1
|
Schenone A, Massucco S, Schenone C, Venturi CB, Nozza P, Prada V, Pomili T, Di Patrizi I, Capodivento G, Nobbio L, Grandis M. Basic Pathological Mechanisms in Peripheral Nerve Diseases. Int J Mol Sci 2025; 26:3377. [PMID: 40244242 PMCID: PMC11989557 DOI: 10.3390/ijms26073377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Pathological changes and the cellular and molecular mechanisms underlying axonopathy and myelinopathy are key to understanding a wide range of inherited and acquired peripheral nerve disorders. While the clinical indications for nerve biopsy have diminished over time, its diagnostic value remains significant in select conditions, offering a unique window into the pathophysiological processes of peripheral neuropathies. Evidence highlights the symbiotic relationship between axons and myelinating Schwann cells, wherein disruptions in axo-glial interactions contribute to neuropathogenesis. This review synthesizes recent insights into the pathological and molecular underpinnings of axonopathy and myelinopathy. Axonopathy encompasses Wallerian degeneration, axonal atrophy, and dystrophy. Although extensively studied in traumatic nerve injury, the mechanisms of axonal degeneration and Schwann cell-mediated repair are increasingly recognized as pivotal in non-traumatic disorders, including dying-back neuropathies. We briefly outline key transcription factors, signaling pathways, and epigenetic changes driving axonal regeneration. For myelinopathy, we discuss primary segmental demyelination and dysmyelination, characterized by defective myelin development. We describe paranodal demyelination in light of recent findings in nodopathies, emphasizing that it is not an exclusive indicator of demyelinating disorders. This comprehensive review provides a framework to enhance our understanding of peripheral nerve pathology and its implications for developing targeted therapies.
Collapse
Affiliation(s)
- Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Sara Massucco
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
| | - Cristina Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
| | - Consuelo Barbara Venturi
- IRCCS Ospedale Policlinico San Martino, UO Patologia, Largo R. Benzi 10, 16132 Genova, Italy; (C.B.V.); (P.N.)
| | - Paolo Nozza
- IRCCS Ospedale Policlinico San Martino, UO Patologia, Largo R. Benzi 10, 16132 Genova, Italy; (C.B.V.); (P.N.)
| | - Valeria Prada
- Italian Multiple Sclerosis Foundation (FISM), Scientific Research Area, Via Operai 40, 16149 Genoa, Italy;
| | - Tania Pomili
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Irene Di Patrizi
- IRCCS Ospedale Policlinico San Martino, UO Radiologia, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Giovanna Capodivento
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Lucilla Nobbio
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| |
Collapse
|
2
|
Bekku Y, Zotter B, You C, Piehler J, Leonard WJ, Salzer JL. Glia trigger endocytic clearance of axonal proteins to promote rodent myelination. Dev Cell 2024; 59:627-644.e10. [PMID: 38309265 PMCID: PMC11089820 DOI: 10.1016/j.devcel.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/09/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Axons undergo striking changes in their content and distribution of cell adhesion molecules (CAMs) and ion channels during myelination that underlies the switch from continuous to saltatory conduction. These changes include the removal of a large cohort of uniformly distributed CAMs that mediate initial axon-Schwann cell interactions and their replacement by a subset of CAMs that mediate domain-specific interactions of myelinated fibers. Here, using rodent models, we examine the mechanisms and significance of this removal of axonal CAMs. We show that Schwann cells just prior to myelination locally activate clathrin-mediated endocytosis (CME) in axons, thereby driving clearance of a broad array of axonal CAMs. CAMs engineered to resist endocytosis are persistently expressed along the axon and delay both PNS and CNS myelination. Thus, glia non-autonomously activate CME in axons to downregulate axonal CAMs and presumptively axo-glial adhesion. This promotes the transition from ensheathment to myelination while simultaneously sculpting the formation of axonal domains.
Collapse
Affiliation(s)
- Yoko Bekku
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Brendan Zotter
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Changjiang You
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - James L Salzer
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
3
|
Tagandurdyyeva NA, Trube MA, Shemyakin IO, Solomitskiy DN, Medvedev GV, Dresvyanina EN, Nashchekina YA, Ivan’kova EM, Dobrovol’skaya IP, Kamalov AM, Sukhorukova EG, Moskalyuk OA, Yudin VE. Properties of Resorbable Conduits Based on Poly(L-Lactide) Nanofibers and Chitosan Fibers for Peripheral Nerve Regeneration. Polymers (Basel) 2023; 15:3323. [PMID: 37571217 PMCID: PMC10422266 DOI: 10.3390/polym15153323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
New tubular conduits have been developed for the regeneration of peripheral nerves and the repair of defects that are larger than 3 cm. The conduits consist of a combination of poly(L-lactide) nanofibers and chitosan composite fibers with chitin nanofibrils. In vitro studies were conducted to assess the biocompatibility of the conduits using human embryonic bone marrow stromal cells (FetMSCs). The studies revealed good adhesion and differentiation of the cells on the conduits just one day after cultivation. Furthermore, an in vivo study was carried out to evaluate motor-coordination disorders using the sciatic nerve functional index (SFI) assessment. The presence of chitosan monofibers and chitosan composite fibers with chitin nanofibrils in the conduit design increased the regeneration rate of the sciatic nerve, with an SFI value ranging from 76 to 83. The degree of recovery of nerve conduction was measured by the amplitude of M-response, which showed a 46% improvement. The conduit design imitates the oriented architecture of the nerve, facilitates electrical communication between the damaged nerve's ends, and promotes the direction of nerve growth, thereby increasing the regeneration rate.
