channels from the housefly Musca domestica. Neurotoxicology 2017; 60:245-253. [DOI: 10.1016/j.neuro.2016.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 11/23/2022]
|
6
|
Rusanen J, Weckström M. Frequency-selective transmission of graded signals in large monopolar neurons of blowfly Calliphora vicina compound eye. J Neurophysiol 2016; 115:2052-64. [PMID: 26843598 PMCID: PMC4869513 DOI: 10.1152/jn.00747.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/30/2016] [Indexed: 11/22/2022] Open
Abstract
The functional roles of voltage-gated K(+)(Kv) channels in visual system interneurons remain poorly studied. We have addressed this problem in the large monopolar cells (LMCs) of the blowfly Calliphora vicina, using intracellular recordings and mathematical modeling methods. Intracellular recordings were performed in two cellular compartments: the synaptic zone, which receives input from photoreceptors, and the axon, which provides graded potential output to the third-order visual neurons. Biophysical properties of Kv conductances in the physiological voltage range were examined in the dark with injections of current in the discontinuous current-clamp mode. Putative LMC types 1/2 and 3 (L1/2 and L3, respectively) had dissimilar Kv channelomes: L1/2 displayed a prominent inactivating Kv conductance in the axon, while L3 cells were characterized by a sustained delayed-rectifier Kv conductance. To study the propagation of voltage signals, the data were incorporated into the previously developed mathematical model. We demonstrate that the complex interaction between the passive membrane properties, Kv conductances, and the neuronal geometry leads to a resonance-like filtering of signals with peak frequencies of transmission near 15 and 40 Hz for L3 and L1/2, respectively. These results point to distinct physiological roles of different types of LMCs.
Collapse
Affiliation(s)
- Juha Rusanen
- Centre for Molecular Materials Research, Biophysics, University of Oulu, Oulu, Finland
| | - Matti Weckström
- Centre for Molecular Materials Research, Biophysics, University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
Popkiewicz B, Prete FR. Macroscopic characteristics of the praying mantis electroretinogram. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:812-823. [PMID: 23684801 DOI: 10.1016/j.jinsphys.2013.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/02/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
We described the macroscopic characteristics of the praying mantis ERG in three species, Tenodera aridifolia sinensis, Sphodromantis lineola, and Popa spurca. In all cases, when elicited by square wave light pulses longer than 400 ms, light adapted (LA) ERGs consisted of four component waveforms: a cornea negative transient and sustained ON, a cornea negative transient OFF, and a cornea positive sustained OFF. The former two ON, and the latter OFF components were attributed to photoreceptor depolarization and repolarization, respectively. Metabolic stress via CO2 induced anoxia selectively eliminated the transient OFF (independent of its effect on the other components) suggesting the transient OFF represents activity of the lamina interneurons on which the photoreceptors synapse. Dark adapted (DA) ERGs differed from LA ERGs in that the sustained ON and OFF amplitudes were larger, and the transient ON and OFF components were absent. Increased stimulus durations increased the amplitudes and derivatives of, and decreased the latencies to the maximum amplitudes of the OFF components. Increasing stimulus intensity increased the amplitude of the sustained ON and OFF components, but not the transient OFF. These results suggest that the mantis' visual system displays increased contrast coding efficiency with increased light adaptation, and that there are differences in gain between photoreceptor and lamina interneuron responses. Finally, responses to luminance decrements as brief a 1 ms were evident in LA recordings, and were resolved at frequencies up to 60 Hz.
