1
|
Marr CM, MacDonald U, Trivedi G, Chakravorty S, Russo TA. An Evaluation of BfmR-Regulated Antimicrobial Resistance in the Extensively Drug Resistant (XDR) Acinetobacter baumannii Strain HUMC1. Front Microbiol 2020; 11:595798. [PMID: 33193275 PMCID: PMC7658413 DOI: 10.3389/fmicb.2020.595798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a problematic pathogen due to its common expression of extensive drug resistance (XDR) and ability to survive in the healthcare environment. These characteristics are mediated, in part, by the signal transduction system BfmR/BfmS. We previously demonstrated, in antimicrobial sensitive clinical isolates, that BfmR conferred increased resistance to meropenem and polymyxin E. In this study, potential mechanisms were informed, in part, by a prior transcriptome analysis of the antimicrobial sensitive isolate AB307-0294, which identified the porins OprB and aquaporin (Omp33-36, MapA) as plausible mediators for resistance to hydrophilic antimicrobials such as meropenem. Studies were then performed in the XDR isolate HUMC1, since delineating resistance mechanisms in this genomic background would be more translationally relevant. In HUMC1 BfmR likewise increased meropenem and polymyxin E resistance and upregulated gene expression of OprB and aquaporin. However, the comparison of HUMC1 with isogenic mutant constructs demonstrated that neither OprB nor aquaporin affected meropenem resistance; polymyxin E susceptibility was also unaffected. Next, we determined whether BfmR-mediated biofilm production affected either meropenem or polymyxin E susceptibilities. Interestingly, biofilm formation increased resistance to polymyxin E, but had little, if any effect on meropenem activity. Additionally, BfmR mediated meropenem resistance, and perhaps polymyxin E resistance, was due to BfmR regulated factors that do not affect biofilm formation. These findings increase our understanding of the mechanisms by which BfmR mediates intrinsic antimicrobial resistance in a clinically relevant XDR isolate and suggest that the efficacy of different classes of antimicrobials may vary under biofilm inducing conditions.
Collapse
Affiliation(s)
- Candace M Marr
- Department of Medicine, University at Buffalo, Buffalo, NY, United States.,Erie County Medical Center, Buffalo, NY, United States
| | - Ulrike MacDonald
- Department of Medicine, University at Buffalo, Buffalo, NY, United States.,Veterans Affairs Western New York Healthcare System, Buffalo, NY, United States
| | - Grishma Trivedi
- Department of Medicine, University at Buffalo, Buffalo, NY, United States.,Veterans Affairs Western New York Healthcare System, Buffalo, NY, United States
| | | | - Thomas A Russo
- Department of Medicine, University at Buffalo, Buffalo, NY, United States.,Veterans Affairs Western New York Healthcare System, Buffalo, NY, United States.,Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, United States.,Witebsky Center for Microbial Pathogenesis, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
2
|
Effects of H-bonds on sugar binding to chitoporin from Vibrio harveyi. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:610-618. [PMID: 30576623 DOI: 10.1016/j.bbamem.2018.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND VhChiP is a sugar-specific-porin present in the outer membrane of the marine bacterium Vibrio harveyi and responsible for chitin uptake, with a high selectivity for chitohexaose. METHODS VhChiP and its mutants were expressed and purified from BL21 (DE3) Omp8 Rosetta strain. After reconstitution into planar lipid bilayers, the ion current fluctuations caused by chitohexaose entering the channel were measured in deuterium oxide and in water. RESULTS The role of hydrogen-bonding in sugar binding was investigated by comparing channel occlusion by chitohexaose in buffers containing H2O and D2O. The BLM results revealed the significant contribution of hydrogen bonding to the binding of chitohexaose in the constriction zone of VhChiP. Replacing H2O as solvent by D2O significantly decreased the on- and off-rates of sugar penetration into the channel. The importance of hydrogen bonding inside the channel was more noticeable when the hydrophobicity of the constriction zone was diminished by replacing Trp136 with the charged residues Asp or Arg. The on- and off-rates decreased up to 2.5-fold and 4-fold when Trp136 was replaced by Arg, or 5-fold and 3-fold for Trp136 replacement by Asp, respectively. Measuring the on-rate at different temperatures and for different channel mutants revealed the activation energy for chitohexaose entrance into VhChiP channel. CONCLUSIONS Hydrogen-bonds contribute to sugar permeation.
