1
|
A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. Nat Commun 2017; 8:14744. [PMID: 28332498 PMCID: PMC5376649 DOI: 10.1038/ncomms14744] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/26/2017] [Indexed: 01/13/2023] Open
Abstract
Individual human epidermal cells differ in their self-renewal ability. To uncover the molecular basis for this heterogeneity, we performed genome-wide pooled RNA interference screens and identified genes conferring a clonal growth advantage on normal and neoplastic (cutaneous squamous cell carcinoma, cSCC) human epidermal cells. The Hippo effector YAP was amongst the top positive growth regulators in both screens. By integrating the Hippo network interactome with our data sets, we identify WW-binding protein 2 (WBP2) as an important co-factor of YAP that enhances YAP/TEAD-mediated gene transcription. YAP and WPB2 are upregulated in actively proliferating cells of mouse and human epidermis and cSCC, and downregulated during terminal differentiation. WBP2 deletion in mouse skin results in reduced proliferation in neonatal and wounded adult epidermis. In reconstituted epidermis YAP/WBP2 activity is controlled by intercellular adhesion rather than canonical Hippo signalling. We propose that defective intercellular adhesion contributes to uncontrolled cSCC growth by preventing inhibition of YAP/WBP2.
Collapse
|
2
|
Knight JF, Shepherd CJ, Rizzo S, Brewer D, Jhavar S, Dodson AR, Cooper CS, Eeles R, Falconer A, Kovacs G, Garrett MD, Norman AR, Shipley J, Hudson DL. TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in prostate cancer. Br J Cancer 2008; 99:1849-58. [PMID: 19002168 PMCID: PMC2600693 DOI: 10.1038/sj.bjc.6604774] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is the most frequently diagnosed male cancer, and its clinical outcome is difficult to predict. The disease may involve the inappropriate expression of genes that normally control the proliferation of epithelial cells in the basal layer and their differentiation into luminal cells. Our aim was to identify novel basal cell markers and assess their prognostic and functional significance in prostate cancer. RNA from basal and luminal cells isolated from benign tissue by immunoguided laser-capture microdissection was subjected to expression profiling. We identified 112 and 267 genes defining basal and luminal populations, respectively. The transcription factor TEAD1 and the ubiquitin ligase c-Cbl were identified as novel basal cell markers. Knockdown of either marker using siRNA in prostate cell lines led to decreased cell growth in PC3 and disrupted acinar formation in a 3D culture system of RWPE1. Analyses of prostate cancer tissue microarray staining established that increased protein levels of either marker were associated with decreased patient survival independent of other clinicopathological metrics. These data are consistent with basal features impacting on the development and clinical course of prostate cancers.
Collapse
Affiliation(s)
- J F Knight
- Department of Molecular Carcinogenesis, The Bob Champion Prostate Stem Cell Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - C J Shepherd
- Department of Molecular Carcinogenesis, The Bob Champion Prostate Stem Cell Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - S Rizzo
- Department of Molecular Carcinogenesis, The Bob Champion Prostate Stem Cell Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - D Brewer
- Department of Molecular Carcinogenesis, Cell Transformation Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - S Jhavar
- Department of Molecular Carcinogenesis, Cell Transformation Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
- Translational Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - A R Dodson
- Department of Pathology and Molecular Genetics, University of Liverpool, Duncan Building, Liverpool, UK
| | - C S Cooper
- Department of Molecular Carcinogenesis, Cell Transformation Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - R Eeles
- Translational Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - A Falconer
- Translational Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
- Department of Oncology, Charing Cross Hospital, London W6 8RF, UK
| | - G Kovacs
- Ruprecht-Karls-Universitat, Heidelberg Klinikum, Molekular Onkologie, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - M D Garrett
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - A R Norman
- Department of Medical Statistics, Royal Marsden NHS Trust, Sutton, Surrey SM2 5NG, UK
| | - J Shipley
- Department of Molecular Carcinogenesis, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - D L Hudson
- Department of Molecular Carcinogenesis, The Bob Champion Prostate Stem Cell Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
3
|
Nozoe T, Oyama T, Takenoyama M, Hanagiri T, Sugio K, Yasumoto K. Significance of Immunohistochemical Expression of p27 and Involucrin as the Marker of Cellular Differentiation of Squamous Cell Carcinoma of the Esophagus. Oncology 2007; 71:402-10. [PMID: 17878746 DOI: 10.1159/000108611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 06/21/2007] [Indexed: 01/18/2023]
Abstract
PURPOSE p27kip1 belongs to the KIP/CIP family of cyclin-dependent kinase inhibitors and is considered to be a tumor suppressor. Involucrin has been known as a marker of differentiation of squamous cell carcinoma (SCC). The aim of this study was to evaluate the clinicopathologic significance of the expression of p27 and involucrin in esophageal SCC. METHODS Immunohistochemical expression of p27 and involucrin was examined in 70 specimens of esophageal SCC. The correlation of the expression of these proteins and clinicopathologic features was evaluated. RESULTS Cellular differentiation in esophageal SCC was significantly correlated with the expression of p27 and involucrin (p = 0.010 and p = 0.002, respectively). Among well, moderately and poorly differentiated SCCs, 45.8 +/- 21.6, 20.0 +/- 15.0 and 10.6 +/- 9.1% of carcinoma cells expressed involucrin, respectively (p < 0.0001 for well vs. poorly, p < 0.0001 for well vs. moderately, and p = 0.042 for moderately vs. poorly). There existed a more powerful statistical difference regarding the histological grade between SCCs with the expression of both p27 and involucrin and tumors with other expression patterns (p = 0.0001). CONCLUSIONS Expression of both p27 and involucrin can be a powerful biological marker of cellular differentiation of esophageal SCC.