Collapse
Affiliation(s)
- Barbara Popkiewicz
- Department of Biology, Northeastern Illinois University, 5500 N. St. Louis Ave., Chicago, IL 60625, USA
| | | |
Collapse
|
8
|
Liu WW, Wilson RI. Transient and specific inactivation of Drosophila neurons in vivo using a native ligand-gated ion channel. Curr Biol 2013; 23:1202-8. [PMID: 23770187 DOI: 10.1016/j.cub.2013.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/22/2013] [Accepted: 05/09/2013] [Indexed: 02/04/2023]
Abstract
A key tool in neuroscience is the ability to transiently inactivate specific neurons on timescales of milliseconds to minutes. In Drosophila, there are two available techniques for accomplishing this (shibire(ts) and halorhodopsin [1-3]), but both have shortcomings [4-9]. Here we describe a complementary technique using a native histamine-gated chloride channel (Ort). Ort is the receptor at the first synapse in the visual system. It forms large-conductance homomeric channels that desensitize only modestly in response to ligand [10]. Many regions of the CNS are devoid of histaminergic neurons [11, 12], raising the possibility that Ort could be used to artificially inactivate specific neurons in these regions. To test this idea, we performed in vivo whole-cell recordings from antennal lobe neurons misexpressing Ort. In these neurons, histamine produced a rapid and reversible drop in input resistance, clamping the membrane potential below spike threshold and virtually abolishing spontaneous and odor-evoked activity. Every neuron type in this brain region could be inactivated in this manner. Neurons that did not misexpress Ort showed negligible responses to histamine. Ort also performed favorably in comparison to the available alternative effector transgenes. Thus, Ort misexpression is a useful tool for probing functional connectivity among Drosophila neurons.
Collapse
Affiliation(s)
- Wendy W Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
Kim E, Shino S, Yoon J, Leung HT. In search of proteins that are important for synaptic functions in Drosophila visual system. J Neurogenet 2012; 26:151-7. [PMID: 22283835 DOI: 10.3109/01677063.2011.648290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This is the second of two reviews that include some of the studies we, members of the Pak laboratory and collaborators, did from 2000 to 2010 on the mutants that affect synaptic transmission in the Drosophila visual system. Of the five mutants we discuss, two turned out to also play roles in the larval neuromuscular junction. This review complements the one on phototransduction to give a fairly complete account of what we focused on during the 10-year period, although we also did some studies on photoreceptor degeneration in the early part of the decade. Besides showing the power of using a genetic approach to the study of synaptic transmission, the review contains some unexpected results that illustrate the serendipitous nature of research.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
10
|
Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila. Nat Neurosci 2010; 13:973-8. [PMID: 20622873 DOI: 10.1038/nn.2595] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 06/09/2010] [Indexed: 11/08/2022]
Abstract
In the visual system of Drosophila, photoreceptors R1-R6 relay achromatic brightness information to five parallel pathways. Two of them, the lamina monopolar cells L1 and L2, represent the major input lines to the motion detection circuitry. We devised a new method for optical recording of visually evoked changes in intracellular Ca2+ in neurons using targeted expression of a genetically encoded Ca2+ indicator. Ca2+ in single terminals of L2 neurons in the medulla carried no information about the direction of motion. However, we found that brightness decrements (light-OFF) induced a strong increase in intracellular Ca2+ but brightness increments (light-ON) induced only small changes, suggesting that half-wave rectification of the input signal occurs. Thus, L2 predominantly transmits brightness decrements to downstream circuits that then compute the direction of image motion.
Collapse
|
11
|
Altered ivermectin pharmacology and defective visual system in Drosophila mutants for histamine receptor HCLB. INVERTEBRATE NEUROSCIENCE 2008; 8:211-22. [PMID: 18839229 DOI: 10.1007/s10158-008-0078-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 09/17/2008] [Indexed: 01/18/2023]
Abstract
The Drosophila gene hclB encodes a histamine-gated chloride channel, which can be activated by the neurotoxin ivermectin when expressed in vitro. We have identified two novel hclB mutants, carrying either a missense mutation (P293S, allele hclB (T1)) or a putative null mutation (W111*, allele hclB (T2)), as well as a novel splice form of the gene. In survival studies, hclB (T1) mutants were more sensitive to ivermectin than wild-type, whereas hclB (T2) were more resistant. Electroretinogram recordings from the two mutants exhibited enlarged peak amplitudes of the transient components, indicating altered synaptic transmission between retinal photoneurons and their target cells. Ivermectin treatment severely affected or completely suppressed these transient components in an allele-specific manner. This suppression of synaptic signals by ivermectin was dose-dependent. These results identify HCLB as an important in vivo target for ivermectin in Drosophila melanogaster, and demonstrate the involvement of this protein in the visual pathway.