Collapse
|
3
|
Chumjan W, Winterhalter M, Schulte A, Benz R, Suginta W. Chitoporin from the Marine Bacterium Vibrio harveyi: PROBING THE ESSENTIAL ROLES OF TRP136 AT THE SURFACE OF THE CONSTRICTION ZONE. J Biol Chem 2015; 290:19184-96. [PMID: 26082491 DOI: 10.1074/jbc.m115.660530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 11/06/2022] Open
Abstract
VhChiP is a sugar-specific porin present in the outer membrane of the marine bacterium Vibrio harveyi. VhChiP is responsible for the uptake of chitin oligosaccharides, with particular selectivity for chitohexaose. In this study, we employed electrophysiological and biochemical approaches to demonstrate that Trp(136), located at the mouth of the VhChiP pore, plays an essential role in controlling the channel's ion conductivity, chitin affinity, and permeability. Kinetic analysis of sugar translocation obtained from single channel recordings indicated that the Trp(136) mutations W136A, W136D, W136R, and W136F considerably reduce the binding affinity of the protein channel for its best substrate, chitohexaose. Liposome swelling assays confirmed that the Trp(136) mutations decreased the rate of bulk chitohexaose permeation through the VhChiP channel. Notably, all of the mutants show increases in the off-rate for chitohexaose of up to 20-fold compared with that of the native channel. Furthermore, the cation/anion permeability ratio Pc/Pa is decreased in the W136R mutant and increased in the W136D mutant. This demonstrates that the negatively charged surface at the interior of the protein lumen preferentially attracts cationic species, leading to the cation selectivity of this trimeric channel.
Collapse
Affiliation(s)
- Watcharin Chumjan
- From the Biochemistry-Electrochemistry Research Unit, the School of Biochemistry, and
| | - Mathias Winterhalter
- the Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28759 Bremen, Germany
| | - Albert Schulte
- From the Biochemistry-Electrochemistry Research Unit, the School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand and
| | - Roland Benz
- the Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28759 Bremen, Germany
| | - Wipa Suginta
- From the Biochemistry-Electrochemistry Research Unit, the School of Biochemistry, and
| |
Collapse
|
4
|
The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl Environ Microbiol 2014; 80:6976-91. [PMID: 25192989 DOI: 10.1128/aem.01576-14] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Persister cells, which are tolerant to antimicrobials, contribute to biofilm recalcitrance to therapeutic agents. In turn, the ability to kill persister cells is believed to significantly improve efforts in eradicating biofilm-related, chronic infections. While much research has focused on elucidating the mechanism(s) by which persister cells form, little is known about the mechanism or factors that enable persister cells to revert to an active and susceptible state. Here, we demonstrate that cis-2-decenoic acid (cis-DA), a fatty acid signaling molecule, is able to change the status of Pseudomonas aeruginosa and Escherichia coli persister cells from a dormant to a metabolically active state without an increase in cell number. This cell awakening is supported by an increase of the persister cells' respiratory activity together with changes in protein abundance and increases of the transcript expression levels of several metabolic markers, including acpP, 16S rRNA, atpH, and ppx. Given that most antimicrobials target actively growing cells, we also explored the effect of cis-DA on enhancing antibiotic efficacy in killing persister cells due to their inability to keep a persister cell state. Compared to antimicrobial treatment alone, combinational treatments of persister cell subpopulations with antimicrobials and cis-DA resulted in a significantly greater decrease in cell viability. In addition, the presence of cis-DA led to a decrease in the number of persister cells isolated. We thus demonstrate the ability of a fatty acid signaling molecule to revert bacterial cells from a tolerant phenotype to a metabolically active, antimicrobial-sensitive state.