Collapse
Affiliation(s)
- Tadahiro Nozoe
- Second Department of Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | | | | | |
Collapse
|
4
|
Azuara-Liceaga E, Sandoval M, Corona M, Gariglio P, López-Bayghen E. The human involucrin gene is transcriptionally repressed through a tissue-specific silencer element recognized by Oct-2. Biochem Biophys Res Commun 2004; 318:361-71. [PMID: 15120610 DOI: 10.1016/j.bbrc.2004.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 11/16/2022]
Abstract
Involucrin is an important marker of epithelial differentiation which expression is upregulated just after basal cells are pushed into the suprabasal layer in stratified epithelia. Several transcription factors and regulatory elements had been described as responsible for turning on the gene. However, it is evident that in basal cell layer, additional mechanisms are involved in keeping the gene silent before the differentiation process starts. In this work, we located a potential transcriptional silencer in a 52bp sequence whose integrity is necessary for silencing the proximal enhancer promoter element (PEP) in multiplying keratinocytes. Octamer-binding sites were noticed in this fragment and the specific binding of Oct-2 transcription factor was detected. Oct-2 appears to be implicated in an epithelial-specific repression activity recorded only in keratinocytes and C33-A cell line. Overexpression of Oct-2 repressed the involucrin promoter activity in epithelial cells and in the presence of the silencer element.
Collapse
Affiliation(s)
- Elisa Azuara-Liceaga
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del I.P.N., Mexico D.F. 07000, Mexico
| | | | | | | | | |
Collapse
|
5
|
Kubo E, Fatma N, Sharma P, Shinohara T, Chylack LT, Akagi Y, Singh DP. Transactivation of involucrin, a marker of differentiation in keratinocytes, by lens epithelium-derived growth factor (LEDGF). J Mol Biol 2002; 320:1053-63. [PMID: 12126624 DOI: 10.1016/s0022-2836(02)00551-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human involucrin (hINV), first appears in the cytosol of keratinocytes and ultimately cross-linked to membrane proteins via transglutaminase and forms a protective barrier as an insoluble envelope beneath the plasma membrane. Although the function and evolution of involucrin is known, the regulation of its gene expression is not well understood. An analysis of the hINV gene sequence, upstream of the transcription start site (-534 to +1 nt) revealed the presence of potential sites for binding of lens epithelium-derived growth factor (LEDGF); stress response element (STRE; A/TGGGGA/T) and heat shock element (HSE; nGAAn). We reported earlier that LEDGF activates stress-associated genes by binding to these elements and elevates cellular resistance to various stresses. Here, gel-shift and super-shift assays confirm the binding of LEDGF to the DNA fragments containing HSEs and STREs that are present in the involucrin gene promoter. Furthermore, hINV promoter linked to CAT reporter gene, cotransfected in human corneal simian virus 40-transformed keratinocytes (HCK), was transactivated by LEDGF significantly. In contrast, the activity of hINV promoter bearing mutations at the WT1 (containing HSE and STRE), WT2 (containing STRE) and WT3 (containing STRE) binding sites was diminished. In addition, in HCK cell over-expressing LEDGF, the levels of hINV mRNA and hINV protein are increased by four to five-fold. LEDGF is inducible to oxidants. Cells treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA), known to stimulate production of H(2)O(2), showed higher levels of LEDGF mRNA. Furthermore, our immunohistochemical studies revealed that hINV protein is found in the cytoplasm of HCK cells over-expressing LEDGF, but not detectable in the normal HCK cells or HCK cells transfected with vector. This regulation appears to be physiologically important, as over-expression of HCK with LEDGF increases the expression of the endogenous hINV gene and may provide new insight to understand the molecular mechanism of transcriptional regulation of this gene. LEDGF may play an important role in establishing an important barrier in corneal keratinocytes by maintaining epidermal turn-over rate, and protecting HCKs against stress.