Collapse
Affiliation(s)
- Nurjemal A. Tagandurdyyeva
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytekhnicheskaya Str., 29, Saint Petersburg 195251, Russia;
| | - Maxim A. Trube
- Institute of Medicine, RUDN University, Miklukho-Maklaya Str., 6, Moscow 117198, Russia;
| | - Igor’ O. Shemyakin
- Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, L’va Tolstogo Str., 6-8, Saint Petersburg 197022, Russia; (I.O.S.); (D.N.S.); (E.G.S.)
| | - Denis N. Solomitskiy
- Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, L’va Tolstogo Str., 6-8, Saint Petersburg 197022, Russia; (I.O.S.); (D.N.S.); (E.G.S.)
| | - German V. Medvedev
- Medsi Clinic, Department of Plastic Surgery, Marata Str., 6A, Saint Petersburg 191025, Russia;
| | - Elena N. Dresvyanina
- Institute of Textile and Fashion, Saint Petersburg State University of Industrial Technologies and Design, B. Morskaya Str., 18, Saint Petersburg 191186, Russia;
| | - Yulia A. Nashchekina
- Cell Technologies Center, Institute of Cytology Russian Academy of Sciences, Tikhoretsky Ave., 4, Saint Petersburg 194064, Russia;
| | - Elena M. Ivan’kova
- Laboratory of Mechanics of Polymers and Composites, Institute of Macromolecular Compounds Russian Academy of Science, Bol’shoi Prospect V.O. 31, Saint Petersburg 199004, Russia; (E.M.I.); (I.P.D.); (V.E.Y.)
| | - Irina P. Dobrovol’skaya
- Laboratory of Mechanics of Polymers and Composites, Institute of Macromolecular Compounds Russian Academy of Science, Bol’shoi Prospect V.O. 31, Saint Petersburg 199004, Russia; (E.M.I.); (I.P.D.); (V.E.Y.)
| | - Almaz M. Kamalov
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytekhnicheskaya Str., 29, Saint Petersburg 195251, Russia;
| | - Elena G. Sukhorukova
- Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, L’va Tolstogo Str., 6-8, Saint Petersburg 197022, Russia; (I.O.S.); (D.N.S.); (E.G.S.)
| | - Olga A. Moskalyuk
- Laboratory of Polymer and Composite Materials–SmartTextiles, IRC–X-ray Coherent Optics, Immanuel Kant Baltic Federal University, A. Nevskogo Str., 14, Kaliningrad 236041, Russia
| | - Vladimir E. Yudin
- Laboratory of Mechanics of Polymers and Composites, Institute of Macromolecular Compounds Russian Academy of Science, Bol’shoi Prospect V.O. 31, Saint Petersburg 199004, Russia; (E.M.I.); (I.P.D.); (V.E.Y.)
| |
Collapse
|
4
|
Dresvyanina EN, Tagandurdyyeva NA, Kodolova-Chukhontseva VV, Dobrovol'skaya IP, Kamalov AM, Nashchekina YA, Nashchekin AV, Ivanov AG, Yukina GY, Yudin VE. Structure and Properties of Composite Fibers Based on Chitosan and Single-Walled Carbon Nanotubes for Peripheral Nerve Regeneration. Polymers (Basel) 2023; 15:2860. [PMID: 37447506 DOI: 10.3390/polym15132860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study focused on a potential application of electrically conductive, biocompatible, bioresorbable fibers for tubular conduits aimed at the regeneration of peripheral nerves. The conducting, mechanical, and biological properties of composite fibers based on chitosan and single-walled carbon nanotubes were investigated in this paper. It was shown that introducing 0.5 wt.% of SWCNT into the composite fibers facilitated the formation of a denser fiber structure, resulting in improved strength (σ = 260 MPa) and elastic (E = 14 GPa) characteristics. Additionally, the composite fibers were found to be biocompatible and did not cause significant inflammation or deformation during in vivo studies. A thin layer of connective tissue formed around the fiber.
