1
|
Raskovic D, Alvarado G, Hines KM, Xu L, Gatto C, Wilkinson BJ, Pokorny A. Growth of Staphylococcus aureus in the presence of oleic acid shifts the glycolipid fatty acid profile and increases resistance to antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184395. [PMID: 39500386 DOI: 10.1016/j.bbamem.2024.184395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/10/2024]
Abstract
Staphylococcus aureus readily adapts to various environments and quickly develops antibiotic resistance, which has led to an increase in multidrug-resistant infections. Hence, S. aureus presents a significant global health issue and its adaptations to the host environment are crucial for understanding pathogenesis and antibiotic susceptibility. When S. aureus is grown conventionally, its membrane lipids contain a mix of branched-chain and straight-chain saturated fatty acids. However, when unsaturated fatty acids are present in the growth medium, they become a major part of the total fatty acid composition. This study explores the biophysical effects of incorporating straight-chain unsaturated fatty acids into S. aureus membrane lipids. Membrane preparations from cultures supplemented with oleic acid showed more complex differential scanning calorimetry scans than those grown in tryptic soy broth alone. When grown in the presence of oleic acid, the cultures exhibited a transition significantly above the growth temperature, attributed to the presence of glycolipids with long-chain fatty acids causing acyl chain packing frustration within the bilayer. Functional aspects of the membrane were assessed by studying the kinetics of dye release from unilamellar vesicles induced by the antimicrobial peptide mastoparan X. Dye release was slower from liposomes prepared from cells grown in oleic acid-supplemented cultures, suggesting that changes in membrane lipid composition and biophysics protect the cell membrane against peptide-induced lysis. These findings underscore the intricate relationship between the growth environment, membrane lipid composition, and the physical properties of the bacterial membrane, which should be considered when developing new strategies against S. aureus infections.
Collapse
Affiliation(s)
- Djuro Raskovic
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Gloria Alvarado
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America; School of Biological Sciences, Illinois State University, Normal, IL, United States of America
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, GA, United States of America
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States of America
| | - Craig Gatto
- School of Biological Sciences, Illinois State University, Normal, IL, United States of America
| | - Brian J Wilkinson
- School of Biological Sciences, Illinois State University, Normal, IL, United States of America
| | - Antje Pokorny
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States of America.
| |
Collapse
|
2
|
Múnera-Jaramillo J, López GD, Suesca E, Carazzone C, Leidy C, Manrique-Moreno M. The role of staphyloxanthin in the regulation of membrane biophysical properties in Staphylococcus aureus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184288. [PMID: 38286247 DOI: 10.1016/j.bbamem.2024.184288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Staphylococcus aureus is an opportunistic pathogen that is considered a global health threat. This microorganism can adapt to hostile conditions by regulating membrane lipid composition in response to external stress factors such as changes in pH and ionic strength. S. aureus synthesizes and incorporates in its membrane staphyloxanthin, a carotenoid providing protection against oxidative damage and antimicrobial agents. Staphyloxanthin is known to modulate the physical properties of the bacterial membranes due to the rigid diaponeurosporenoic group it contains. In this work, preparative thin layer chromatography and liquid chromatography mass spectrometry were used to purify staphyloxanthin from S. aureus and characterize its structure, identifying C15, C17 and C19 as the main fatty acids in this carotenoid. Changes in the biophysical properties of models of S. aureus membranes containing phosphatidylglycerol, cardiolipin, and staphyloxanthin were evaluated. Infrared spectroscopy shows that staphyloxanthin reduces the liquid-crystalline to gel phase transition temperature in the evaluated model systems. Interestingly, these shifts are not accompanied by strong changes in trans/gauche isomerization, indicating that chain conformation in the liquid-crystalline phase is not altered by staphyloxanthin. In contrast, headgroup spacing, measured by Laurdan GP fluorescence spectroscopy, and lipid core dynamics, measured by DPH fluorescence anisotropy, show significant shifts in the presence of staphyloxanthin. The combined results show that staphyloxanthin reduces lipid core dynamics and headgroup spacing without altering acyl chain conformations, therefore decoupling these normally correlated effects. We propose that the rigid diaponeurosporenoic group in staphyloxanthin and its positioning in the membrane is likely responsible for the results observed.
Collapse
Affiliation(s)
- Jessica Múnera-Jaramillo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá, Colombia; PhysCheMath Research Group, Chemistry Department, Universidad de América, Bogotá D.C., Colombia
| | - Elizabeth Suesca
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia.
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
3
|
Sharma NK, Vishwakarma J, Rai S, Alomar TS, AlMasoud N, Bhattarai A. Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS OMEGA 2022; 7:27004-27020. [PMID: 35967040 PMCID: PMC9366950 DOI: 10.1021/acsomega.2c01400] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
The development of the most reliable and green techniques for nanoparticle synthesis is an emerging step in the area of green nanotechnology. Many conventional approaches used for nanoparticle (NP) synthesis are expensive, deadly, and nonenvironmental. In this new era of nanotechnology, to overcome such concerns, natural sources which work as capping and reducing agents, including bacteria, fungi, biopolymers, and plants, are suitable candidates for synthesizing AgNPs. The surface morphology and applications of AgNPs are significantly pretentious to the experimental conditions by which they are synthesized. Available scattered information on the synthesis of AgNPs comprises the influence of altered constraints and characterization methods such as FTIR, UV-vis, DLS, SEM, TEM, XRD, EDX, etc. and their properties and applications. This review focuses on all the above-mentioned natural sources that have been used for AgNP synthesis recently. The green routes to synthesize AgNPs have established effective applications in various areas, including biosensors, magnetic resonance imaging (MRI), cancer treatment, surface-enhanced Raman spectroscopy (SERS), antimicrobial agents, drug delivery, gene therapy, DNA analysis, etc. The existing boundaries and prospects for metal nanoparticle synthesis by the green route are also discussed herein.
Collapse
Affiliation(s)
- Nitin Kumar Sharma
- Department
of Chemical Engineering, Indian Institute
of Technology, Kanpur 208016, India
- Shri
Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Jyotsna Vishwakarma
- K. B.
