1
|
Saita K, Sumitani M, Nishizawa D, Tamura T, Ikeda K, Wakai K, Sudo Y, Abe H, Otonari J, Ikezaki H, Takeuchi K, Hishida A, Tanaka K, Shimanoe C, Takezaki T, Ibusuki R, Oze I, Ito H, Ozaki E, Matsui D, Nakamura Y, Kusakabe M, Suzuki S, Nakagawa-Senda H, Arisawa K, Katsuura-Kamano S, Kuriki K, Kita Y, Nakamura Y, Momozawa Y, Uchida K. Genetic polymorphism of pleiotrophin is associated with pain experience in Japanese adults: Case-control study. Medicine (Baltimore) 2022; 101:e30580. [PMID: 36123890 PMCID: PMC9478341 DOI: 10.1097/md.0000000000030580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Genetic factors play a role in individual differences in pain experience. Here, we performed a genome-wide association study (GWAS) to identify novel loci regulating pain processing. We conducted a 2-stage GWAS and the candidate single-nucleotide polymorphisms (SNPs) association study on pain experience using an exploratory cohort of patients with cancer pain. The confirmatory cohort comprised of participants from the general population with and without habitual use of analgesic medication. In the exploratory cohort, we evaluated pain intensity using a numerical rating scale, recorded daily opioid dosages, and calculated pain reduction rate. In the confirmatory cohort, pain experience was defined as habitual nonsteroidal anti-inflammatory drug usage. Using linear regression models, we identified candidate SNP in the exploratory samples, and tested the association between phenotype and experienced pain in the confirmatory samples. We found 1 novel SNP (rs11764598)-located on the gene encoding for pleiotrophin on chromosome 7-that passed the genome-wide suggestive significance at 20% false discovery rate (FDR) correction in the exploratory samples of patients with cancer pain (P = 1.31 × 10-7, FDR = 0.101). We confirmed its significant association with daily analgesic usage in the confirmatory cohort (P = .028), although the minor allele affected pain experience in an opposite manner. We identified a novel genetic variant associated with pain experience. Further studies are required to validate the role of pleiotrophin in pain processing.
Collapse
Affiliation(s)
- Kosuke Saita
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
- *Correspondence: Masahiko Sumitani, Department of Pain and Palliative Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan (e-mail: )
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Yoshika Sudo
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroaki Abe
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Jun Otonari
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychosomatic Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Hiroaki Ikezaki
- Department of Comprehensive General Internal Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Rie Ibusuki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Etsuko Ozaki
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Miho Kusakabe
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroko Nakagawa-Senda
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yoshikuni Kita
- Faculty of Nursing Science, Tsuruga Nursing University, Tsuruga, Japan
| | - Yasuyuki Nakamura
- Department of Public Health, Shiga University of Medical Science, Otsu, Japan
- Takeda Hospital Medical Examination Center, Kyoto, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kanji Uchida
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Cui R, Lwigale P. Expression of the heparin-binding growth factors Midkine and pleiotrophin during ocular development. Gene Expr Patterns 2019; 32:28-37. [PMID: 30825522 DOI: 10.1016/j.gep.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Midkine (MDK) and Pleiotrophin (PTN) belong to a group of heparin-binding growth factors that has been shown to have pleiotropic functions in various biological processes during development and disease. Development of the vertebrate eye is a multistep process that involves coordinated interactions between neuronal and non-neuronal cells, but very little is known about the potential function of MDK and PTN in these processes. In this study, we demonstrate by section in situ hybridization, the spatiotemporal expression of MDK and PTN during ocular development in chick and mouse. We show that MDK and PTN are expressed in dynamic patterns that overlap in a few non-neuronal tissues in the anterior eye and in neuronal cell layers of the posterior eye. We show that the expression patterns of MDK and PTN are only conserved in a few tissues in chick and mouse but they overlap with the expression of some of their receptors LRP1, RPTPZ, ALK, NOTCH2, ITGβ1, SDC1, and SDC3. The dynamic expression patterns of MDK, PTN and their receptors suggest that they function together during the multistep process of ocular development and they may play important roles in cell proliferation, adhesion, and migration of neuronal and non-neuronal cells.