Collapse
Affiliation(s)
- Elena N Dresvyanina
- Institute of Textile and Fashion, Saint Petersburg State University of Industrial Technologies and Design, B. Morskaya Str., 18, Saint Petersburg 191186, Russia
| | - Nurjemal A Tagandurdyyeva
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya Str., 29, Saint Petersburg 195251, Russia
| | - Vera V Kodolova-Chukhontseva
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya Str., 29, Saint Petersburg 195251, Russia
- Institute of Macromolecular Compounds of Russian Academy of Sciences, VO Bolshoy pr., 31, Saint Petersburg 199004, Russia
| | - Irina P Dobrovol'skaya
- Institute of Macromolecular Compounds of Russian Academy of Sciences, VO Bolshoy pr., 31, Saint Petersburg 199004, Russia
| | - Almaz M Kamalov
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya Str., 29, Saint Petersburg 195251, Russia
| | - Yulia A Nashchekina
- Institute of Cytology Russian Academy of Sciences, Tikhoretsky Ave., 4, Saint Petersburg 194064, Russia
| | - Alexey V Nashchekin
- Ioffe Institute, Polytekhnicheskaya Str., 26, Saint Petersburg 194021, Russia
| | - Alexey G Ivanov
- Institute of Macromolecular Compounds of Russian Academy of Sciences, VO Bolshoy pr., 31, Saint Petersburg 199004, Russia
| | - Galina Yu Yukina
- Pavlov First Saint Petersburg State Medical University, L'va Tolstogo Str. 6-8, Saint Petersburg 197022, Russia
| | - Vladimir E Yudin
- Institute of Macromolecular Compounds of Russian Academy of Sciences, VO Bolshoy pr., 31, Saint Petersburg 199004, Russia
| |
Collapse
|
5
|
Hu S, Guo W, Shen Y. Potential link between the nerve injury-induced protein (Ninjurin) and the pathogenesis of endometriosis. Int Immunopharmacol 2023; 114:109452. [PMID: 36446236 DOI: 10.1016/j.intimp.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
Endometriosis remains a widespread but severe gynecological disease in women of reproductive age, with an unknown etiology and few treatment choices. The menstrual reflux theory is largely accepted as the underlying etiology but does not explain the morbidity or unpleasant pain sensations of endometriosis. The neurological and immune systems are both involved in pain mechanisms of endometriosis, and interlinked through a complex combination of cytokines and neurotransmitters. Numerous pieces of evidence suggest that the nerve injury-inducible protein, Ninjurin, is actively expressed in endometriosis lesions, which contributes to the etiology and development of endometriosis. It may be explored in the future as a novel therapeutic target. The aim of the present review was to elucidate the multifaceted role of Ninjurin. Furthermore, we summarize the association of Ninjurin with the pain mechanism of endometriosis and outline the future research directions. A novel therapeutic pathway can be discovered based on the potential pathogenic variables.
Collapse
Affiliation(s)
- Sijian Hu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weina Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Huang C, Li Z, Qu W, Guo W. Astaxanthin-folic acid combined treatment potentiates neuronal regeneration and functional recovery after brachial plexus avulsion and reimplantation. Front Neurosci 2022; 16:923750. [PMID: 36300168 PMCID: PMC9589430 DOI: 10.3389/fnins.2022.923750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Brachial plexus avulsion (BPA), which commonly occurs in neonatal birth injuries and car accidents, severely disrupts spinal cord segments and nerve roots. Avulsion is usually located in the transitional zone at the junction of spinal nerve roots and starting point of the spinal cord, which places heavy disability burdens on patients due to sensory and motor function loss in the innervated areas. Primary mechanical injuries and secondary pathogenesis, such as inflammatory infiltration and oxidative stress, lead to inefficient management and poor prognosis. Astaxanthin (AST) has a strong ability to bleach singlet oxygen and capture free radicals, quench singlet oxygen and trap free radicals, and folic acid (FC) can effectively inhibit the inflammatory response. This study aimed to investigate the therapeutic effects of AST and FC on BPA. The 24 h after BPA was considered the acute phase of the injury, and the combination of AST and FC had the best therapeutic effect due to the synergistic effect of AST’s antioxidant and FC’s anti-inflammatory properties. At 6 weeks after BPA, AST-FC promoted the recovery of biceps motor functions, increased myofiber diameter, enlarged the amplitude of musculocutaneous nerve-biceps compound action potential, and improved Terzis grooming test (TGT) scores. Meanwhile, more functional ventral horn motor neurons in the spinal cord were maintained. In conclusion, AST-FC combined therapy has a potential role in the clinical management of BPA since it can effectively alleviate oxidative stress and the inflammatory response in the acute phase of BPA, increase the survival rate of neurons, and promote neuronal regeneration and recovery of motor functions in the late stage of BPA.