Pharmacy Institute of Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Summi Rai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Taghrid S. Alomar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Najla AlMasoud
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ajaya Bhattarai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
- or
| |
Collapse
|
4
|
Open chain pseudopeptides as hydrogelators with reversible and dynamic responsiveness to pH, temperature and sonication as vehicles for controlled drug delivery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Insights into molecular mechanism of action of citrus flavonoids hesperidin and naringin on lipid bilayers using spectroscopic, calorimetric, microscopic and theoretical studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Pruchnik H, Gliszczyńska A, Włoch A. Evaluation of the Physico-Chemical Properties of Liposomes Assembled from Bioconjugates of Anisic Acid with Phosphatidylcholine. Int J Mol Sci 2021; 22:13146. [PMID: 34884953 PMCID: PMC8658227 DOI: 10.3390/ijms222313146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this work was the evaluation of the physico-chemical properties of a new type of liposomes that are composed of DPPC and bioconjugates of anisic acid with phosphatidylcholine. In particular, the impact of modified anisic acid phospholipids on the thermotropic parameters of liposomes was determined, which is crucial for using them as potential carriers of active substances in cancer therapies. Their properties were determined using three biophysical methods, namely differential scanning calorimetry (DSC), steady-state fluorimetry and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Moreover, temperature studies of liposomes composed of DPPC and bioconjugates of anisic acid with phosphatidylcholine provided information about the phase transition, fluidity regarding chain order, hydration and dynamics. The DSC results show that the main phase transition peak for conjugates of anisic acid with phosphatidylcholine molecules was broadened and shifted to a lower temperature in a concentration- and structure-dependent manner. The ATR-FTIR results and the results of measurements conducted using fluorescent probes located at different regions in the lipid bilayer are in line with DSC. The results show that the new bioconjugates with phosphatidylcholine have a significant impact on the physico-chemical properties of a membrane and cause a decrease in the temperature of the main phase transition. The consequence of this is greater fluidity of the lipid bilayer.
Collapse
Affiliation(s)
- Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Anna Gliszczyńska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
7
|
Wine Yeasts Selection: Laboratory Characterization and Protocol Review. Microorganisms 2021; 9:microorganisms9112223. [PMID: 34835348 PMCID: PMC8623447 DOI: 10.3390/microorganisms9112223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Wine reflects the specificity of a terroir, including the native microbiota. In contrast to the use of Saccharomyces cerevisiae commercial starters, a way to maintain wines' microbial terroir identities, guaranteeing at the same time the predictability and reproducibility of the wines, is the selection of autochthonous Saccharomyces and non-Saccharomyces strains towards optimal enological characteristics for the chosen area of isolation. This field has been explored but there is a lack of a compendium covering the main methods to use. Autochthonous wine yeasts from different areas of Slovakia were identified and tested, in the form of colonies grown either on nutrient agar plates or in grape must micro-fermentations, for technological and qualitative enological characteristics. Based on the combined results, Saccharomyces cerevisiae PDA W 10, Lachancea thermotolerans 5-1-1 and Metschnikowia pulcherrima 125/14 were selected as potential wine starters. This paper, as a mixture of experimental and review contributions, provides a compendium of methods used to select autochthonous wine yeasts. Thanks to the presence of images, this compendium could guide other researchers in screening their own yeast strains for wine production.
Collapse
|
8
|
Paes de Barros M, Casares Araujo-Chaves J, Marlise Mendes Brito A, Lourenço Nantes-Cardoso I. Oxidative/Nitrative Mechanism of Molsidomine Mitotoxicity Assayed by the Cytochrome c Reaction with SIN-1 in Models of Biological Membranes. Chem Res Toxicol 2020; 33:2775-2784. [DOI: 10.1021/acs.chemrestox.0c00122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcelo Paes de Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, Rua Galvão Bueno 868, São Paulo, São Paulo 01506-000, Brazil
| | | | | | | |
Collapse
|
9
|
Ngo DTN, Nguyen TQ, Huynh HK, Nguyen TT. Thermodynamics of selective serotonin reuptake inhibitors partitioning into 1,2-dioleoyl- sn-glycero-3-phosphocholine bilayers. RSC Adv 2020; 10:39338-39347. [PMID: 35518408 PMCID: PMC9057331 DOI: 10.1039/d0ra07367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022] Open
Abstract
Knowledge of thermodynamics of lipid membrane partitioning of amphiphilic drugs as well as their binding site within the membrane are of great relevance not only for understanding the drugs' pharmacology but also for the development and optimization of more potent drugs. In this study, the interaction between two representatives of selective serotonin reuptake inhibitors, including paroxetine and sertraline, and large unilamellar vesicles (LUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was investigated by second derivative spectrophotometry and Fourier transform infrared spectroscopy (FTIR) to determine the driving force of the drug partitioning across lipid membranes. It was found that temperature increase from 25 to 42 °C greatly enhanced the partitioning of paroxetine and sertraline into DOPC LUVs, and sertraline intercalated into the lipid vesicles to a greater extent than paroxetine in the temperature range examined. The partitioning of both drugs into DOPC LUVs was a spontaneous, endothermic and entropy-driven process. FTIR measurements suggested that sertraline could penetrate deeply into the acyl tails of DOPC LUVs as shown by the considerable shifts in the lipid's CH2 and C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O stretching modes induced by the drug. Paroxetine, however, could reside closer to the head groups of the lipid since its presence caused a larger shift in the PO2− bands of DOPC LUVs. The findings reported here provide valuable insights into the influence of small molecules' chemical structure on their molecular interaction with the lipid bilayer namely their possible binding sites within the lipid bilayer and their thermodynamics profiles of partitioning, which could benefit rational drug design and drug delivery systems. Paroxetine and sertraline have the same thermodynamics profile of phospholipid bilayer partitioning but different location within the lipid bilayer.![]()
Collapse
Affiliation(s)
- Dat T. N. Ngo
- Department of Biotechnology
- International University
- Ho Chi Minh City
- Vietnam
- Vietnam National University
| | - Trinh Q. Nguyen
- Department of Biotechnology
- International University
- Ho Chi Minh City
- Vietnam
- Vietnam National University
| | - Hieu K. Huynh
- University of Medicine and Pharmacy at Ho Chi Minh City
- Ho Chi Minh City
- Vietnam
| | - Trang T. Nguyen
- Department of Chemical Engineering
- International University
- Ho Chi Minh City
- Vietnam
- Vietnam National University
| |
Collapse
|
10
|
Demirbaş Ö, Çalımlı MH, Demirkan B, Alma MH, Nas MS, Khan A, Asiri AM, Şen F. Thermodynamics, Kinetics, and Adsorption Properties of Biomolecules onto Carbon-Based Materials Obtained from Food Wastes. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00628-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Design of Prototype Formulations for In Vitro Dermal Delivery of the Natural Antioxidant Ferulic Acid Based on Ethosomal Colloidal Systems. COSMETICS 2019. [DOI: 10.3390/cosmetics6010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ferulic acid (FA), a naturally occurring antioxidant, is currently used to prevent skin damage. However, FA is very unstable upon exposure to UV radiation and other factors, which decrease its shelf-life and effectiveness. Therefore, in this work, different prototypes of ethosomal FA vesicular systems were designed and developed to provide protection against different environmental factors. A two-level fractional factorial design was employed using particle size, zeta potential (ZP), incorporation efficiency (EE), polydispersity index (PDI), and the existing relationship between length and width of vesicles or aspect ratio (AR) as response variables. The optimal formulation was characterized using differential scanning calorimetry (DSC), infrared analysis, UV-Vis absorption, in-vitro permeability, and thermal degradation studies. Depending on the processing conditions, the EE and particle size varied between 3 and 87% and 470 and 1208 nm, respectively. Membrane studies indicated that the free product released ~4.8% of the compound, whereas the encapsulated material released ~7.1%. Because of their enhanced permeability, ethosomes could be a promising alternative for the topical administration of antioxidants to reduce the oxidative damage caused by solar radiation.