Collapse
|
12
|
Stuart AE, Borycz J, Meinertzhagen IA. The dynamics of signaling at the histaminergic photoreceptor synapse of arthropods. Prog Neurobiol 2007; 82:202-27. [PMID: 17531368 DOI: 10.1016/j.pneurobio.2007.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/08/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Histamine, a ubiquitous aminergic messenger throughout the body, also serves as a neurotransmitter in both vertebrates and invertebrates. In particular, the photoreceptors of adult arthropods use histamine, modulating its release to signal increases and decreases in light intensity. Strong evidence from various arthropod species indicates that histamine is synthesized and stored in photoreceptors, undergoes Ca-dependent release, inhibits postsynaptic interneurons by gating Cl channels, and is then recycled. In Drosophila, the synthetic enzyme, histidine decarboxylase, and the subunits of the histamine-gated chloride channel have been cloned. Possible histamine transporters at synaptic vesicles and for reuptake remain elusive. Indeed, the mechanisms that remove histamine from the synaptic cleft, and that help terminate histamine's action, are unexpectedly complex, their details remaining unresolved. A major pathway in Drosophila, and possibly other arthropod species, is by conjugation of histamine to beta-alanine to form carcinine in adjacent glia. This conjugate then returns to the photoreceptors where it is hydrolysed to liberate histamine, which is then loaded into synaptic vesicles. Evidence from other species suggests that direct reuptake of histamine into the photoreceptors may also occur. Light depolarizes the photoreceptors, causing histamine release and postsynaptic inhibition; dimming hyperpolarizes the photoreceptors, causing a decrease in histamine release and an "off" response in the postsynaptic cell. Further pursuit of histamine's action at these highly specialized synapses should lead to an understanding of how they signal minute changes in presynaptic membrane potential, how they reliably extract signals from noise, and how they adapt to a wide range of presynaptic membrane potentials.
Collapse
Affiliation(s)
- Ann E Stuart
- University of North Carolina, Department of Cell and Molecular Physiology, MBRB Campus Box 7545, 103 Mason Farm Road, Chapel Hill, NC 27599-7545, USA.
| | | | | |
Collapse
|
13
|
Yasuyama K, Okada Y, Hamanaka Y, Shiga S. Synaptic connections between eyelet photoreceptors and pigment dispersing factor-immunoreactive neurons of the blowflyProtophormia terraenovae. J Comp Neurol 2005; 494:331-44. [PMID: 16320242 DOI: 10.1002/cne.20812] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Studies using various mutants of Drosophila melanogaster bearing defects in their visual system, including those of the retinal and extraretinal photoreceptor systems, have indicated that the extraretinal photoreceptor known as the Hofbauer-Buchner (H-B) eyelet plays an active, if subsidiary, role in the entrainment of circadian rhythms. In the present study, in the context of unraveling the function of extraretinal photoreception on circadian rhythms and photoperiodic responses, we searched for extraretinal photoreceptors in the blowfly, Protophormia terraenovae, and found that this fly has a homolog of the H-B eyelet. In addition, we show morphologically direct synaptic connections between the eyelet of P. terraenovae (called here Pt-eyelet, after the species' name) and pigment-dispersing factor (PDF)-immunoreactive neurons, which are putative circadian pacemaker neurons, by immunogold electron microscopy combined with intracellular dye injection. The Pt-eyelet was found to reside in the middle of the posterior surface of the optic lobe between the retina and the lamina, as does the H-B eyelet. This extraretinal photoreceptor was composed of at least four photoreceptor cells equipped with well-organized microvillar rhabdomeres. Rhodopsin 6-like immunoreactivity and also the response to light stimuli clearly showed the Pt-eyelet to be functional. The Pt-eyelet terminals in the accessory medulla exhibited synaptic bouton-like appearances and formed divergent multiple-contact output synapses. Synaptic contacts from the Pt-eyelet terminal to the PDF-immunoreactive neurons were identified by the presence of presynaptic ribbons and accumulated synaptic vesicles. Their possible function is discussed in relation to previous studies on circadian rhythm and photoperiodic response of P. terraenovae.