Collapse
|
5
|
Suginta W, Chumjan W, Mahendran KR, Schulte A, Winterhalter M. Chitoporin from Vibrio harveyi, a channel with exceptional sugar specificity. J Biol Chem 2013; 288:11038-46. [PMID: 23447539 DOI: 10.1074/jbc.m113.454108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chitoporin (VhChiP) is a sugar-specific channel responsible for the transport of chitooligosaccharides through the outer membrane of the marine bacterium Vibrio harveyi. Single channel reconstitution into black lipid membrane allowed single chitosugar binding events in the channel to be resolved. VhChiP has an exceptionally high substrate affinity, with a binding constant of K = 5.0 × 10(6) M(-1) for its best substrate (chitohexaose). The on-rates of chitosugars depend on applied voltages, as well as the side of the sugar addition, clearly indicating the inherent asymmetry of the VhChiP lumen. The binding affinity of VhChiP for chitohexaose is 1-5 orders of magnitude larger than that of other known sugar-specific porins for their preferred substrates. Thus, VhChiP is the most potent sugar-specific channel reported to date, with its high efficiency presumably reflecting the need for the bacterium to take up chitin-containing nutrients promptly under turbulent aquatic conditions to exploit them efficiently as its sole source of energy.
Collapse
Affiliation(s)
- Wipa Suginta
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | | | | | | | | |
Collapse
|
6
|
Shrivastava R, Basu B, Godbole A, Mathew MK, Apte SK, Phale PS. Repression of the glucose-inducible outer-membrane protein OprB during utilization of aromatic compounds and organic acids in Pseudomonas putida CSV86. MICROBIOLOGY-SGM 2011; 157:1531-1540. [PMID: 21330430 DOI: 10.1099/mic.0.047191-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas putida CSV86 shows preferential utilization of aromatic compounds over glucose. Protein analysis and [¹⁴C]glucose-binding studies of the outer membrane fraction of cells grown on different carbon sources revealed a 40 kDa protein that was transcriptionally induced by glucose and repressed by aromatics and succinate. Based on 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry analysis, the 40 kDa protein closely resembled the porin B of P. putida KT2440 and carbohydrate-selective porin OprB of various Pseudomonas strains. The purified native protein (i) was estimated to be a homotrimer of 125 kDa with a subunit molecular mass of 40 kDa, (ii) displayed heat modifiability of electrophoretic mobility, (iii) showed channel conductance of 166 pS in 1 M KCl, (iv) permeated various sugars (mono-, di- and tri-saccharides), organic acids, amino acids and aromatic compounds, and (v) harboured a glucose-specific and saturable binding site with a dissociation constant of 1.3 µM. These results identify the glucose-inducible outer-membrane protein of P. putida CSV86 as a carbohydrate-selective protein OprB. Besides modulation of intracellular glucose-metabolizing enzymes and specific glucose-binding periplasmic space protein, the repression of OprB by aromatics and organic acids, even in the presence of glucose, also contributes significantly to the strain's ability to utilize aromatics and organic acids over glucose.
Collapse
Affiliation(s)
- Rahul Shrivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, India
| | - Ashwini Godbole
- National Center for Biological Sciences, Bangalore 560 065, India
| | - M K Mathew
- National Center for Biological Sciences, Bangalore 560 065, India
| | - Shree K Apte
- Molecular Biology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
7
|
Li D, Lee J, Caffrey M. Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen. CRYSTAL GROWTH & DESIGN 2011; 11:530-537. [PMID: 21743796 PMCID: PMC3131202 DOI: 10.1021/cg101378s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The default lipid for the bulk of the crystallogenesis studies performed to date using the cubic mesophase method is monoolein. There is no good reason however, why this 18-carbon, cis-monounsaturated monoacylglycerol should be the preferred lipid for all target membrane proteins. The latter come from an array of biomembrane types with varying properties that include hydrophobic thickness, intrinsic curvature, lateral pressure profile, lipid and protein makeup, and compositional asymmetry. Thus, it seems reasonable that screening for crystallizability based on the identity of the lipid creating the hosting mesophase would be worthwhile. For this, monoacylglycerols with differing acyl chain characteristics, such as length and olefinic bond position, must be available. A lipid synthesis and purification program is in place in the author's laboratory to serve this need. In the current study with the outer membrane sugar transporter, OprB, we demonstrate the utility of host lipid screening as a means for generating diffraction-quality crystals. Host lipid screening is likely to prove a generally useful strategy for mesophase-based crystallization of membrane proteins.