Collapse
|
12
|
Kroetz T, dos Santos MC, Beal R, Zanotto GM, Santos FS, Giacomelli FC, Gonçalves PFB, de Lima VR, Dal-Bó AG, Rodembusch FS. Proton transfer in fluorescent secondary amines: synthesis, photophysics, theoretical calculation and preparation of photoactive phosphatidylcholine-based liposomes. Photochem Photobiol Sci 2019; 18:1171-1184. [DOI: 10.1039/c9pp00017h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New proton-transfer lipophilic based benzazoles.
Collapse
Affiliation(s)
- Thais Kroetz
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada
- Universidade Federal do Rio Grande do Sul – Instituto de Química
- CEP 91501-970 Porto Alegre-RS
- Brazil
| | | | - Roiney Beal
- Grupo de Química Teórica
- Instituto de Química
- Universidade Federal do Rio Grande do Sul
- Porto Alegre-RS
- Brazil
| | - Gabriel Modernell Zanotto
- Grupo de Química Teórica
- Instituto de Química
- Universidade Federal do Rio Grande do Sul
- Porto Alegre-RS
- Brazil
| | | | | | - Paulo F. B. Gonçalves
- Grupo de Química Teórica
- Instituto de Química
- Universidade Federal do Rio Grande do Sul
- Porto Alegre-RS
- Brazil
| | | | | | - Fabiano S. Rodembusch
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada
- Universidade Federal do Rio Grande do Sul – Instituto de Química
- CEP 91501-970 Porto Alegre-RS
- Brazil
| |
Collapse
|
13
|
Cruz dos Santos S, Osti Silva N, dos Santos Espinelli JB, Germani Marinho MA, Vieira Borges Z, Bruzamarello Caon Branco N, Faita FL, Meira Soares B, Horn AP, Parize AL, Rodrigues de Lima V. Molecular interactions and physico-chemical characterization of quercetin-loaded magnetoliposomes. Chem Phys Lipids 2019; 218:22-33. [DOI: 10.1016/j.chemphyslip.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/30/2018] [Accepted: 11/30/2018] [Indexed: 01/02/2023]
|
14
|
Biophysical methods: Complementary tools to study the influence of human steroid hormones on the liposome membrane properties. Biochimie 2018; 153:13-25. [DOI: 10.1016/j.biochi.2018.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/07/2018] [Indexed: 11/21/2022]
|
15
|
Structurally modified bacteriorhodopsin as an efficient bio-sensitizer for solar cell applications. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:61-71. [DOI: 10.1007/s00249-018-1331-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/19/2018] [Accepted: 08/27/2018] [Indexed: 01/12/2023]
|
16
|
Essaid D, Tfayli A, Maillard P, Sandt C, Rosilio V, Baillet-Guffroy A, Kasselouri A. Retinoblastoma membrane models and their interactions with porphyrin photosensitisers: An infrared microspectroscopy study. Chem Phys Lipids 2018; 215:34-45. [PMID: 30026072 DOI: 10.1016/j.chemphyslip.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
Fourier Transform Infrared (FTIR) microspectroscopy was used to highlight the interactions between two photosensitisers (PS) of different geometries, TPPmOH4 and a glycoconjugated analogous, TPPDegMan, and lipid bilayers modelling retinoblastoma cell membranes. Retinoblastoma is a rare disease occurring in young infants, for whom conservative treatments may present harmful side-effects. Photodynamic therapy (PDT) is expected to induce less side-effects, as the photosensitiser is only activated when the tumour is illuminated. Since efficiency of the treatment relies on photosensitiser penetration in cancer cells, bilayers with three lipid compositions - pure SOPC, SOPC/SOPE/SOPS/Chol (56:23:11:10) and SOPC/SOPE/SOPS/Chol/CL (42:32:9:8:6) - were used as plasma and mitochondria model membranes. FTIR spectra showed that the interaction of the PSs with the lipid bilayers impacted the lipid organization of the latter, causing significant spectral variations. Both studied photosensitisers inserted at the level of lipid hydrophobic chains, increasing chain fluidity and disorder. This was confirmed by surface pressure measurements. Photosensitisers - TPPmOH4 more than TPPDegMan - also interacted with the polar region of the bilayer, forming hydrogen bonds with phosphate groups that induced major shifts of phosphate absorption bands. This difference in PS interaction with moieties in the polar region was more pronounced with the models with complex lipid composition.