Collapse
Affiliation(s)
- E Kubo
- Center for Ophthalmic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Zuzarte PC, Farrance IK, Simpson PC, Wildeman AG. Tumor cell splice variants of the transcription factor TEF-1 induced by SV40 T-antigen transformation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1517:82-90. [PMID: 11118619 DOI: 10.1016/s0167-4781(00)00261-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The large tumor antigen (TAg) of simian virus 40 is able to transform cells through interactions with cellular proteins, notably p53 and Rb. Among the other proteins that form complexes with TAg is TEF-1, a transcription factor utilized by the viral enhancer to activate expression of the early gene which encodes TAg. We show that fibroblasts contain several alternately spliced TEF-1 mRNAs, the most abundant of which encodes a protein with an additional four amino acid exon compared to the database entry for Hela cell TEF-1. Transformation by TAg induces alternate splicing, producing a more abundant form lacking this exon and matching the published sequence. Splicing variants lacking this exon were detected in mouse pancreatic tumors and in cell lines derived from human pancreatic cancers, in contrast to a single isoform with the exon in normal mouse pancreas. A total of eight splice variants were identified, with the loss of the four amino acid exon typical of transformed cells. These and other data presented suggest that TAg 're-models' host cell transcription factors that are used early in viral infection, and thereby mimics an event that naturally occurs during transformation. The data indicate that TEF-1 alterations may be a hallmark feature of tumorigenesis.
Collapse
Affiliation(s)
- P C Zuzarte
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
7
|
Butler AJ, Ordahl CP. Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Mol Cell Biol 1999; 19:296-306. [PMID: 9858553 PMCID: PMC83887 DOI: 10.1128/mcb.19.1.296] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1998] [Accepted: 10/02/1998] [Indexed: 11/20/2022] Open
Abstract
Striated muscle-specific expression of the cardiac troponin T (cTNT) gene is mediated through two MCAT elements that act via binding of transcription enhancer factor 1 (TEF-1) to the MCAT core motifs and binding of an auxiliary protein to nucleotides flanking the 5' side of the core motif. Using DNA-protein and protein-protein binding experiments, we identified a 140-kDa polypeptide that bound both the muscle-specific flanking sequences of the most distal MCAT1 element and TEF-1. Screening of an expression library with the MCAT1 element yielded a cDNA encoding a truncated form of poly(ADP-ribose) polymerase (PARP). Endogenous PARP from embryonic tissue nuclear extracts migrated as a 140-kDa protein. Recombinant full-length PARP preferentially bound the wild-type MCAT1 element and was shown to physically interact with TEF-1. In addition, endogenous TEF-1 could be coimmunoprecipitated with PARP from extracts of primary skeletal muscle cells. Recombinant PARP was able to ADP-ribosylate TEF-1 in vitro. Inhibition of the enzymatic activity of PARP repressed expression of an MCAT1-dependent reporter in transiently transfected primary muscle cells. Together, these data implicate PARP as the auxiliary protein that binds with TEF-1 to the MCAT1 element to provide muscle-specific gene transcription.