Collapse
|
7
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
8
|
Woeppel KM, Cui XT. Nanoparticle and Biomolecule Surface Modification Synergistically Increases Neural Electrode Recording Yield and Minimizes Inflammatory Host Response. Adv Healthc Mater 2021; 10:e2002150. [PMID: 34190425 DOI: 10.1002/adhm.202002150] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
Due to their ability to interface with neural tissues, neural electrodes are the key tool used for neurophysiological studies, electrochemical detection, brain computer interfacing, and countless neuromodulation therapies and diagnostic procedures. However, the long-term applications of neural electrodes are limited by the inflammatory host tissue response, decreasing detectable electrical signals, and insulating the device from the native environment. Surface modification methods are proposed to limit these detrimental responses but each has their own limitations. Here, a combinatorial approach is presented toward creating a stable interface between the electrode and host tissues. First, a thiolated nanoparticle (TNP) coating is utilized to increase the surface area and roughness. Next, the neural adhesion molecule L1 is immobilized to the nanoparticle modified substrate. In vitro, the combined nanotopographical and bioactive modifications (TNP+L1) elevate the bioactivity of L1, which is maintained for 28 d. In vivo, TNP+L1 modification improves the recording performance of the neural electrode arrays compared to TNP or L1 modification alone. Postmortem histology reveals greater neural cell density around the TNP+L1 coating while eliminating any inflammatory microglial encapsulation after 4 weeks. These results demonstrate that nanotopographical and bioactive modifications synergistically produce a seamless neural tissue interface for chronic neural implants.
Collapse
Affiliation(s)
- Kevin M. Woeppel
- Department of Bioengineering University of Pittsburgh Pittsburgh PA 15260 USA
- Center for the Neural basis of Cognition Pittsburgh PA 15260 USA
| | - Xinyan Tracy Cui
- Department of Bioengineering University of Pittsburgh Pittsburgh PA 15260 USA
- Center for the Neural basis of Cognition Pittsburgh PA 15260 USA
- McGowan Institute for Regenerative Medicine Pittsburgh PA 15260 USA
| |
Collapse
|
9
|
Gordon T, Fu SY. Peripheral nerves preferentially regenerate in intramuscular endoneurial tubes to reinnervate denervated skeletal muscles. Exp Neurol 2021; 341:113717. [PMID: 33839142 DOI: 10.1016/j.expneurol.2021.113717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/31/2022]
Abstract
Schwann cells are essential for peripheral nerve regeneration but, over short distances in acellular nerve grafts, extracellular matrix (ECM) molecules can support growth. The ECM molecules are present also on denervated muscle surfaces where they can support nerve growth. In this study, we addressed the efficacy of the ECM molecules of denervated muscle to support nerve fiber regeneration and muscle reinnervation. In the hindlimb of Sprague-Dawley rats, the proximal stump of the transected posterior tibial nerve, was cross-sutured to the distal nerve stump (NN) of each of three denervated muscles, tibialis anterior, extensor digitorum longus, and soleus, or implanted onto the denervated muscles' surfaces (N-M), proximal or distal to the endplate zone. Recordings of muscle and motor unit (MU) isometric forces and silver/cholinesterase histochemical staining of longitudinal muscle cryosections were used to determine the numbers of reinnervated MUs and the spatial course of regenerating nerve fibers, respectively. MU numbers declined significantly after N-M (>50%) as compared to those after NN. Muscle forces were reduced despite each nerve reinnervating up to three times the normal MU muscle fiber number. Regenerating nerves 'streamed' from the N-M site either proximal or distal to endplate zones toward the denervated intramuscular endoneurial tubes, with reduced numbers reinnervating endplates. We conclude that there is preferential reinnervation through the endoneurial tube and that it is important to drive implanted nerve fibers to enter endoneurial tubes for optimal muscle reinnervation. Schwann cells play the essential role in guiding regenerating nerve fibers to reinnervate denervated muscle fibers.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| | - Susan Y Fu
- Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
10
|
Bijelić D, Adžić M, Perić M, Jakovčevski I, Förster E, Schachner M, Andjus PR. Different Functions of Recombinantly Expressed Domains of Tenascin-C in Glial Scar Formation. Front Immunol 2021; 11:624612. [PMID: 33679718 PMCID: PMC7934619 DOI: 10.3389/fimmu.2020.624612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix glycoprotein tenascin-C (TnC) is highly expressed in vertebrates during embryonic development and thereafter transiently in tissue niches undergoing extensive remodeling during regeneration after injury. TnC's different functions can be attributed to its multimodular structure represented by distinct domains and alternatively spliced isoforms. Upon central nervous system injury, TnC is upregulated and secreted into the extracellular matrix mainly by astrocytes. The goal of the present study was to elucidate the role of different TnC domains in events that take place after spinal cord injury (SCI). Astrocyte cultures prepared from TnC-deficient (TnC-/-) and wild-type (TnC+/+) mice were scratched and treated with different recombinantly generated TnC fragments. Gap closure, cell proliferation and expression of GFAP and cytokines were determined in these cultures. Gap closure in vitro was found to be delayed by TnC fragments, an effect mainly mediated by decreasing proliferation of astrocytes. The most potent effects were observed with fragments FnD, FnA and their combination. TnC-/- astrocyte cultures exhibited higher GFAP protein and mRNA expression levels, regardless of the type of fragment used for treatment. Application of TnC fragments induced also pro-inflammatory cytokine production by astrocytes in vitro. In vivo, however, the addition of FnD or Fn(D+A) led to a difference between the two genotypes, with higher levels of GFAP expression in TnC+/+ mice. FnD treatment of injured TnC-/- mice increased the density of activated microglia/macrophages in the injury region, while overall cell proliferation in the injury site was not affected. We suggest that altogether these results may explain how the reaction of astrocytes is delayed while their localization is restricted to the border of the injury site to allow microglia/macrophages to form a lesion core during the first stages of glial scar formation, as mediated by TnC and, in particular, the alternatively spliced FnD domain.