Collapse
Affiliation(s)
- Donia Essaid
- Lip(Sys)(2), Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry cedex, France
| | - Ali Tfayli
- Lip(Sys)(2), Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry cedex, France
| | - Philippe Maillard
- Department Chemistry, Modelling and Imaging for Biology (CMIB), Institut Curie, Research center, PSL Research University, Bât 110-112, Centre Universitaire, F-91405 Orsay cedex, France; CNRS, INSERM, UMR 9187-U 1196, Université Paris-Saclay, Univ. Paris-Sud, Bât 110-112, Centre Universitaire, F-91405 Orsay Cedex, France
| | - Christophe Sandt
- SMIS Beamline, Synchrotron SOLEIL, Orme des merisiers, BP48, 91192 Gif-sur-Yvette, France
| | - Véronique Rosilio
- Institut Galien Paris Sud, Univ Paris-Sud, CNRS, Université Paris-Saclay, F-92290 Châtenay-Malabry cedex, France
| | - Arlette Baillet-Guffroy
- Lip(Sys)(2), Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry cedex, France
| | - Athena Kasselouri
- Lip(Sys)(2), Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry cedex, France.
| |
Collapse
|
17
|
Bedolla DE, Mantuano A, Pickler A, Mota CL, Braz D, Salata C, Almeida CE, Birarda G, Vaccari L, Barroso RC, Gianoncelli A. Effects of soft X-ray radiation damage on paraffin-embedded rat tissues supported on ultralene: a chemical perspective. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:848-856. [PMID: 29714196 DOI: 10.1107/s1600577518003235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
Radiation damage is an important aspect to be considered when analysing biological samples with X-ray techniques as it can induce chemical and structural changes in the specimens. This work aims to provide new insights into the soft X-ray induced radiation damage of the complete sample, including not only the biological tissue itself but also the substrate and embedding medium, and the tissue fixation procedure. Sample preparation and handling involves an unavoidable interaction with the sample matrix and could play an important role in the radiation-damage mechanism. To understand the influence of sample preparation and handling on radiation damage, the effects of soft X-ray exposure at different doses on ultralene, paraffin and on paraffin-embedded rat tissues were studied using Fourier-transform infrared (FTIR) microspectroscopy and X-ray microscopy. Tissues were preserved with three different commonly used fixatives: formalin, glutaraldehyde and Karnovsky. FTIR results showed that ultralene and paraffin undergo a dose-dependent degradation of their vibrational profiles, consistent with radiation-induced oxidative damage. In addition, formalin fixative has been shown to improve the preservation of the secondary structure of proteins in tissues compared with both glutaraldehyde and Karnovsky fixation. However, conclusive considerations cannot be drawn on the optimal fixation protocol because of the interference introduced by both substrate and embedding medium in the spectral regions specific to tissue lipids, nucleic acids and carbohydrates. Notably, despite the detected alterations affecting the chemical architecture of the sample as a whole, composed of tissue, substrate and embedding medium, the structural morphology of the tissues at the micrometre scale is essentially preserved even at the highest exposure dose.
Collapse
Affiliation(s)
- Diana E Bedolla
- Elettra-Sincrotrone Trieste SCpA, SS 14, km 163,5, Basovizza, Trieste, TS 34149, Italy
| | - Andrea Mantuano
- Physics Institute, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier 524 PJLF sala 3007F, Rio de Janeiro, RJ 20550-900, Brazil
| | - Arissa Pickler
- COPPE, Federal University of Rio de Janeiro, Av. Horácio Macedo 2030, Bloco G - Sala 206 - CT, Rio de Janeiro, RJ 21941-594, Brazil
| | - Carla Lemos Mota
- Radiological Sciences Laboratory, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier 524 PHLC Sala 136, Rio de Janeiro, RJ 20550-900, Brazil
| | - Delson Braz
- COPPE, Federal University of Rio de Janeiro, Av. Horácio Macedo 2030, Bloco G - Sala 206 - CT, Rio de Janeiro, RJ 21941-594, Brazil
| | - Camila Salata
- Medical Physics Department, Comissão Nacional de Energia Nuclear, Rua General Severiano 90, Rio de Janeiro, RJ 22290-901, Brazil
| | - Carlos Eduardo Almeida
- Radiological Sciences Laboratory, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier 524 PHLC Sala 136, Rio de Janeiro, RJ 20550-900, Brazil
| | - Giovanni Birarda
- Elettra-Sincrotrone Trieste SCpA, SS 14, km 163,5, Basovizza, Trieste, TS 34149, Italy
| | - Lisa Vaccari
- Elettra-Sincrotrone Trieste SCpA, SS 14, km 163,5, Basovizza, Trieste, TS 34149, Italy
| | - Regina Cély Barroso
- Physics Institute, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier 524 PJLF sala 3007F, Rio de Janeiro, RJ 20550-900, Brazil
| | | |
Collapse
|
18
|
IR spectroscopy analysis of pancreatic lipase-related protein 2 interaction with phospholipids: 1. Discriminative recognition of mixed micelles versus liposomes. Chem Phys Lipids 2018; 211:52-65. [DOI: 10.1016/j.chemphyslip.2017.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 12/28/2022]
|
19
|
Pham VT, Nguyen TQ, Dao UPN, Nguyen TT. On the interaction between fluoxetine and lipid membranes: Effect of the lipid composition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:50-61. [PMID: 28982068 DOI: 10.1016/j.saa.2017.09.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 05/27/2023]
Abstract
Molecular interaction between the antidepressant fluoxetine and lipid bilayers was investigated in order to provide insights into the drug's incorporation to lipid membranes. In particular, the effects of lipid's unsaturation degree and cholesterol content on the partitioning of fluoxetine into large unilamellar vesicles (LUVs) comprised of unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were evaluated using second derivative spectrophotometry and Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). It was found that fluoxetine partitioned to a greater extent into the liquid-crystalline DOPC LUVs than into the solid-gel DPPC LUVs. The lipid physical state dependence of drug partitioning was verified by increasing the temperature in which the partition coefficient of fluoxetine significantly increased upon the change of the lipid phase from solid-gel to liquid-crystalline. The incorporation of 28mol% cholesterol into the LUVs exerted a significant influence on the drug partitioning into both DOPC and DPPC LUVs. The ATR-FTIR study revealed that fluoxetine perturbed the conformation of DOPC more strongly than that of DPPC due to the cis-double bonds in the lipid acyl chains. Fluoxetine possibly bound to the carbonyl moiety of the lipids through the hydrogen bonding formation while displaced some water molecules surrounding the PO2- regions of the lipid head groups. Cholesterol, however, could lessen the interaction between fluoxetine and the carbonyl groups of both DOPC and DPPC LUVs. These findings provided a better understanding of the role of lipid structure and cholesterol on the interaction between fluoxetine and lipid membranes, shedding more light into the drug's therapeutic action.