Collapse
Affiliation(s)
- Dianfan Li
- Membrane Structural and Functional Biology Group, School of Biochemistry and Immunology, and School of Medicine, Trinity College, Dublin
| | - Jean Lee
- Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Biochemistry and Immunology, and School of Medicine, Trinity College, Dublin
| |
Collapse
|
8
|
Tamber S, Maier E, Benz R, Hancock REW. Characterization of OpdH, a Pseudomonas aeruginosa porin involved in the uptake of tricarboxylates. J Bacteriol 2006; 189:929-39. [PMID: 17114261 PMCID: PMC1797325 DOI: 10.1128/jb.01296-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pseudomonas aeruginosa outer membrane is intrinsically impermeable to many classes of antibiotics, due in part to its relative lack of general uptake pathways. Instead, this organism relies on a large number of substrate-specific uptake porins. Included in this group are the 19 members of the OprD family, which are involved in the uptake of a diverse array of metabolites. One of these porins, OpdH, has been implicated in the uptake of cis-aconitate. Here we demonstrate that this porin may also enable P. aeruginosa to take up other tricarboxylates. Isocitrate and citrate strongly and specifically induced the opdH gene via a mechanism involving derepression by the putative two-component regulatory system PA0756-PA0757. Planar bilayer analysis of purified OpdH demonstrated that it was a channel-forming protein with a large single-channel conductance (230 pS in 1 M KCl; 10-fold higher than that of OprD); however, we were unable to demonstrate the presence of a tricarboxylate binding site within the channel. Thus, these data suggest that the requirement for OpdH for efficient growth on tricarboxylates was likely due to the specific expression of this large-channel porin under particular growth conditions.
Collapse
Affiliation(s)
- Sandeep Tamber
- Department of Microbiology and Immunology, University of British Columbia, #235 2259 Lower Mall, Lower Mall Research Station, Vancouver, British Columbia, V6T 1Z4 Canada
| | | | | | | |
Collapse
|
9
|
Wierckx NJP, Ballerstedt H, de Bont JAM, Wery J. Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 2006; 71:8221-7. [PMID: 16332806 PMCID: PMC1317433 DOI: 10.1128/aem.71.12.8221-8227.2005] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient bioconversion of glucose to phenol via the central metabolite tyrosine was achieved in the solvent-tolerant strain Pseudomonas putida S12. The tpl gene from Pantoea agglomerans, encoding tyrosine phenol lyase, was introduced into P. putida S12 to enable phenol production. Tyrosine availability was a bottleneck for efficient production. The production host was optimized by overexpressing the aroF-1 gene, which codes for the first enzyme in the tyrosine biosynthetic pathway, and by random mutagenesis procedures involving selection with the toxic antimetabolites m-fluoro-dl-phenylalanine and m-fluoro-l-tyrosine. High-throughput screening of analogue-resistant mutants obtained in this way yielded a P. putida S12 derivative capable of producing 1.5 mM phenol in a shake flask culture with a yield of 6.7% (mol/mol). In a fed-batch process, the productivity was limited by accumulation of 5 mM phenol in the medium. This toxicity was overcome by use of octanol as an extractant for phenol in a biphasic medium-octanol system. This approach resulted in accumulation of 58 mM phenol in the octanol phase, and there was a twofold increase in the overall production compared to a single-phase fed batch.
Collapse
Affiliation(s)
- Nick J P Wierckx
- TNO Quality of Life, P.O. Box 342, 7300 AH Apeldoorn, The Netherlands.