Collapse
Affiliation(s)
- Kouji Yasuyama
- Department of Biology, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | | | | | | |
Collapse
|
14
|
Gisselmann G, Plonka J, Pusch H, Hatt H. Unusual functional properties of homo- and heteromultimeric histamine-gated chloride channels of Drosophila melanogaster: spontaneous currents and dual gating by GABA and histamine. Neurosci Lett 2004; 372:151-6. [PMID: 15531107 DOI: 10.1016/j.neulet.2004.09.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 09/13/2004] [Accepted: 09/15/2004] [Indexed: 11/27/2022]
Abstract
Histamine acts as a neurotransmitter of photoreceptors in insects and other arthropods, where it directly activates a chloride channel and mediates rapid inhibitory responses. Homo- and heteromultimeric histamine-gated ion channels formed by HisCl-alpha2 or HisCl-alpha1 + alpha2 subunits from Drosophila melanogaster were characterized by two-electrode voltage-clamp measurements of functionally expressed ion channels in Xenopus laevis oocytes. The sensitivity of heteromultimeric histamine receptors with an EC(50) of 2.3 microM is lower than that of either homomultimeric receptor. They can be further distinguished from the homomultimeric channels by their reduced sensitivity to d-tubocurarine. Heteromultimeric channels generate a spontaneous current in the absence of any agonist. This spontaneous current can be blocked in the absence of an agonist by d-tubocurarine and the histamine antagonists cimetidine, thioperamide and pyrilamine. Homomultimeric HisCl-alpha2 channels are dually gated by histamine (IC(50)=9.4 microM) and GABA (IC(50)=1.0mM), both of which are full agonists. The action of both agonists can be blocked with comparable IC(50) values by the histamine antagonists cimetidine, thioperamide and pyrilamine but not by the GABA antagonist bicuculline. Picrotoxin blocked with an IC(50) of 403 microM. Our data show that histamine and GABA act on the same ion channel, which thus might function as a site of integration of the action of different neurotransmitters.
Collapse
Affiliation(s)
- Günter Gisselmann
- Lehrstuhl für Zellphysiologie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | | | | | | |
Collapse
|
15
|
Gengs C, Leung HT, Skingsley DR, Iovchev MI, Yin Z, Semenov EP, Burg MG, Hardie RC, Pak WL. The target of Drosophila photoreceptor synaptic transmission is a histamine-gated chloride channel encoded by ort (hclA). J Biol Chem 2002; 277:42113-20. [PMID: 12196539 DOI: 10.1074/jbc.m207133200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By screening Drosophila mutants that are potentially defective in synaptic transmission between photoreceptors and their target laminar neurons, L1/L2, (lack of electroretinogram on/off transients), we identified ort as a candidate gene encoding a histamine receptor subunit on L1/L2. We provide evidence that the ort gene corresponds to CG7411 (referred to as hclA), identified in the Drosophila genome data base, by P-element-mediated germ line rescue of the ort phenotype using cloned hclA cDNA and by showing that several ort mutants exhibit alterations in hclA regulatory or coding sequences and/or allele-dependent reductions in hclA transcript levels. Other workers have shown that hclA, when expressed in Xenopus oocytes, forms histamine-sensitive chloride channels. However, the connection between these chloride channels and photoreceptor synaptic transmission was not established. We show unequivocally that hclA-encoded channels are the channels required in photoreceptor synaptic transmission by 1) establishing the identity between hclA and ort and 2) showing that ort mutants are defective in photoreceptor synaptic transmission. Moreover, the present work shows that this function of the HCLA (ORT) protein is its native function in vivo.