Collapse
Affiliation(s)
- Vy T Pham
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Trinh Q Nguyen
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Uyen P N Dao
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Trang T Nguyen
- School of Biotechnology, International University, Vietnam National University in HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
20
|
Physicochemical interactions among α-eleostearic acid-loaded liposomes applied to the development of drug delivery systems. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Mateos-Diaz E, Sutto-Ortiz P, Sahaka M, Byrne D, Gaussier H, Carrière F. IR spectroscopy analysis of pancreatic lipase-related protein 2 interaction with phospholipids: 2. Discriminative recognition of various micellar systems and characterization of PLRP2-DPPC-bile salt complexes. Chem Phys Lipids 2017; 211:66-76. [PMID: 29155085 DOI: 10.1016/j.chemphyslip.2017.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
The interaction of pancreatic lipase-related protein 2 (PLRP2) with various micelles containing phospholipids was investigated using pHstat enzyme activity measurements, differential light scattering, size exclusion chromatography (SEC) and transmission IR spectroscopy. Various micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and lysophosphatidylcholine were prepared with either bile salts (sodium taurodeoxycholate or glycodeoxycholate) or Triton X-100, which are substrate-dispersing agents commonly used for measuring phospholipase activities. PLRP2 displayed a high activity on all phospholipid-bile salt micelles, but was totally inactive on phospholipid-Triton X-100 micelles. These findings clearly differentiate PLRP2 from secreted pancreatic phospholipase A2 which is highly active on both types of micelles. Using an inactive variant of PLRP2, SEC experiments allowed identifying two populations of PLRP2-DPPC-bile salt complexes corresponding to a high molecular weight 1:1 PLRP2-micelle association and to a low molecular weight association of PLRP2 with few monomers of DPPC/bile salts. IR spectroscopy analysis showed how DPPC-bile salt micelles differ from DPPC-Triton X-100 micelles by a higher fluidity of acyl chains and higher hydration/H-bonding of the interfacial carbonyl region. The presence of bile salts allowed observing changes in the IR spectrum of DPPC upon addition of PLRP2 (higher rigidity of acyl chains, dehydration of the interfacial carbonyl region), while no change was observed with Triton X-100. The differences between these surfactants and their impact on substrate recognition by PLRP2 are discussed, as well as the mechanism by which high and low molecular weight PLRP2-DPPC-bile salt complexes may be involved in the overall process of DPPC hydrolysis.
Collapse
Affiliation(s)
- Eduardo Mateos-Diaz
- Aix-Marseille Université, CNRS, UMR7282 Enzymologie Interfaciale et Physiologie de la Lipolyse, Marseille, France
| | - Priscila Sutto-Ortiz
- Aix-Marseille Université, CNRS, UMR7282 Enzymologie Interfaciale et Physiologie de la Lipolyse, Marseille, France; Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Zapopan, Jalisco, México
| | - Moulay Sahaka
- Aix-Marseille Université, CNRS, UMR7282 Enzymologie Interfaciale et Physiologie de la Lipolyse, Marseille, France
| | - Deborah Byrne
- Aix-Marseille Université, CNRS, FR3479 Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Hélène Gaussier
- Aix-Marseille Université, CNRS, UMR7282 Enzymologie Interfaciale et Physiologie de la Lipolyse, Marseille, France
| | - Frédéric Carrière
- Aix-Marseille Université, CNRS, UMR7282 Enzymologie Interfaciale et Physiologie de la Lipolyse, Marseille, France.
| |
Collapse
|
22
|
Sadchenko AO, Vashchenko OV, Puhovkin AY, Kopeika EF, Kasian NA, Budianska LV, Maschenko AV, Al-Mugkhrabi YM, Sofronov DS, Lisetski LN. The characteristics of interactions of pharmaceuticals and their active ingredients with lipid membranes. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917040194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Do TT, Dao UP, Bui HT, Nguyen TT. Effect of electrostatic interaction between fluoxetine and lipid membranes on the partitioning of fluoxetine investigated using second derivative spectrophotometry and FTIR. Chem Phys Lipids 2017; 207:10-23. [DOI: 10.1016/j.chemphyslip.2017.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/25/2017] [Accepted: 07/01/2017] [Indexed: 12/26/2022]
|
24
|
Pruchnik H, Kral T, Hof M. Interaction of Newly Platinum(II) with Tris(2-carboxyethyl)phosphine Complex with DNA and Model Lipid Membrane. J Membr Biol 2017; 250:461-470. [PMID: 28741121 PMCID: PMC5613069 DOI: 10.1007/s00232-017-9972-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 07/17/2017] [Indexed: 11/30/2022]
Abstract
Structural properties of plasmid DNA and model lipid membrane treated with newly synthesized platinum(II) complex cis-[PtCl2{P(CH2CH2COOH)3}2] (cis-DTCEP for short) were studied and compared with effects of anticancer drug cisplatin, cis-[Pt(NH3)2Cl2] (cis-DDP for short). Time Correlated Single Photon Counting Fluorescence Correlation Spectroscopy (TCSPC-FCS) was employed to study interactions between those platinum complexes and DNA. The TCSPC-FCS results suggest that bonding of cis-DTCEP derivative to DNA leads to plasmid strain realignment towards much more compact structure than in the case of cis-DDP. Application of both differential scanning calorimetry and infrared spectroscopy to platinum complexes/DPPC showed that cis-DTCEP slightly increases the phospholipid’s main phase transition temperature resulting in decreased fluidity of the model membrane. The newly investigated compound—similarly to cis-DDP—interacts mainly with the DPPC head group however not only by the means of electrostatic forces: this compound probably enters into hydrophilic region of the lipid bilayer and forms hydrogen bonds with COO groups of glycerol and PO2− group of DPPC.
Collapse
Affiliation(s)
- Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, ul. Norwida 25, 50-375, Wrocław, Poland.
| | - Teresa Kral
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, ul. Norwida 25, 50-375, Wrocław, Poland.,J. Heyrovsky Institute of Physical Chemistry of the ASCR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Martin Hof
- J. Heyrovsky Institute of Physical Chemistry of the ASCR, v.v.i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| |
Collapse
|
25
|
Computer Assisted Examination of Infrared and Near Infrared Spectra to Assess Structural and Molecular Changes in Biological Samples Exposed to Pollutants: A Case of Study. J Imaging 2017. [DOI: 10.3390/jimaging3010011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
An infrared diagnostic system to detect causal agents of grapevine trunk diseases. J Microbiol Methods 2016; 131:1-6. [DOI: 10.1016/j.mimet.2016.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/23/2022]
|
27
|
dos Santos MC, Micheletto YMS, da Silveira NP, da Silva Pinto L, Giacomelli FC, de Lima VR, Frizon TEA, Dal-Bó AG. Self-assembled carbohydrate-based vesicles for lectin targeting. Colloids Surf B Biointerfaces 2016; 148:12-18. [DOI: 10.1016/j.colsurfb.2016.08.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/23/2022]
|
28
|
Mattos C, Rodrigues M, Cordeiro M, Nunes R, Teixeira H, Lima V, Koester L. Nanoemulsions containing a synthetic chalcone: Photodegradation, in vitro release, and interaction studies. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Grangeteau C, Gerhards D, Terrat S, Dequiedt S, Alexandre H, Guilloux-Benatier M, von Wallbrunn C, Rousseaux S. FT-IR spectroscopy: A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must. J Microbiol Methods 2015; 121:50-8. [PMID: 26688103 DOI: 10.1016/j.mimet.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 11/28/2022]
Abstract
The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FT-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of them present organoleptic potentials in winemaking, particularly Starmerella bacillaris (synonym Candidazemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in the musts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains.