| | | | | | | |
Collapse
|
10
|
Quatrini R, Jedlicki E, Holmes DS. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J Ind Microbiol Biotechnol 2005; 32:606-14. [PMID: 15895264 DOI: 10.1007/s10295-005-0233-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 04/15/2005] [Indexed: 01/01/2023]
Abstract
Commercial bioleaching of copper and the biooxidation of gold is a cost-effective and environmentally friendly process for metal recovery. A partial genome sequence of the acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans is available from two public sources. This information has been used to build preliminary models that describe how this microorganism confronts unusually high iron loads in the extremely acidic conditions (pH 2) found in natural environments and in bioleaching operations. A. ferrooxidans contains candidate genes for iron uptake, sensing, storage, and regulation of iron homeostasis. Predicted proteins exhibit significant amino acid similarity with known proteins from neutrophilic organisms, including conservation of functional motifs, permitting their identification by bioinformatics tools and allowing the recognition of common themes in iron transport across distantly related species. However, significant differences in amino acid sequence were detected in pertinent domains that suggest ways in which the periplasmic and outer membrane proteins of A. ferrooxidans maintain structural integrity and relevant protein-protein contacts at low pH. Unexpectedly, the microorganism also contains candidate genes, organized in operon-like structures that potentially encode at least 11 siderophore systems for the uptake of Fe(III), although it does not exhibit genes that could encode the biosynthesis of the siderophores themselves. The presence of multiple Fe(III) uptake systems suggests that A. ferrooxidans can inhabit aerobic environments where iron is scarce and where siderophore producers are present. It may also help to explain why it cannot tolerate high Fe(III) concentrations in bioleaching operations where it is out-competed by Leptospirillum species.
Collapse
Affiliation(s)
- Raquel Quatrini
- Laboratory of Bioinformatics and Genome Biology, University of Andrés Bello and Millennium Institute of Fundamental and Applied Biology, Santiago, Chile
| | | | | |
Collapse
|
11
|
Wu-Pong S. Alternative interpretations of the oligonucleotide transport literature: insights from nature. Adv Drug Deliv Rev 2000; 44:59-70. [PMID: 11035198 DOI: 10.1016/s0169-409x(00)00084-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elucidation of the mechanism of oligonucleotide (ON) cellular internalization has met an impasse at the lipid penetration stage. ON internalization is commonly regarded to involve endocytosis, yet the method by which the ON penetrates the endosome membrane remains a mystery despite more than 10 years of research by multiple laboratories. In addition, the literature regarding this topic is fraught with discrepancies and inconsistencies. Therefore, the goal of this review is to propose and illustrate the feasibility of the notion that the literature discrepancies are perhaps an indication of a complex transport mechanism involving more than one uptake pathway. Accordingly, ON- and cell-differences in uptake may be attributed to differences in the relative importance of these pathways for different cell types and ONs. An example of one such pathway is reviewed and critiqued in this communication with respect to its hypothetical role in ON uptake. Other innovative mechanisms should similarly be considered to stimulate new ideas, discussion and research in this unique and interesting field.
Collapse
Affiliation(s)
- S Wu-Pong
- Department of Pharmaceutics, Box 980533, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
12
|
Adewoye LO, Tschetter L, O'Neil J, Worobec EA. Channel specificity and secondary structure of the glucose-inducible porins of Pseudomonas spp. J Bioenerg Biomembr 1998; 30:257-67. [PMID: 9733092 DOI: 10.1023/a:1020596820314] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The OprB porin-mediated glucose transport system was investigated in Pseudomonas chlororaphis, Burkholderia cepacia, and Pseudomonas fluorescens. Kinetic studies of [U-14C]glucose uptake revealed an inducible system of low Km values (0.3-5 microM) and high specificity for glucose. OprB homologs were purified and reconstituted into proteoliposomes. The porin function and channel preference for glucose were demonstrated by liposome swelling assays. Examination of the periplasmic glucose-binding protein (GBP) components by Western immunoblotting using P. aeruginosa GBP-specific antiserum revealed some homology between P. aeruginosa GBP and periplasmic proteins from P. fluorescens and P. chlororaphis but not B. cepacia. Circular dichroism spectropolarimetry of purified OprB-like porins from the three species revealed beta sheet contents of 31-50% in agreement with 40% beta sheet content for the P. aeruginosa OprB porin. These findings suggest that the high-affinity glucose transport system is primarily specific for glucose and well conserved in the genus Pseudomonas although its outer membrane component may differ in channel architecture and specificity for other carbohydrates.