Collapse
Affiliation(s)
- Chaoxian Gengs
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Raymond V, Sattelle DB. Novel animal-health drug targets from ligand-gated chloride channels. Nat Rev Drug Discov 2002; 1:427-36. [PMID: 12119744 DOI: 10.1038/nrd821] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The world's three best-selling veterinary antiparasitic drugs ('parasiticides') act on ligand-gated ion channels. The sequencing of the complete genomes of the invertebrate genetic model organisms Caenorhabditis elegans and Drosophila melanogaster has led to the recent cloning of new subunits of 5-hydroxytryptamine-gated and histamine-gated chloride channels. Together with L-glutamate-gated chloride channels, which are important targets of known parasiticides, and acetylcholine-gated chloride channels, these new classes of ligand-gated chloride channels, which are known only from invertebrates, add to our understanding of inhibitory neural signalling. They could offer the prospect of being targets for a new generation of selective drugs to control nematode and insect parasites.
Collapse
Affiliation(s)
- Valérie Raymond
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | |
Collapse
|
17
|
Creanga DE, Morariu VV, Isac RM. LIFE IN ZERO MAGNETIC FIELD. IV. INVESTIGATION OF DEVELOPMENTAL EFFECTS ON FRUITFLY VISION. Electromagn Biol Med 2002. [DOI: 10.1081/jbc-120003109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Roeder T. Biochemistry and molecular biology of receptors for biogenic amines in locusts. Microsc Res Tech 2002; 56:237-47. [PMID: 11810725 DOI: 10.1002/jemt.10027] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biochemistry and molecular biology of biogenic amines and their metabotropic receptors in insects, with a focus on locusts, is reviewed. These compounds are known to be responsible for the control of a huge variety of different behaviours. Receptors for these amines usually belong to the class of G-protein coupled receptors (GPCR) and transmit all known functions of these compounds. The physiological significance of biogenic amine neurotransmission in insects, especially in locusts is briefly summarised. Regarding the corresponding receptors, their pharmacological features and the molecular properties are described in detail.
Collapse
Affiliation(s)
- Thomas Roeder
- Universität Würzburg, Zentrum für Infektionsforschung, Röntgenring 11, D-97070 Würzburg, Germany
| |
Collapse
|
19
|
Zheng Y, Hirschberg B, Yuan J, Wang AP, Hunt DC, Ludmerer SW, Schmatz DM, Cully DF. Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. J Biol Chem 2002; 277:2000-5. [PMID: 11714703 DOI: 10.1074/jbc.m107635200] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histamine has been shown to play a role in arthropod vision; it is the major neurotransmitter of arthropod photoreceptors. Histamine-gated chloride channels have been identified in insect optic lobes. We report the first isolation of cDNA clones encoding histamine-gated chloride channel subunits from the fruit fly Drosophila melanogaster. The encoded proteins, HisCl1 and HisCl2, share 60% amino acid identity with each other. The closest structural homologue is the human glycine alpha3 receptor, which shares 45 and 43% amino acid identity respectively. Northern hybridization analysis suggested that hisCl1 and hisCl2 mRNAs are predominantly expressed in the insect eye. Oocytes injected with in vitro transcribed RNA, encoding either HisCl1 or HisCl2, produced substantial chloride currents in response to histamine but not in response to GABA, glycine, and glutamate. The histamine sensitivity was similar to that observed in insect laminar neurons. Histamine-activated currents were not blocked by picrotoxinin, fipronil, strychnine, or the H2 antagonist cimetidine. Co-injection of both hisCl1 and hisCl2 RNAs resulted in expression of a histamine-gated chloride channel with increased sensitivity to histamine, demonstrating coassembly of the subunits. The insecticide ivermectin reversibly activated homomeric HisCl1 channels and, more potently, HisCl1 and HisCl2 heteromeric channels.