Collapse
Affiliation(s)
- Cédric Grangeteau
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Daniel Gerhards
- Institut für Mikrobiologie und Biochemie Zentrum Analytische Chemie und Mikrobiologie - Hochschule Geisenheim University, Geisenheim, Germany
| | - Sebastien Terrat
- INRA, UMR 1347 Agroécologie-Plateforme Genosol, 17, rue Sully, BP 86510, 21000 Dijon, France
| | - Samuel Dequiedt
- INRA, UMR 1347 Agroécologie-Plateforme Genosol, 17, rue Sully, BP 86510, 21000 Dijon, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Michèle Guilloux-Benatier
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Christian von Wallbrunn
- Institut für Mikrobiologie und Biochemie Zentrum Analytische Chemie und Mikrobiologie - Hochschule Geisenheim University, Geisenheim, Germany
| | - Sandrine Rousseaux
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France.
| |
Collapse
|
30
|
Lopes de Azambuja CR, dos Santos LG, Rodrigues MR, Rodrigues RFM, da Silveira EF, Azambuja JH, Flores AF, Horn AP, Dora CL, Muccillo-Baisch AL, Braganhol E, da Silva Pinto L, Parize AL, de Lima VR. Physico-chemical characterization of asolectin–genistein liposomal system: An approach to analyze its in vitro antioxidant potential and effect in glioma cells viability. Chem Phys Lipids 2015; 193:24-35. [DOI: 10.1016/j.chemphyslip.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/23/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022]
|
31
|
Karavasili C, Bouropoulos N, Sygellou L, Amanatiadou EP, Vizirianakis IS, Fatouros DG. PLGA/DPPC/trimethylchitosan spray-dried microparticles for the nasal delivery of ropinirole hydrochloride: in vitro, ex vivo and cytocompatibility assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:1053-1062. [PMID: 26652464 DOI: 10.1016/j.msec.2015.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/24/2015] [Accepted: 11/11/2015] [Indexed: 01/17/2023]
Abstract
In the present study we investigated polymer-lipid microparticles loaded with ropinirole hydrochloride (RH) for nasal delivery. RH microparticles were further evaluated by means of scanning electron microscopy (SEM), ζ-potential measurements, Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and x-ray diffraction (XRD). In vitro release studies were performed in simulated nasal electrolyte solution (SNES) pH5.5 at 35°C. Ex vivo permeation studies were conducted across sheep nasal mucosa. Cytocompatibility was tested in cultured human airway epithelial cells (Calu-3). SEM studies revealed spheroid microparticles in the range of 2.09μm to 2.41μm. The presence of trimethylchitosan (TMC) induced a slight shift towards less negative ζ-potential values. Surface chemistry (XPS) revealed the presence of dipalmitoylphospatidylcholine (DPPC) and poly(lactic-co-glycolic acid) (PLGA) onto microparticles' surface, further corroborating the FT-IR and XRD findings. In vitro release studies showed that the microparticle composition can partly modulate the release of RH. Ex vivo studies demonstrated a 2.35-folded enhancement of RH permeation when RH was co-formulated with TMC of low molecular weight, compared to the control. All formulations tested were found to be non-toxic to cells. The results suggest that polymer-lipid microparticles may be a promising carrier for the nasal delivery of RH.
Collapse
Affiliation(s)
- Christina Karavasili
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Rio, Patras, Greece; Foundation for Research and Technology, Hellas-Institute of Chemical Engineering and High Temperature, P.O. Box 1414, 26504 Patras, Greece
| | - Lamprini Sygellou
- Foundation for Research and Technology, Hellas-Institute of Chemical Engineering and High Temperature, P.O. Box 1414, 26504 Patras, Greece
| | - Elsa P Amanatiadou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
32
|
Altunayar C, Sahin I, Kazanci N. A comparative study of the effects of cholesterol and desmosterol on zwitterionic DPPC model membranes. Chem Phys Lipids 2015; 188:37-45. [DOI: 10.1016/j.chemphyslip.2015.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
|
33
|
A DSC and FTIR spectroscopic study of the effects of the epimeric coprostan-3-ols and coprostan-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogues. Chem Phys Lipids 2015; 188:10-26. [DOI: 10.1016/j.chemphyslip.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/19/2022]
|
34
|
Grangeteau C, Gerhards D, Rousseaux S, von Wallbrunn C, Alexandre H, Guilloux-Benatier M. Diversity of yeast strains of the genus Hanseniaspora in the winery environment: What is their involvement in grape must fermentation? Food Microbiol 2015; 50:70-7. [PMID: 25998817 DOI: 10.1016/j.fm.2015.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/17/2022]
Abstract
Isolated yeast populations of Chardonnay grape must during spontaneous fermentation were compared to those isolated on grape berries and in a winery environment before the arrival of the harvest (air, floor, winery equipment) and in the air through time. Two genera of yeast, Hanseniaspora and Saccharomyces, were isolated in grape must and in the winery environment before the arrival of the harvest but not on grape berries. The genus Hanseniaspora represented 27% of isolates in the must and 35% of isolates in the winery environment. The isolates of these two species were discriminated at the strain level by Fourier transform infrared spectroscopy. The diversity of these strains observed in the winery environment (26 strains) and in must (12 strains) was considerable. 58% of the yeasts of the genus Hanseniaspora isolated in the must corresponded to strains present in the winery before the arrival of the harvest. Although the proportion and number of strains of the genus Hanseniaspora decreased during fermentation, some strains, all from the winery environment, subsisted up to 5% ethanol content. This is the first time that the implantation in grape must of populations present in the winery environment has been demonstrated for a non-Saccharomyces genus.