Collapse
Affiliation(s)
- Ruda Cui
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Peter Lwigale
- Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
3
|
Anggayasti WL, Mancera RL, Bottomley S, Helmerhorst E. The self-association of HMGB1 and its possible role in the binding to DNA and cell membrane receptors. FEBS Lett 2017; 591:282-294. [PMID: 28027393 DOI: 10.1002/1873-3468.12545] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/04/2016] [Accepted: 12/22/2016] [Indexed: 01/09/2023]
Abstract
High mobility group box 1 (HMGB1), a chromatin protein, interacts with DNA and controls gene expression. However, when HMGB1 is released from apoptotic or damaged cells, it triggers proinflammatory reactions by interacting with various receptors, mainly receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs). The self-association of HMGB1 has been found to be crucial for its DNA-related biological functions. It is influenced by several factors, such as ionic strength, pH, specific divalent metal cations, redox environment and acetylation. This self-association may also play a role in the interaction with RAGE and TLRs and the concomitant inflammatory responses. Future studies should address the potential role of HMGB1 self-association on its interactions with DNA, RAGE and TLRs, as well as the influence of physicochemical factors in different cellular environments on these interactions.
Collapse
Affiliation(s)
- Wresti L Anggayasti
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Ricardo L Mancera
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Steve Bottomley
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Erik Helmerhorst
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| |
Collapse
|
4
|
Matsui H, Kimura A, Yamashiki N, Moriyama A, Kaya M, Yoshida I, Takagi N, Takahashi T. Molecular and biochemical characterization of a serine proteinase predominantly expressed in the medulla oblongata and cerebellar white matter of mouse brain. J Biol Chem 2000; 275:11050-7. [PMID: 10753908 DOI: 10.1074/jbc.275.15.11050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A full-length cDNA clone of a serine proteinase, mouse brain serine proteinase (mBSP), was isolated from a mouse brain cDNA library. mBSP, which has been recently reported to be expressed in the hair follicles of nude mice, is most similar (88% identical) in sequence to rat myelencephalon-specific protease. The mBSP mRNA was steadily expressed in the brain of adult mice with a transient expression in the early fetal stage during development. The genomic structure of the mouse gene for mBSP was determined. The gene, which is mapped to chromosome 7B4-B5, is about 7.4 kilobases in size and contains 7 exons. Interestingly, the 5'-untranslated region of the mBSP gene was interrupted by two introns. In situ hybridization analyses revealed that mBSP is expressed in the white matter of the cerebellum, medulla oblongata, and capsula interna and capsula interna pars retrolenticularis of mouse brain. Further, mBSP was immunolocalized to the neuroglial cells in the white matter of the cerebellum. Recombinant mBSP was produced in the bacterial expression system and activated by lysyl endopeptidase digestion, and the activated enzyme was purified for characterization. The enzyme showed amidolytic activities preferentially cleaving Arg-X bonds when 4-methylcoumaryl-7-amide-containing peptide substrates were used. Typical serine proteinase inhibitors, such as diisopropyl fluorophosphates, phenylmethanesulfonyl fluoride, soybean trypsin inhibitor, aprotinin, leupeptin, antipain, and benzamidine, strongly inhibited the enzyme activity. The recombinant mBSP effectively hydrolyzed fibronectin and gelatin, but not laminin, collagens I and IV, or elastin. These results suggest that mBSP plays an important role in association with the function of the adult mouse brain.
Collapse
Affiliation(s)
- H Matsui
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Russell JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis 1999; 6:347-63. [PMID: 10527803 DOI: 10.1006/nbdi.1999.0254] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent clinical trials indicate that the severity of diabetic neuropathy is correlated with the level of patient glycemic control. In the current study, hyperglycemia induces apoptotic changes in dorsal root ganglion neurons and Schwann cells in vivo both in streptozotocin-treated diabetic rats and in rats made acutely hyperglycemic with infused glucose. Typical apoptotic nuclear and cytoplasmic changes are observed. In addition mitochondrial changes recently reported to occur as part of the apoptotic cascade, such as ballooning of mitochondria and disruption of the internal cristae, are seen in diabetic dorsal root ganglion neurons and Schwann cells. Similar changes have been reported in neurons in the presence of oxidative stress. In order to study the neurotoxic effects of high glucose we developed an in vitro model using rat dorsal root ganglion neurons. In dorsal root ganglion cultured in defined medium, addition of moderate glucose levels results in neurite degeneration and apoptosis. These changes are coupled with activation of caspase-3, dependent on the concentration of glucose. The apoptotic changes observed in vitro are similar to those observed in vivo. In contrast, addition of IGF-I, even at physiological concentrations, prevents activation of caspase-3 and neuronal apoptosis in vitro. We suggest that oxidative stress may promote the mitochondrial changes in diabetic animals and lead to activation of programmed cell death caspase pathways. These results imply a new pathogenetic mechanism for diabetic sensory neuropathy.