Collapse
Affiliation(s)
- Yingcong Zheng
- Merck Research Laboratories, Merck and Co., Inc., Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gisselmann G, Pusch H, Hovemann BT, Hatt H. Two cDNAs coding for histamine-gated ion channels in D. melanogaster. Nat Neurosci 2002; 5:11-2. [PMID: 11753412 DOI: 10.1038/nn787] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histamine, a neurotransmitter and neuroregulatory compound in diverse species, serves as the neurotransmitter of photoreceptors in insects and other arthropods by directly activating a chloride channel. By systematic expression screening of novel putative ligand-gated anion channels, we identified two cDNAs (DM-HisCl-alpha 1 and-alpha 2) coding for putative histamine-gated chloride channels by functional expression in Xenopus laevis oocytes. DM-HisCl-alpha 1 mRNA localizes in the lamina region of the Drosophila eye, supporting the idea that DM-HisCl-alpha 1 may be a neurotransmitter receptor for histamine in the visual system.
Collapse
Affiliation(s)
- Günter Gisselmann
- Lehrstuhl für Zellphysiologie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany.
| | | | | | | |
Collapse
|
21
|
Blenau W, Baumann A. Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001; 48:13-38. [PMID: 11519073 DOI: 10.1002/arch.1055] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the central nervous system (CNS) of both vertebrates and invertebrates, biogenic amines are important neuroactive molecules. Physiologically, they can act as neurotransmitters, neuromodulators, or neurohormones. Biogenic amines control and regulate various vital functions including circadian rhythms, endocrine secretion, cardiovascular control, emotions, as well as learning and memory. In insects, amines like dopamine, tyramine, octopamine, serotonin, and histamine exert their effects by binding to specific membrane proteins that primarily belong to the superfamily of G protein-coupled receptors. Especially in Drosophila melanogaster and Apis mellifera considerable progress has been achieved during the last few years towards the understanding of the functional role of these receptors and their intracellular signaling systems. In this review, the present knowledge on the biochemical, molecular, and pharmacological properties of biogenic amine receptors from Drosophila and Apis will be summarized. Arch.
Collapse
Affiliation(s)
- W Blenau
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
22
|
Juusola M, Hardie RC. Light adaptation in Drosophila photoreceptors: I. Response dynamics and signaling efficiency at 25 degrees C. J Gen Physiol 2001; 117:3-25. [PMID: 11134228 PMCID: PMC2232468 DOI: 10.1085/jgp.117.1.3] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Besides the physical limits imposed on photon absorption, the coprocessing of visual information by the phototransduction cascade and photoreceptor membrane determines the fidelity of photoreceptor signaling. We investigated the response dynamics and signaling efficiency of Drosophila photoreceptors to natural-like fluctuating light contrast stimulation and intracellular current injection when the cells were adapted over a 4-log unit light intensity range at 25 degrees C. This dual stimulation allowed us to characterize how an increase in the mean light intensity causes the phototransduction cascade and photoreceptor membrane to produce larger, faster and increasingly accurate voltage responses to a given contrast. Using signal and noise analysis, this appears to be associated with an increased summation of smaller and faster elementary responses (i.e., bumps), whose latency distribution stays relatively unchanged at different mean light intensity levels. As the phototransduction cascade increases, the size and speed of the signals (light current) at higher adapting backgrounds and, in conjunction with the photoreceptor membrane, reduces the light-induced voltage noise, and the photoreceptor signal-to-noise ratio improves and extends to a higher bandwidth. Because the voltage responses to light contrasts are much slower than those evoked by current injection, the photoreceptor membrane does not limit the speed of the phototransduction cascade, but it does filter the associated high frequency noise. The photoreceptor information capacity increases with light adaptation and starts to saturate at approximately 200 bits/s as the speed of the chemical reactions inside a fixed number of transduction units, possibly microvilli, is approaching its maximum.
Collapse
Affiliation(s)
- M Juusola
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom.