Collapse
Affiliation(s)
- Dunja Bijelić
- Centre for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade, Belgrade, Serbia
| | - Marija Adžić
- Centre for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade, Belgrade, Serbia
| | - Mina Perić
- Centre for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade, Belgrade, Serbia
| | - Igor Jakovčevski
- Institut für Neuroanatomie und Molekulare Hirnforschung, Ruhr-Universität Bochum, Bochum, Germany
| | - Eckart Förster
- Institut für Neuroanatomie und Molekulare Hirnforschung, Ruhr-Universität Bochum, Bochum, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Pavle R Andjus
- Centre for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry "Jean Giaja", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
12
|
Wei S, Hu Q, Cheng X, Ma J, Liang X, Peng J, Xu W, Sun X, Han G, Ma X, Wang Y. Differences in the Structure and Protein Expression of Femoral Nerve Branches in Rats. Front Neuroanat 2020; 14:16. [PMID: 32322192 PMCID: PMC7156789 DOI: 10.3389/fnana.2020.00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shuai Wei
- Tianjin Hospital Tianjin University, Tianjin, China
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qian Hu
- Department of Geriatrics, The Second People’s Hospital of Nantong, Nantong, China
| | - Xiaoqing Cheng
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianxiong Ma
- Tianjin Hospital Tianjin University, Tianjin, China
| | - Xuezhen Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xun Sun
- Tianjin Hospital Tianjin University, Tianjin, China
| | - Gonghai Han
- The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xinlong Ma
- Tianjin Hospital Tianjin University, Tianjin, China
- *Correspondence: Xinlong Ma Yu Wang
| | - Yu Wang
- Institute of Orthopedics, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- *Correspondence: Xinlong Ma Yu Wang
| |
Collapse
|
13
|
Tomlinson JE, Golshadi M, Donahue CJ, Dong L, Cheetham J. Evaluation of two methods to isolate Schwann cells from murine sciatic nerve. J Neurosci Methods 2019; 331:108483. [PMID: 31756398 DOI: 10.1016/j.jneumeth.2019.108483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/04/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Schwann cells (SC) and macrophages play key roles in the response to peripheral nerve injury (PNI). Accurate isolation of such cells is essential for further analyses that can lead to better understanding of the repair process after PNI. Separation of live SC from the injury site without culture enrichment is necessary for targeted gene expression analysis. NEW METHODS Two flow cytometric techniques are presented for rapid enrichment of live SC and macrophages from injured murine peripheral nerve without the need for culture. RESULTS SC were isolated by fluorescent activated cell sorting (FACS) using transgenic expression of eGFP in SC, or by exclusion of other cell types collected from the injury site. COMPARISON WITH EXISTING METHOD(S) Gene expression analyses of peripheral nerve repair have commonly used whole nerve lysates. Isolating SC allows more accurate understanding of their specific role in repair. SC are commonly enriched from nerve by culture, however this changes gene expression patterns and limits the utility for transcriptomic analysis. The surface marker p75-NTR has variable expression in different SC phenotypes and during the course of injury and repair. Using p75-NTR for SC isolation might enrich only a subset of SC. More stably expressed lineage markers for SC are intracellular and not suitable for sorting for gene expression. The methods used here avoid the requirement for surface marker labeling of SC. CONCLUSION Gene expression analysis of sorted cells from both methods showed successful enrichment of SC. Lineage markers such as Map1b, p75-NTR and S100b were enriched in the sorted SC population. SC sorting by eGFP expression showed improved enrichment, particularly of mature myelinating genes, although this could represent sampling of a subset of SC.
Collapse
Affiliation(s)
- Joy E Tomlinson
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, 930 Campus Road, Ithaca, NY, 14853, United States
| | - Masoud Golshadi
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, 930 Campus Road, Ithaca, NY, 14853, United States
| | - Christopher J Donahue
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, 930 Campus Road, Ithaca, NY, 14853, United States
| | - Lynn Dong
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, 930 Campus Road, Ithaca, NY, 14853, United States
| | - Jonathan Cheetham
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, 930 Campus Road, Ithaca, NY, 14853, United States.