Collapse
Affiliation(s)
- J W Russell
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | | | | | | |
Collapse
|
6
|
Mochizuki R, Takeda A, Sato N, Kimpara T, Onodera H, Itoyama Y, Muramatsu T. Induction of midkine expression in reactive astrocytes following rat transient forebrain ischemia. Exp Neurol 1998; 149:73-8. [PMID: 9454616 DOI: 10.1006/exnr.1997.6687] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Midkine (MK), a retinoic acid-responsive gene product, is a 13-kDa heparin-binding protein with neurotropic activity. Previous studies demonstrated the expression of MK in embryonal and neonatal brains and its potent neurotropic activities in vitro. Data concerning its role in the mature central nervous system, however, are still limited. We examined the changes of MK expression in the adult rat brain following transient forebrain ischemia, by Northern blot, in situ hybridization and immunohistochemical analyses. In the control brain, MK mRNA was expressed in the cortical and hippocampal neurons. Following the ischemia, up-regulation of MK mRNA and a corresponding increase of its protein products were found in the hippocampal CA1 subfield. The maximal expression was demonstrated on day 4 after the insult. The cells expressing MK were distributed around the depleted CA1 pyramidal cells and identified as reactive astrocytes by double immunostaining. These data suggest that MK may be an insult-induced molecule which participates in the reparative processes following neuronal injury.
Collapse
Affiliation(s)
- R Mochizuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Corbley MJ. Transformation by ras suppresses expression of the neurotrophic growth factor pleiotrophin. J Biol Chem 1997; 272:24696-702. [PMID: 9305941 DOI: 10.1074/jbc.272.39.24696] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
An 18-kDa protein (p18) was detected in lysates and conditioned medium from contact-arrested NIH 3T3 fibroblasts, but was not detected when the cells were transformed by the oncogene ras. Analysis of transformation-defective cell clones generated after mutagenesis of the ras-retroviral vector used to transduce the ras gene showed an inverse correlation between p18 expression and the degree of transformation. p18 expression was high in non-transformed clones, intermediate in a partially transformed clone, undetectable in fully transformed clones, and detectable only at the non-permissive temperature in a clone which was cold-sensitive for ras transformation. In non-transformed cells, p18 expression varied with the degree of confluence. It was almost undetectable in medium from sparse, proliferating cells, but increased as the cells approached confluence and peaked 2-4 days after confluence. Microsequencing of partially purified p18 identified it as the developmentally regulated neurotrophic factor pleiotrophin. In further experiments, pleiotrophin was undetectable or almost undetectable in medium from fully transformed cells expressing the oncogenes v-src, truncated c-raf, activated c-fms, or polyomavirus middle tumor antigen; it was low but easily detectable in medium from SV40 large tumor antigen-expressing cells, which form soft agar colonies but not foci. Thus, pleiotrophin expression in NIH 3T3 cells is associated with quiescence, and suppression of pleiotrophin is related to oncogenic transformation.
Collapse
Affiliation(s)
- M J Corbley
- Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| |
Collapse
|
8
|
Chisamore B, Solc M, Dow K. Excitatory amino acid regulation of astrocyte proteoglycans. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 97:22-8. [PMID: 8946051 DOI: 10.1016/s0165-3806(96)00129-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Activity-dependent enduring change in cellular communication is essential for specific connectivity during development of the nervous system and for adaptive responses of the mature nervous system. Here we report that glutamate activation of excitatory amino acid receptors induces the synthesis and release of proteoglycans (PGs) from fetal hippocampal-astrocytes in dissociated culture. PG synthesis and release are mediated via kainate and metabotropic receptor activation. Glutamate exposure did not regulate the release of a specific family of PG, but glutamate inhibited the synthesis of heparan sulfate (HS) PGs that appeared within the extracellular environment of the astrocyte. Particulate protein kinase C (PKC) activity was increased by glutamate and the PKC activator phorbol 10-myristate 13-acetate produced a dose-dependent increase in PG release. However, glutamate-induced PG release was not blocked by inhibition of PKC activity. These data suggest that PKC activation can lead to PG release, but is not necessary for it. Activity-dependent influences on a class of substrate-bound molecular species with growth-modulatory properties may be involved in spatial regulation of neuronal growth responses produced by excitatory amino acids.