| | | |
Collapse
|
23
|
Schmidt H, L�er K, Hevers W, Technau GM. Ionic currents ofdrosophila embryonic neurons derived from selectively cultured CNS midline precursors. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1097-4695(20000915)44:4<392::aid-neu3>3.0.co;2-m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Abstract
Histamine is the neurotransmitter of insect photoreceptor cells but has also been found in a small number of interneurons in the insect brain. In order to investigate whether the accessory medulla (AMe), the putative circadian pacemaker of the cockroach Leucophaea maderae receives direct visual input from histaminergic photoreceptors, we analyzed the distribution of histamine-like immunoreactivity in the optic lobe and midbrain of the cockroach. Intense immunostaining was detected in photoreceptor cells of the compound eye, which terminated in the first optic neuropil, the lamina, and in a distal layer of the medulla, the second optic neuropil. Histamine immunostaining in parts of the AMe, however, originated from a centrifugal neuron of the midbrain. Within the midbrain 21-23 bilaterally symmetric pairs of cell bodies were stained. Most areas of the brain were innervated by one or more of these neurons, but the protocerebral bridge and the mushroom bodies were devoid of histamine immunoreactivity. The branching patterns of most histamine-immunoreactive neurons could be reconstructed individually. While the majority of identified neurons arborized in both brain hemispheres, five cells were local neurons of the antennal lobe. A comparison with other insect species shows striking similarities in the position of certain histamine-immunoreactive neurons, but considerable variations in the presence and branching patterns of others. The data suggest a role for histamine in a non-photic input to the circadian system of the cockroach.
Collapse
Affiliation(s)
- R Loesel
- Fachbereich Biologie/Tierphysiologie, Philipps Universität Marburg, D-35032, Marburg, Germany
| | | |
Collapse
|
25
|
Pyza E, Meinertzhagen IA. Daily rhythmic changes of cell size and shape in the first optic neuropil in Drosophila melanogaster. JOURNAL OF NEUROBIOLOGY 1999; 40:77-88. [PMID: 10398073 DOI: 10.1002/(sici)1097-4695(199907)40:1<77::aid-neu7>3.0.co;2-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Daily rhythms of changes in axon size and shape are seen in two types of monopolar cell-L1 and L2-that are unique cells within each of the modules or cartridges of the first optic neuropil or lamina in the fly's optic lobe. In the fruit fly Drosophila, L1 and L2's axons swell at the beginning of both day and night, with larger size increases occurring at the beginning of night. Later, they shrink during the day and night, respectively. Simultaneously, they change shape from an inverted conical form during the day to a cylindrical one at night. This is because the axonal cross section of L1 increases during the night, especially at proximal depths of the lamina, closest to the brain, whereas the axon of L2 increases in size at distal lamina depths. The cross-sectional areas of the L1 cell and of an individual cartridge both change under constant darkness (DD), indicating the circadian origin of changes observed under day/night (LD) conditions. We sought to see whether such changes impart a net change to the entire lamina's volume or shape that is visible by light microscopy, but oscillations in the volume or the curvature of the whole lamina neuropil are found neither in LD nor in DD. These size changes are discussed in relation to previous findings in the housefly Musca, with respect to differences in L1 and L2 between the two species, and to differences in the time course of their circadian changes.
Collapse
Affiliation(s)
- E Pyza
- Zoological Museum, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | |
Collapse
|
26
|
Stuart AE. From fruit flies to barnacles, histamine is the neurotransmitter of arthropod photoreceptors. Neuron 1999; 22:431-3. [PMID: 10197524 DOI: 10.1016/s0896-6273(00)80699-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A E Stuart
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, 27599, USA.
| |
Collapse
|
27
|
Abstract
Histamine is the neurotransmitter of photoreceptors in insects and other arthropods. As a photoreceptor transmitter, histamine acts on ligand-gated chloride channels. Another type of histamine receptor has been indicated in the insect central nervous system by binding pharmacology. This receptor is similar to the mammalian H1 receptors, which are G-protein coupled and thus utilize a second messenger system. The distribution of histamine-immunoreactive (HAIR) neurons has been studied in a few insect species: cockroaches, locust, crickets, honey bee, blowflies, and in Drosophila. In addition to its presence in photoreceptor cells, histamine is distributed in a rather small number of neurons in the insect brain. Many of these neurons have extensive bilateral arborizations that innervate several distinct neuropil regions, notably in the protocerebrum. Some patterns of histamine distribution are seen in all the species. On the other hand, the number and morphology of neurons differ between the studied species, and several major neuropils (central body, antennal lobes, mushroom bodies) are supplied by HAIR neurons in some species, but not in others. Thus it appears that there are some species-specific functions of histamine and on others that are preserved between species. Some of the histaminergic neurons may constitute wide field inhibitory systems with functions distinct from those of neurons containing gamma-amino butyric acid (GABA). Novel data are presented for Drosophila and the cockroach Leucophaea maderae and a comparison is made with published data on other insects.