Collapse
Affiliation(s)
- Cédric Grangeteau
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Daniel Gerhards
- Institut für Mikrobiologie und Biochemie Zentrum Analytische Chemie und Mikrobiologie - Hochschule Geisenheim University, Geisenheim, Germany
| | - Sandrine Rousseaux
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France.
| | - Christian von Wallbrunn
- Institut für Mikrobiologie und Biochemie Zentrum Analytische Chemie und Mikrobiologie - Hochschule Geisenheim University, Geisenheim, Germany
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Michèle Guilloux-Benatier
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| |
Collapse
|
35
|
Vongsvivut J, Heraud P, Gupta A, Puri M, McNaughton D, Barrow CJ. FTIR microspectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protists. Analyst 2014; 138:6016-31. [PMID: 23957051 DOI: 10.1039/c3an00485f] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increase in polyunsaturated fatty acid (PUFA) consumption has prompted research into alternative resources other than fish oil. In this study, a new approach based on focal-plane-array Fourier transform infrared (FPA-FTIR) microspectroscopy and multivariate data analysis was developed for the characterisation of some marine microorganisms. Cell and lipid compositions in lipid-rich marine yeasts collected from the Australian coast were characterised in comparison to a commercially available PUFA-producing marine fungoid protist, thraustochytrid. Multivariate classification methods provided good discriminative accuracy evidenced from (i) separation of the yeasts from thraustochytrids and distinct spectral clusters among the yeasts that conformed well to their biological identities, and (ii) correct classification of yeasts from a totally independent set using cross-validation testing. The findings further indicated additional capability of the developed FPA-FTIR methodology, when combined with partial least squares regression (PLSR) analysis, for rapid monitoring of lipid production in one of the yeasts during the growth period, which was achieved at a high accuracy compared to the results obtained from the traditional lipid analysis based on gas chromatography. The developed FTIR-based approach when coupled to programmable withdrawal devices and a cytocentrifugation module would have strong potential as a novel online monitoring technology suited for bioprocessing applications and large-scale production.
Collapse
Affiliation(s)
- Jitraporn Vongsvivut
- Centre for Chemistry and Biotechnology (CCB), School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Domenici F, Giliberti C, Bedini A, Palomba R, Udroiu I, Di Giambattista L, Pozzi D, Morrone S, Bordi F, Congiu Castellano A. Structural and permeability sensitivity of cells to low intensity ultrasound: Infrared and fluorescence evidence in vitro. ULTRASONICS 2014; 54:1020-1028. [PMID: 24370376 DOI: 10.1016/j.ultras.2013.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 12/03/2013] [Accepted: 12/07/2013] [Indexed: 06/03/2023]
Abstract
This work is focused on the in vitro study of the effects induced by medical ultrasound (US) in murine fibroblast cells (NIH-3T3) at a low-intensity of exposure (spatial peak temporal average intensity Ita<0.1Wcm(-2)). Conventional 1MHz and 3MHz US devices of therapeutic relevance were employed with varying intensity and exposure time parameters. In this framework, upon cells exposure to US, structural changes at the molecular level were evaluated by infrared spectroscopy; alterations in plasma membrane permeability were monitored in terms of uptake efficiency of small cell-impermeable model drug molecules, as measured by fluorescence microscopy and flow cytometry. The results were related to the cell viability and combined with the statistical PCA analysis, confirming that NIH-3T3 cells are sensitive to therapeutic US, mainly at 1MHz, with time-dependent increases in both efficiency of uptake, recovery of wild-type membrane permeability, and the size of molecules entering 3T3. On the contrary, the exposures from US equipment at 3MHz show uptakes comparable with untreated samples.
Collapse
Affiliation(s)
| | | | | | | | - Ion Udroiu
- Roma Tre University, Department of Science, Rome, Italy
| | | | - Deleana Pozzi
- Sapienza University, Department of Molecular Medicine, Rome, Italy
| | - Stefania Morrone
- Sapienza University, Department of Experimental Medicine, Rome, Italy
| | | | | |
Collapse
|
37
|
Zaytsev KI, Fokina IN, Fedorov AK, Yurchenko SO. Sensing of phase transition in medium with terahertz pulsed spectroscopy. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1742-6596/486/1/012024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogues. Chem Phys Lipids 2014; 177:71-90. [DOI: 10.1016/j.chemphyslip.2013.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 01/08/2023]
|
39
|
de Sousa RS, de Moraes Nogueira AO, Marques VG, Clementin RM, de Lima VR. Effects of α-eleostearic acid on asolectin liposomes dynamics: relevance to its antioxidant activity. Bioorg Chem 2013; 51:8-15. [PMID: 24076476 DOI: 10.1016/j.bioorg.2013.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 11/27/2022]
Abstract
In this study, the effect of α-eleostearic acid (α-ESA) on the lipid peroxidation of soybean asolectin (ASO) liposomes was investigated. This effect was correlated to changes caused by the fatty acid in the membrane dynamics. The influence of α-ESA on the dynamic properties of liposomes, such as hydration, mobility and order, were followed by horizontal attenuated total reflection Fourier transform infrared spectroscopy (HATR-FTIR), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and UV-vis techniques. The α-ESA showed an in vitro antioxidant activity against the damage induced by hydroxyl radical (OH) in ASO liposomes. The analysis of HATR-FTIR frequency shifts and bandwidths and (1)H NMR spin-lattice relaxation times, related to specific lipid groups, showed that α-ESA causes an ordering effect on the polar and interfacial regions of ASO liposomes, which may restrict the OH diffusion in the membrane. The DSC enthalpy variation analysis suggested that the fatty acid promoted a disordering effect on lipid hydrophobic regions, which may facilitate interactions between the reactive specie and α-ESA. Turbidity results showed that α-ESA induces a global disordering effect on ASO liposomes, which may be attributed to a change in the lipid geometry and shape. Results of this study may allow a more complete view of α-ESA antioxidant mode of action against OH, considering its influence on the membrane dynamics.