Collapse
Affiliation(s)
- B Chisamore
- Department of Pediatrics, Kingston General Hospital, Queen's University, Canada
| | | | | |
Collapse
|
9
|
Stichel CC, Kappler J, Junghans U, Koops A, Kresse H, Müller HW. Differential expression of the small chondroitin/dermatan sulfate proteoglycans decorin and biglycan after injury of the adult rat brain. Brain Res 1995; 704:263-74. [PMID: 8788923 DOI: 10.1016/0006-8993(95)01131-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chondroitin sulfate proteoglycans are widespread extracellular matrix proteins and are specifically upregulated after CNS injury at the lesion site. Many proteoglycan core proteins have been described in the rat brain, but detailed analysis of individual proteoglycans expressed after injury are missing. The present study represents an initial attempt to assess the diversity and timing of lesion-induced expression of proteoglycans in order to elucidate their functional role in CNS injury and repair. Using immunocytochemical methods we analysed the expression of decorin and biglycan in the transected postcommissural fornix of the adult rat. Transection of the fornix induced the upregulation of both decorin and biglycan. However, their expression differed with respect to time course, regional extent and cellular localization. The rapid upregulation of decorin within a wide area around the lesion was followed by a massive appearance of biglycan that remained restricted to the transection site. Three months after lesion, differences of the area size of decorin- and biglycan-immunoreactivities were no longer detectable. Both proteoglycans were restricted to the lesion site and the fornix stumps. While decorin was primarily expressed by astrocytes, biglycan was deposited extracellularly in sheet-like structures. The upregulation of both proteoglycans persisted for at least up to 6 months after lesion. These strong but divergent lesion-induced expression patterns indicate important but different roles of decorin and biglycan in CNS injury.
Collapse
Affiliation(s)
- C C Stichel
- Department of Neurology, University of Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Villegas GM, Haustein AT, Villegas R. Neuronal differentiation of PC12 and chick embryo ganglion cells induced by a sciatic nerve conditioned medium: characterization of the neurotrophic activity. Brain Res 1995; 685:77-90. [PMID: 7583256 DOI: 10.1016/0006-8993(95)00412-j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present work deals with the finding and characterization of a neurotrophic factor present in serum-free Dulbecco's modified Eagle's medium in which rat sciatic nerves previously cultured for 9 days were maintained for 24 h. This sciatic nerve conditioned medium (SNCM) produced neuronal differentiation and neurite outgrowth on PC12 cells, as well as survival and differentiation of eight-day old chick embryo dorsal root ganglion (E8-DRG) and ciliary ganglion (E8-CG) neurons. SNCM activity was decreased by dilution, heating and trypsin treatment; it was not inhibited by anti-NGF and anti-bFGF antibodies; and it was not mimicked by CNTF, laminin and fibronectin. By utilizing its neurite-promoting activity on PC12 cells, experiments oriented to purify the factor were carried out. Ultrafiltration, heparin-affinity chromatography and size-exclusion high pressure liquid chromatography (HPLC) were employed. The ability of SNCM to induce PC12 cell, E8-DRG and E8-CG neuronal differentiation, the heparin affinity of the active SNCM protein, and the size-exclusion HPLC elution characteristics of the active protein suggest that the active component of the SNCM is, in all probability, a novel sciatic nerve neurotrophic factor (SNTF).
Collapse
Affiliation(s)
- G M Villegas
- Instituto Internacional de Estudios Avanzados (IDEA), Apartado, Caracas, Venezuela
| | | | | |
Collapse
|
11
|
Geisert EE, Bidanset DJ. A central nervous system keratan sulfate proteoglycan: localization to boundaries in the neonatal rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 75:163-73. [PMID: 8261609 DOI: 10.1016/0165-3806(93)90020-b] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the development of the central nervous system (CNS), adhesive molecules promote the formation of axonal pathways and appropriate neuronal connections by facilitating cellular interactions. In addition to the interactions that bring neurons together, recent evidence suggests inhibition of neuronal interactions also plays a role by restricting axons to their appropriate pathways and forming boundaries between functional units of the developing CNS. The present study describes the distribution of a recently identified large keratan sulfate proteoglycan, ABAKAN, in the postnatal day 14 (P14) and adult rat brain. In the adult brain ABAKAN appears to be relatively evenly distributed throughout the CNS, while at P14 this proteoglycan is found at high concentrations between different functional units of the neonatal brain. For example, ABAKAN appears to separate different cortical areas and mark the boundaries between thalamic nuclei. In vitro assays demonstrate that this keratan sulfate proteoglycan is a potent inhibitor of neurite growth. The distribution of ABAKAN at P14 and the effects of this keratan sulfate proteoglycan on neurite growth suggest that ABAKAN functions as a molecular barrier to axonal growth in the developing rat brain.