Collapse
Affiliation(s)
- L O Adewoye
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
13
|
Rae JL, Cutfield JF, Lamont IL. Sequences and expression of pyruvate dehydrogenase genes from Pseudomonas aeruginosa. J Bacteriol 1997; 179:3561-71. [PMID: 9171401 PMCID: PMC179149 DOI: 10.1128/jb.179.11.3561-3571.1997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A mutant of Pseudomonas aeruginosa, OT2100, which appeared to be defective in the production of the fluorescent yellow-green siderophore pyoverdine had been isolated previously following transposon mutagenesis (T. R. Merriman and I. L. Lamont, Gene 126:17-23, 1993). DNA from either side of the transposon insertion site was cloned, and the sequence was determined. The mutated gene had strong identity with the dihydrolipoamide acetyltransferase (E2) components of pyruvate dehydrogenase (PDH) from other bacterial species. Enzyme assays revealed that the mutant was defective in the E2 subunit of PDH, preventing assembly of a functional complex. PDH activity in OT2100 cell extracts was restored when extract from an E1 mutant was added. On the basis of this evidence, OT2100 was identified as an aceB or E2 mutant. A second gene, aceA, which is likely to encode the E1 component of PDH, was identified upstream from aceB. Transcriptional analysis revealed that aceA and aceB are expressed as a 5-kb polycistronic transcript from a promoter upstream of aceA. An intergenic region of 146 bp was located between aceA and aceB, and a 2-kb aceB transcript that originated from a promoter in the intergenic region was identified. DNA fragments upstream of aceA and aceB were shown to have promoter activities in P. aeruginosa, although only the aceA promoter was active in Escherichia coli. It is likely that the apparent pyoverdine-deficient phenotype of mutant OT2100 is a consequence of acidification of the growth medium due to accumulation of pyruvic acid in the absence of functional PDH.
Collapse
Affiliation(s)
- J L Rae
- Department of Biochemistry and Centre for Gene Research, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
14
|
Robledano M, Kleeberg V, Kaiser I, Benz R, Schiltz E, Weckesser J. A Comparative Study on the Porins of Rhodobacter capsulatus Strains 37b4 and B10 Grown Under Different Culture Conditions. Syst Appl Microbiol 1996. [DOI: 10.1016/s0723-2020(96)80055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Wylie JL, Worobec EA. The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa. J Bacteriol 1995; 177:3021-6. [PMID: 7768797 PMCID: PMC176988 DOI: 10.1128/jb.177.11.3021-3026.1995] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Using interposon mutagenesis, we have generated strains of Pseudomonas aeruginosa which lack or overexpress the substrate-selective OprB porin of this species. A marked decrease or increase in the initial uptake of glucose by these strains verified the role of OprB in facilitating the diffusion of glucose across the outer membrane of P. aeruginosa. However, we also demonstrated that the loss or overexpression of OprB had a similar effect on the uptake of three other sugars able to support the growth of this bacterium (mannitol, glycerol, and fructose). This effect was restricted to carbohydrate transport; arginine uptake was identical in mutant and wild-type strains. These results indicated that OprB cannot be considered strictly a glucose-selective porin; rather, it acts as a central component of carbohydrate transport and is more accurately described as a carbohydrate-selective porin.
Collapse
Affiliation(s)
- J L Wylie
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
16
|
Wylie JL, Worobec EA. Cloning and nucleotide sequence of the Pseudomonas aeruginosa glucose-selective OprB porin gene and distribution of OprB within the family Pseudomonadaceae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:505-12. [PMID: 8125108 DOI: 10.1111/j.1432-1033.1994.tb18649.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OprB is a glucose-selective porin known to be produced by Pseudomonas aeruginosa and Pseudomonas putida. We have cloned and sequenced the oprB gene of P. aeruginosa and obtained expression of OprB in Escherichia coli. The mature protein consists of 423 amino acid residues with a deduced molecular mass of 47597 Da. Several clusters of amino acid residues, potentially involved in the structure or function of the protein, were identified. An area of regional homology with E. coli LamB was also identified. Carbohydrate-inducible proteins, potentially homologous to OprB, were identified in several rRNA homology-group-I pseudomonads by sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis, Western immunoblotting and N-terminal amino acid sequencing. These species also contained DNA that hybridized to a P. aeruginosa oprB gene probe.
Collapse
Affiliation(s)
- J L Wylie
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|