Collapse
Affiliation(s)
- Robson Simplício de Sousa
- Research Group of Membrane Molecular Interactions, School of Chemical and Food Engineering, Post-graduation Program in Technological and Environmental Chemistry, Federal University of Rio Grande, Av. Itália, km 8, Campus Carreiros, Rio Grande-RS 96203-900, Brazil
| | | | | | | | | |
Collapse
|
40
|
Effect of AVE 0991 angiotensin-(1–7) receptor agonist treatment on elemental and biomolecular content and distribution in atherosclerotic plaques of apoE-knockout mice. Radiat Phys Chem Oxf Engl 1993 2013. [DOI: 10.1016/j.radphyschem.2013.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Ng KC, Chu LK. Effects of Surfactants on the Purple Membrane and Bacteriorhodopsin: Solubilization or Aggregation? J Phys Chem B 2013; 117:6241-9. [DOI: 10.1021/jp401254j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ka Chon Ng
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013,
Taiwan
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013,
Taiwan
| |
Collapse
|
42
|
|
43
|
Kumar S, Sahdev P, Perumal O, Tummala H. Identification of a Novel Skin Penetration Enhancement Peptide by Phage Display Peptide Library Screening. Mol Pharm 2012; 9:1320-30. [DOI: 10.1021/mp200594z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sunny Kumar
- Department of Pharmaceutical
Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota
57006, United States
| | - Preety Sahdev
- Department of Pharmaceutical
Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota
57006, United States
| | - Omathanu Perumal
- Department of Pharmaceutical
Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota
57006, United States
| | - Hemachand Tummala
- Department of Pharmaceutical
Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota
57006, United States
| |
Collapse
|
44
|
Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. Res Microbiol 2010; 161:168-75. [DOI: 10.1016/j.resmic.2009.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 10/27/2009] [Accepted: 12/21/2009] [Indexed: 11/17/2022]
|
45
|
Caseli L, Masui DC, Furriel RPM, Leone FA, Zaniquelli MED, Orbulescu J, Leblanc RM. Rat osseous plate alkaline phosphatase as Langmuir monolayer--an infrared study at the air-water interface. J Colloid Interface Sci 2008; 320:476-82. [PMID: 18280491 DOI: 10.1016/j.jcis.2008.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 01/25/2008] [Accepted: 01/26/2008] [Indexed: 11/16/2022]
Abstract
A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed.
Collapse
Affiliation(s)
- Luciano Caseli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil 14040-901.
| | | | | | | | | | | | | |
Collapse
|
46
|
Fourier transform infrared spectroscopy in the study of lipid phase transitions in model and biological membranes: practical considerations. Methods Mol Biol 2007; 400:207-26. [PMID: 17951736 DOI: 10.1007/978-1-59745-519-0_14] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a powerful, nonperturbing technique that has been used to good effect for the detection and characterization of lipid phase transitions in model and natural membranes. The technique is also quite versatile, covering a wide range of sophisticated applications, from which fairly detailed information about the structure and organization of membranes and other lipid assemblies can be obtained. In this chapter, an introduction to this particular application of FTIR spectroscopy is presented. Special emphasis is put on how the technique can be used to study lipid phase transitions under biologically relevant conditions. The chapter is intended to give an overview of the capabilities of FTIR spectroscopy in the field of lipid and biomembrane research, and provide the reader with some practical guidelines for the design and execution of simple FTIR spectroscopic experiments suitable for the detection and characterization of lipid phase transitions in hydrated lipid bilayers.
Collapse
|
47
|
Influence of metal ions on phosphatidylcholine–bovine serum albumin model membrane, an FTIR study. J Mol Struct 2006. [DOI: 10.1016/j.molstruc.2006.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Mrázková E, Hobza P, Bohl M, Gauger DR, Pohle W. Hydration-Induced Changes of Structure and Vibrational Frequencies of Methylphosphocholine Studied as a Model of Biomembrane Lipids. J Phys Chem B 2005; 109:15126-34. [PMID: 16852914 DOI: 10.1021/jp051208f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical characteristics of the polar parts of phospholipids as the main components of biological membranes were investigated by using infrared (IR) spectroscopy and theoretical calculations with water as a probe molecule. The logical key molecule used in this study is methylphosphocholine (MePC) as it is not only a representative model for a polar lipid headgroup but itself has biological significance. Isolated MePC forms a compact (folded) structure which is essentially stabilized by two intramolecular C-H...O type hydrogen bonds. At lower hydration, considerable wavenumber shifts were revealed by IR spectroscopy: the frequencies of the (O-P-O)- stretches were strongly redshifted, whereas methyl and methylene C-H and O-P-O stretches shifted surprisingly to blue. The origin of both red- and blueshifts was rationalized, on the basis of molecular-dynamics and quantum-chemistry calculations. In more detail, the hydration-induced blueshifts of C-H stretches could be shown to arise from several origins: disruption of the intramolecular C-H...O hydrogen bonds, formation of intermolecular C-H...O(water) H-bonds. The stepwise disruption of the intramolecular hydrogen bonds appeared to be the main feature that causes partial unfolding of the compact structure. However, the transition from a folded to extended MePC structure was completed only at high hydration. One might hypothesize that the mechanism of hydration-driven conformational changes as described here for MePC could be transferred to other zwitterions with relevant internal C-H...O hydrogen bonds.
Collapse
Affiliation(s)
- E Mrázková
- The Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nam. 2, 166 10 Praha 6, Czech Republic
| | | | | | | | | |
Collapse
|
49
|
Melin AM, Allery A, Perromat A, Bébéar C, Déléris G, de Barbeyrac B. Fourier transform infrared spectroscopy as a new tool for characterization of mollicutes. J Microbiol Methods 2004; 56:73-82. [PMID: 14706752 DOI: 10.1016/j.mimet.2003.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Fourier transform infrared (FT-IR) spectroscopy is a convenient physico-chemical technique to investigate various cell materials. Bacteria of class Mollicutes, identified by conventional methods, as Mycoplasma, Acholeplasma and Ureaplasma genera were characterized using this method. A data set of 74 independent experiments corresponding to fourteen reference strains of Mollicutes was examined by FT-IR spectroscopy to attempt a spectral characterization based on the biomolecular structures. In addition to the separation of Mollicutes within the lipidic region into five main clusters corresponding to the three phylogenetic groups tested, FT-IR spectroscopy allowed a fine discrimination between strains belonging to the same species by using selective spectral windows, particularly in the 1200-900 cm(-1) saccharide range. The results obtained by FT-IR were in good agreement with both taxonomic and phylogenetic classifications of tested strains. Thus, this technique appears to be a useful tool and an accurate mean for a rapid characterization of Mollicutes observed in humans.
Collapse
|
50
|
Lee DC, Herzyk E, Chapman D. Structure of bacteriorhodopsin investigated using Fourier transform infrared spectroscopy and proteolytic digestion. Biochemistry 2002. [DOI: 10.1021/bi00392a029] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|