Collapse
Affiliation(s)
- E E Geisert
- Department of Cell Biology, University of Alabama at Birmingham 35394-0019
| | | |
Collapse
|
12
|
Dow KE, Guo M, Kisilevsky R, Riopelle RJ. Regenerative neurite growth modulation associated with astrocyte proteoglycans. Brain Res Bull 1993; 30:461-7. [PMID: 8457895 DOI: 10.1016/0361-9230(93)90279-k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Adherent GFAP-positive cells of neocortical origin in vitro produce and release members of three families of sulphated proteoglycans and a sulphated protein that copurifies with heparan sulphate proteoglycan (HSPG). Conditioned medium (CM) and the proteoglycans contained in the CM have neurite growth-promoting activity when immobilized on defined substrates of growth but not when in the nonimmobilized compartment. On a poly-D-lysine substrate, the rank ordering of specific neurite growth activity based on protein concentration was 330 kDa HSPG >> 100 kDa HSPG/chondroitin sulphate (CS) PG mixture or hybrid > 330 kDa CSPG > 50 kDa CSPG/dermatan sulphate (DS) PG mixture or hybrid and the 31 kDa sulphoprotein. Astrocyte CM lost its growth facilitatory activity when prepared and released by astrocytes in the presence of soluble mediators of inflammation. Loss of activity could not be explained by qualitative or quantitative alterations of released proteoglycans but appeared to be associated with the presence of an inhibitor. The sulphoprotein that copurified with HSPG was a potent inhibitor of HSPG-mediated neurite growth.
Collapse
Affiliation(s)
- K E Dow
- Department of Pediatrics, Queen's University, Kingston, Canada
| | | | | | | |
Collapse
|
13
|
Carri NG, Rubin K, Gullberg D, Ebendal T. Neuritogenesis on collagen substrates. Involvement of integrin-like matrix receptors in retinal fibre outgrowth on collagen. Int J Dev Neurosci 1992; 10:393-405. [PMID: 1492591 DOI: 10.1016/0736-5748(92)90029-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extracellular matrix molecules such as laminin, fibronectin and collagen promote neurite outgrowth in vitro. We have investigated the capacity of hydrated gels of collagen types I-III and monomeric collagen types I-VI on plastic surfaces to support neuritogenesis. The attachment and survival of explants from the day 6 chick embryo were studied and neurite outgrowth measured as mean elongation rate and maximal neurite length. Collagen types I and III, both as three-dimensional gels or as native monomers supported neuritogenesis equal to or better than laminin. Collagen type V also supported neurite out-growth although less effectively. Collagen types II, IV and VI, as well as denatured collagens of all types tested, did not support outgrowth. The monoclonal anti-beta 1 integrin antibody (CSAT), as well as rabbit polyclonal antibodies directed to the integrin beta 1-chain, effectively inhibited neurite outgrowth on permissive collagenous substrata, indicating that collagen-binding integrins were involved in the neuritogenesis. These beta 1-integrins were independent of Arg-Gly-Asp (RGD) since neurite formation proceeded in the presence of synthetic RGD-containing peptides. Fluorescence immunohistochemistry revealed the presence of the integrin beta 1-chain on the outgrowing neurites. The results suggest a possible function of collagen and collagen-binding integrins in the development of the visual system.
Collapse
Affiliation(s)
- N G Carri
- Department of Developmental Biology, Uppsala University, Sweden
| | | | | | | |
Collapse
|
14
|
Salmivirta M, Rauvala H, Elenius K, Jalkanen M. Neurite growth-promoting protein (amphoterin, p30) binds syndecan. Exp Cell Res 1992; 200:444-51. [PMID: 1369684 DOI: 10.1016/0014-4827(92)90194-d] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A new ligand for syndecan (a cell surface heparan sulfate-rich proteoglycan) has been discovered. In the solid-phase binding assay utilizing small nitrocellulose discs to immobilize matrix molecules, binding of syndecan to neurite growth-promoting protein, p30/amphoterin, was observed. This binding was strongly dependent on the concentration of amphoterin used to coat the discs, but was saturable with an excess amount of syndecan. The interaction was inhibitable with heparan sulfate and heparin but less effectively with chondroitin sulfate, indicating that heparan sulfate chains of syndecan were involved in the binding. Anti-amphoterin antibodies inhibited the binding partially. Mouse mammary epithelial cells were shown to bind amphoterin directly but not after trypsin treatment or in the presence of heparin and to produce amphoterin in the extracellular space. Both syndecan and amphoterin were found to localize on lateral surfaces of newly adhered mammary epithelial cells. Toward confluency amphoterin amounts decreased. Because amphoterin can be localized to the same sites with syndecan and because of their interaction, amphoterin is a new putative pericellular ligand for syndecan. These interactions may be involved in the regulation of cell behavior.
Collapse
Affiliation(s)
- M Salmivirta
- Department of Medical Biochemistry, University of Turku, Finland
| | | | | | | |
Collapse
|