Collapse
Affiliation(s)
- D R Nässel
- Department of Zoology, Stockholm University, Sweden.
| |
Collapse
|
28
|
Laughlin SB, de Ruyter van Steveninck RR, Anderson JC. The metabolic cost of neural information. Nat Neurosci 1998; 1:36-41. [PMID: 10195106 DOI: 10.1038/236] [Citation(s) in RCA: 645] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We derive experimentally based estimates of the energy used by neural mechanisms to code known quantities of information. Biophysical measurements from cells in the blowfly retina yield estimates of the ATP required to generate graded (analog) electrical signals that transmit known amounts of information. Energy consumption is several orders of magnitude greater than the thermodynamic minimum. It costs 10(4) ATP molecules to transmit a bit at a chemical synapse, and 10(6)-10(7) ATP for graded signals in an interneuron or a photoreceptor, or for spike coding. Therefore, in noise-limited signaling systems, a weak pathway of low capacity transmits information more economically, which promotes the distribution of information among multiple pathways.
Collapse
Affiliation(s)
- S B Laughlin
- Department of Zoology, University of Cambridge, UK.
| | | | | |
Collapse
|
29
|
Juusola M, French AS, Uusitalo RO, Weckström M. Information processing by graded-potential transmission through tonically active synapses. Trends Neurosci 1996; 19:292-7. [PMID: 8799975 DOI: 10.1016/s0166-2236(96)10028-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many neurons use graded membrane-potential changes, instead of action potentials, to transmit information. Traditional synaptic models feature discontinuous transmitter release by presynaptic action potentials, but this is not true for synapses between graded-potential neurons. In addition to graded and continuous transmitter release, they have multiple active zones, ribbon formations and L-type Ca2+ channels. These differences are probably linked to the high rate of vesicle fusion required for continuous transmitter release. Early stages of sensory systems provide some of the best characterized graded-potential neurons, and recent work on these systems suggests that modification of synaptic transmission by adaptation is a powerful feature of graded synapses.
Collapse
Affiliation(s)
- M Juusola
- Dept of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
30
|
Walker RJ, Brooks HL, Holden-Dye L. Evolution and overview of classical transmitter molecules and their receptors. Parasitology 1996; 113 Suppl:S3-33. [PMID: 9051927 DOI: 10.1017/s0031182000077878] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
All the classical transmitter ligand molecules evolved at least 1000 million years ago. With the possible exception of the Porifera and coelenterates (Cnidaria), they occur in all the remaining phyla. All transmitters have evolved the ability to activate a range of ion channels, resulting in excitation, inhibition and biphasic or multiphasic responses. All transmitters can be synthesised in all three basic types of neurones, i.e. sensory, interneurone and motoneurone. However their relative importance as sensory, interneurone or motor transmitters varies widely between the phyla. It is likely that all neurones contain more than one type of releasable molecule, often a combination of a classical transmitter and a neuroactive peptide. Second messengers, i.e. G proteins and phospholipase C systems, appeared early in evolution and occur in all phyla that have been investigated. Although the evidence is incomplete, it is likely that all the classical transmitter receptor subtypes identified in mammals, also occur throughout the phyla. The invertebrate receptors so far cloned show some interesting homologies both between those from different invertebrate phyla and with mammalian receptors. This indicates that many of the basic receptor subtypes, including benzodiazepine subunits, evolved at an early period, probably at least 800 million years ago. Overall, the evidence stresses the similarity between the major phyla rather than their differences, supporting a common origin from primitive helminth stock.
Collapse
Affiliation(s)
- R J Walker
- Department of Physiology and Pharmacology, Biomedical Sciences, Bassett Crescent East, University of Southampton, UK
| | | | | |
Collapse
|