| |
Collapse
|
14
|
Sensory axons inhibit motor axon regeneration in vitro. Exp Neurol 2019; 323:113073. [PMID: 31639375 DOI: 10.1016/j.expneurol.2019.113073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
During mammalian embryonic development sensory and motor axons interact as an integral part of the pathfinding process. During regeneration, however, little is known of their interactions with one another. It is thus possible that sensory axons might influence motor axon regeneration in ways not currently appreciated. To explore this possibility we have developed an organotypic model of post-natal nerve regeneration in which sensory and motor axons are color-coded by modality. Motor axons that express yellow fluorescent protein (YFP) and sensory axons that express red fluorescent protein (RFP) are blended within a three-dimensional segment of peripheral nerve. This nerve is then transected, allowing axons to interact with one another as they grow out on a collagen/laminin gel that is initially devoid of directional cues. Within hours it is apparent that sensory axons extend more rapidly than motor axons and precede them during the early stages of regeneration, the opposite of their developmental order. Motor axons thus enter an environment already populated with sensory axons, and they adhere to these axons throughout most of their course. As a result, motor axon growth is reduced dramatically. Physical delay of sensory regeneration, allowing motor axons to grow ahead, restores normal motor growth; direct axonal interactions on the gel, rather than some other aspect of the model, are thus responsible for motor inhibition. Potential mechanisms for this inhibition are explored by electroporating siRNA to the neural cell adhesion molecule (NCAM) and the L1 adhesion molecule (L1CAM) into dorsal root ganglia (DRGs) to block expression of these molecules by regenerating sensory axons. Although neither maneuver improved motor regeneration, the results were consistent with early receptor-mediated signaling among axons rather than physical adhesion as the mechanism of motor inhibition in this model.
Collapse
|
15
|
McKay TB, Seyed-Razavi Y, Ghezzi CE, Dieckmann G, Nieland TJF, Cairns DM, Pollard RE, Hamrah P, Kaplan DL. Corneal pain and experimental model development. Prog Retin Eye Res 2019; 71:88-113. [PMID: 30453079 PMCID: PMC6690397 DOI: 10.1016/j.preteyeres.2018.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/03/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
The cornea is a valuable tissue for studying peripheral sensory nerve structure and regeneration due to its avascularity, transparency, and dense innervation. Somatosensory innervation of the cornea serves to identify changes in environmental stimuli at the ocular surface, thereby promoting barrier function to protect the eye against injury or infection. Due to regulatory demands to screen ocular safety of potential chemical exposure, a need remains to develop functional human tissue models to predict ocular damage and pain using in vitro-based systems to increase throughput and minimize animal use. In this review, we summarize the anatomical and functional roles of corneal innervation in propagation of sensory input, corneal neuropathies associated with pain, and the status of current in vivo and in vitro models. Emphasis is placed on tissue engineering approaches to study the human corneal pain response in vitro with integration of proper cell types, controlled microenvironment, and high-throughput readouts to predict pain induction. Further developments in this field will aid in defining molecular signatures to distinguish acute and chronic pain triggers based on the immune response and epithelial, stromal, and neuronal interactions that occur at the ocular surface that lead to functional outcomes in the brain depending on severity and persistence of the stimulus.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Yashar Seyed-Razavi
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Gabriela Dieckmann
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Rachel E Pollard
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| |
Collapse
|
16
|
Sorensen EP, Dietert JB, Hurst EA. Cells to Surgery Quiz: September 2018. J Invest Dermatol 2018. [DOI: 10.1016/j.jid.2018.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Barakat-Walter I, Kraftsik R. Stimulating effect of thyroid hormones in peripheral nerve regeneration: research history and future direction toward clinical therapy. Neural Regen Res 2018; 13:599-608. [PMID: 29722302 PMCID: PMC5950660 DOI: 10.4103/1673-5374.230274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Injury to peripheral nerves is often observed in the clinic and severe injuries may cause loss of motor and sensory functions. Despite extensive investigation, testing various surgical repair techniques and neurotrophic molecules, at present, a satisfactory method to ensuring successful recovery does not exist. For successful molecular therapy in nerve regeneration, it is essential to improve the intrinsic ability of neurons to survive and to increase the speed of axonal outgrowth. Also to induce Schwann cell phenotypical changes to prepare the local environment favorable for axonal regeneration and myelination. Therefore, any molecule that regulates gene expression of both neurons and Schwann cells could play a crucial role in peripheral nerve regeneration. Clinical and experimental studies have reported that thyroid hormones are essential for the normal development and function of the nervous system, so they could be candidates for nervous system regeneration. This review provides an overview of studies devoted to testing the effect of thyroid hormones on peripheral nerve regeneration. Also it emphasizes the importance of combining biodegradable tubes with local administration of triiodothyronine for future clinical therapy of human severe injured nerves. We highlight that the local and single administration of triiodothyronine within biodegradable nerve guide improves significantly the regeneration of severed peripheral nerves, and accelerates functional recovering. This technique provides a serious step towards future clinical application of triiodothyronine in human severe injured nerves. The possible regulatory mechanism by which triiodothyronine stimulates peripheral nerve regeneration is a rapid action on both axotomized neurons and Schwann cells.