Collapse
Affiliation(s)
- A J Butler
- Department of Anatomy and Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143-0452, USA
| | | |
Collapse
|
8
|
Takahashi H, Asano K, Kinouchi M, Ishida-Yamamoto A, Wuepper KD, Iizuka H. Structure and transcriptional regulation of the human cystatin A gene. The 12-O-tetradecanoylphorbol-13-acetate (TPA) responsive element-2 site (-272 to -278) on cystatin A gene is critical for TPA-dependent regulation. J Biol Chem 1998; 273:17375-80. [PMID: 9651321 DOI: 10.1074/jbc.273.28.17375] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystatin A, a cysteine proteinase inhibitor, is one of the precursor proteins of cornified cell envelope of keratinocytes and is expressed during the late stage of keratinocyte differentiation. We have isolated and characterized the human cystatin A gene. The cystatin A gene consists of three exons and two introns. The first, the second, and the third exons consist of coding sequences that are 66, 102, and 126 base pairs in length, respectively. The first and the second introns consist of 14 and 3.6 kilobase pairs, respectively. The transcription initiation site was located 55 base pairs upstream from the first translation site. The fragment, +77 to -2595 in the 5'-flanking region of the human cystatin A gene, was subcloned into a chloramphenicol acetyltransferase (CAT) reporter vector. The expression vector, p2672CAT, produced a significant CAT activity in transiently transfected SV40-transformed human keratinocytes (SVHK cells), that were further stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent protein kinase C activator. Sequence analysis of the gene detected three TPA responsive elements (TRE-1, TRE-2, and TRE-3) and one AP-2 site on the 5' upstream promoter region. Deletion analyses of the p2672CAT vector demonstrated that TRE-2, which was located between -272 and -278, was critical for the regulation by TPA. Gel shift analyses revealed that c-Jun, JunD, and c-Fos bound to the TRE-2 region and that the p2672CAT activity level was elevated by co-transfection with c-Jun and c-Fos or with JunD and c-Fos expression vectors. Furthermore, co-transfection of SVHK cells with the protein kinase C-alpha expression vector and the p2672CAT expression vector also resulted in an increased CAT activity. These results indicate that the 5'-flanking region of the human cystatin A gene confers promoter activity and contains a TRE (TRE-2) that mediates, at least in part, the enhanced expression of this gene by TPA.
Collapse
Affiliation(s)
- H Takahashi
- Department of Dermatology, Asahikawa Medical College, 3-11 Nishikagura, Asahikawa 078, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Takahashi H, Asano K, Manabe A, Kinouchi M, Ishida-Yamamoto A, Iizuka H. The alpha and eta isoforms of protein kinase C stimulate transcription of human involucrin gene. J Invest Dermatol 1998; 110:218-23. [PMID: 9506439 DOI: 10.1046/j.1523-1747.1998.00110.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Involucrin is one of the precursor proteins of the cornified cell envelope that is formed beneath the cell membrane during terminal differentiation of keratinocytes. 12-O-tetradecanoylphorbol-13-acetate (TPA), which is a potent protein kinase C (PKC) activator, induces terminal differentiation of keratinocytes. We previously demonstrated that involucrin promoter activity is stimulated by TPA in cultured fetal rat skin keratinocytes. PKC is a large family of proteins and keratinocytes containing five PKC isozymes: alpha, delta, epsilon, eta, and zeta. In order to determine the role of the PKC isozyme(s) on involucrin gene expression, we constructed the chloramphenicol acetyl transferase (CAT)-involucrin promoter expression vector by connecting the 5'-upstream region of the human involucrin gene containing the untranslated first exon to the CAT reporter gene. The CAT-involucrin promoter expression vector was transfected with various PKC isozyme expression vectors into SV40-transformed human keratinocytes (SVHK cells). Transfection of the CAT-involucrin promoter expression vector with PKC-alpha or PKC-eta expression vectors resulted in a significant increase in the TPA-dependent involucrin promoter activity. The PKC inhibitor, 1-(5-isoquinoline-sulfonyl)-2-methyl piperazine dihydrochloride, inhibited the promoter activity stimulated by TPA. Transfection of PKC-delta, -epsilon, and -zeta had no effect on the involucrin-promoter activity. Although the promoter activity was stimulated by transfection of PKC-gamma, TPA did not enhance the promoter activity in the PKC-gamma-transfected SVHK cells. Previously we showed three AP-1 binding sites (AP1-1, -2, and -3) on the involucrin promoter region. Both the basal and the TPA-stimulated involucrin promoter activities were suppressed by deleting the AP1-1 site (-119 to -113) that is the most proximal to the transcription start site. The deletion of AP1-2 (-297 to -303) or AP1-3 (-447 to -453) did not affect the involucrin promoter activity. Gel retardation analyses disclosed that TPA stimulated the specific DNA binding of the nuclear protein(s) of control, PKC-alpha, or PKC-eta-transfected SVHK cells, but not of PKC-gamma-transfected cells. Addition of anti-c-Jun and anti-c-Fos antibodies decreased the specific protein-DNA complex band with a concomitant appearance of supershifted bands. These results indicate that PKC, specifically PKC-alpha and PKC-eta, mediates the TPA-dependent activation of involucrin gene expression of SVHK cells. PKC-gamma, which is not present in keratinocytes, also induces involucrin gene expression in a TPA-independent manner, when introduced into SVHK cells.
Collapse
Affiliation(s)
- H Takahashi
- Department of Dermatology, Asahikawa Medical College, Japan
| | | | | | | | | | | |
Collapse
|