Collapse
Affiliation(s)
- I Barakat-Walter
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - R Kraftsik
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. J Neurosci 2017; 37:9086-9099. [PMID: 28904214 PMCID: PMC5597985 DOI: 10.1523/jneurosci.1453-17.2017] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 01/23/2023] Open
Abstract
There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the generation of these repair-supportive Schwann cells involves an extensive cellular elongation and branching, often to form long, parallel processes. This generates a distinctive repair cell morphology that is favorable for the formation of the regeneration tracks that are essential for nerve repair. Remyelination, conversely, involves a striking cell shortening to form the typical short myelin cells of regenerated nerves. We also provide evidence for direct lineage relationships between: (1) repair cells and myelin and Remak cells of uninjured nerves and (2) remyelinating cells in regenerated nerves.
Collapse
|
19
|
Kumamoto K, Iguchi T, Ishida R, Uemura T, Sato M, Hirotsune S. Developmental downregulation of LIS1 expression limits axonal extension and allows axon pruning. Biol Open 2017. [PMID: 28630356 PMCID: PMC5550919 DOI: 10.1242/bio.025999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The robust axonal growth and regenerative capacities of young neurons decrease substantially with age. This developmental downregulation of axonal growth may facilitate axonal pruning and neural circuit formation but limits functional recovery following nerve damage. While external factors influencing axonal growth have been extensively investigated, relatively little is known about the intrinsic molecular changes underlying the age-dependent reduction in regeneration capacity. We report that developmental downregulation of LIS1 is responsible for the decreased axonal extension capacity of mature dorsal root ganglion (DRG) neurons. In contrast, exogenous LIS1 expression or endogenous LIS1 augmentation by calpain inhibition restored axonal extension capacity in mature DRG neurons and facilitated regeneration of the damaged sciatic nerve. The insulator protein CTCF suppressed LIS1 expression in mature DRG neurons, and this reduction resulted in excessive accumulation of phosphoactivated GSK-3β at the axon tip, causing failure of the axonal extension. Conversely, sustained LIS1 expression inhibited developmental axon pruning in the mammillary body. Thus, LIS1 regulation may coordinate the balance between axonal growth and pruning during maturation of neuronal circuits. Summary: Developmental downregulation of LIS1 coordinates the balance between axonal elongation and pruning, which is essential for proper neuronal circuit formation but limits nerve regeneration.
Collapse
Affiliation(s)
- Kanako Kumamoto
- Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ryuichi Ishida
- Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University, Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| |
Collapse
|
20
|
Schaal SM, Kitay BM, Cho KS, Lo TP, Barakat DJ, Marcillo AE, Sanchez AR, Andrade CM, Pearse DD. Schwann Cell Transplantation Improves Reticulospinal Axon Growth and Forelimb Strength after Severe Cervical Spinal Cord Contusion. Cell Transplant 2017; 16:207-28. [PMID: 17503734 DOI: 10.3727/000000007783464768] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting modest supraspinal axon growth when the site of axon injury is closer to the cell body of the axotomized neuron.
Collapse
Affiliation(s)
- S M Schaal
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
McFerrin J, Patton BL, Sunderhaus ER, Kretzschmar D. NTE/PNPLA6 is expressed in mature Schwann cells and is required for glial ensheathment of Remak fibers. Glia 2017; 65:804-816. [PMID: 28206686 PMCID: PMC5357176 DOI: 10.1002/glia.23127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 11/08/2022]
Abstract
Neuropathy target esterase (NTE) or patatin-like phospholipase domain containing 6 (PNPLA6) was first linked with a neuropathy occurring after organophosphate poisoning and was later also found to cause complex syndromes when mutated, which can include mental retardation, spastic paraplegia, ataxia, and blindness. NTE/PNPLA6 is widely expressed in neurons but experiments with its Drosophila orthologue Swiss-cheese (SWS) suggested that it may also have glial functions. Investigating whether NTE/PNPLA6 is expressed in glia, we found that NTE/PNPLA6 is expressed by Schwann cells in the sciatic nerve of adult mice with the most prominent expression in nonmyelinating Schwann cells. Within Schwann cells, NTE/PNPLA6 is enriched at the Schmidt-Lanterman incisures and around the nucleus. When analyzing postnatal expression patterns, we did not detect NTE/PNPLA6 in promyelinating Schwann cells, while weak expression was detectable at postnatal day 5 in Schwann cells and increased with their maturation. Interestingly, NTE/PNPLA6 levels were upregulated after nerve crush and localized to ovoids forming along the nerve fibers. Using a GFAP-based knock-out of NTE/PNPLA6, we detected an incomplete ensheathment of Remak fibers whereas myelination did not appear to be affected. These results suggest that NTE/PNPLA6 is involved in the maturation of nonmyelinating Schwann cells during development and de-/remyelination after neuronal injury. Since Schwann cells play an important role in maintaining axonal viability and function, it is therefore likely that changes in Schwann cells contribute to the locomotory deficits and neuropathy observed in patients carrying mutations in NTE.
Collapse
Affiliation(s)
- Janis McFerrin
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Bruce L. Patton
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Elizabeth R. Sunderhaus
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
22
|
Wang B, Yuan J, Xu J, Chen X, Ying X, Dong P. Brain-derived and glial cell line-derived neurotrophic factor fusion protein immobilization to laminin. Exp Ther Med 2016; 13:178-186. [PMID: 28123487 PMCID: PMC5245157 DOI: 10.3892/etm.2016.3925] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/01/2016] [Indexed: 11/06/2022] Open
Abstract
Damage to the recurrent laryngeal nerve often causes hoarseness, dyspnea, dysphagia, and sometimes asphyxia due to vocal cord paralysis which result in a reduction of quality of life. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) play critical roles in peripheral nerve regeneration. However, methods for efficiently delivering these molecules are lacking, which limits their use in clinical applications. The present study reports an effective strategy for targeting BDNF and GDNF to laminin by fusing the N-terminal domains of these molecules with agrin (NtA). More specifically, laminin-binding efficacy was assessed and sustained release assays of the delivery of BDNF or GDNF fused with NtA (LBD-BDNF or LBD-GDNF) to laminin were conducted in vitro. In addition, the bioactivity of LBD-BDNF and LBD-GDNF on laminin in vitro was investigated. LBD-BDNF and LBD-GDNF were each able to specifically bind to laminin and maintain their activity in vitro. Moreover, neurotrophic factors with NtA retained higher concentrations and bioactivity levels compared with those without NtA. The ratio of LBD-BDNF and LBD-GDNF that produced optimal effects was 4:6. BDNF and GDNF fused with NtA were effective in specifically binding to laminin. As laminin is a major component of the extracellular matrix, LBD-BDNF and LBD-GDNF may prove useful in the repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Baoxin Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated to Shanghai First People's Hospital, Shanghai 201620, P.R. China
| | - Junjie Yuan
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital South Campus, Shanghai 200011, P.R. China
| | - Jiafeng Xu
- School of Economics and Finance, Shanghai International Studies University, Shanghai 200083, P.R. China
| | - Xinwei Chen
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated to Shanghai First People's Hospital, Shanghai 201620, P.R. China
| | - Xinjiang Ying
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated to Shanghai First People's Hospital, Shanghai 201620, P.R. China
| | - Pin Dong
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated to Shanghai First People's Hospital, Shanghai 201620, P.R. China
| |
Collapse
|
23
|
Wang XP, Wu M, Guan JZ, Wang ZD, Gao XB, Liu YY. Pre-degenerated peripheral nerves co-cultured with bone marrow-derived cells: a new technique for harvesting high-purity Schwann cells. Neural Regen Res 2016; 11:1653-1659. [PMID: 27904498 PMCID: PMC5116846 DOI: 10.4103/1673-5374.193246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 11/04/2022] Open
Abstract
Schwann cells play an important role in the peripheral nervous system, especially in nerve repair following injury, so artificial nerve regeneration requires an effective technique for obtaining purified Schwann cells. In vivo and in vitro pre-degeneration of peripheral nerves have been shown to obtain high-purity Schwann cells. We believed that in vitro pre-degeneration was simple and controllable, and available for the clinic. Thus, we co-cultured the crushed sciatic nerves with bone marrow-derived cells in vitro. Results demonstrated that, 3 hours after injury, a large number of mononuclear cells moved to the crushed nerves and a large number of bone marrow-derived cells infiltrated the nerve segments. These changes promoted the degradation of the nerve segments, and the dedifferentiation and proliferation of Schwann cells. Neural cell adhesion molecule and glial fibrillary acidic protein expression were detected in the crushed nerves. Schwann cell yield was 9.08 ± 2.01 × 104/mg. The purity of primary cultured Schwann cells was 88.4 ± 5.79%. These indicate a successful new method for obtaining Schwann cells of high purity and yield from adult crushed sciatic nerve using bone marrow-derived cells.
Collapse
Affiliation(s)
- Xiao-pan Wang
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu, Anhui Province, China
| | - Min Wu
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu, Anhui Province, China
| | - Jian-zhong Guan
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu, Anhui Province, China
| | - Zhao-dong Wang
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu, Anhui Province, China
| | - Xu-bin Gao
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu, Anhui Province, China
| | - Yang-yang Liu
- Department of Orthopedics, Bengbu Medical University Affiliated to First Hospital, Bengbu, Anhui Province, China
| |
Collapse
|
24
|
Hsu SH, Chang CJ, Tang CM, Lin FT. In Vitro and In Vivo Effects of Ginkgo biloba Extract EGb 761 on Seeded Schwann Cells within Poly(DL-lactic acid-co-glycolic acid) Conduits for Peripheral Nerve Regeneration. J Biomater Appl 2016; 19:163-82. [PMID: 15381788 DOI: 10.1177/0885328204045580] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the effects of Ginkgo biloba (EGb 761) extract on seeded Schwann cells within poly(DL-lactic acid-co-glycolic acid) (PLGA) conduits by in vitro and in vivo trials for peripheral nerve regeneration. The seeding efficiency of Schwann cells in serum-deprived culture medium, which simulated the environment of mechanical trauma on an injured nerve site, was improved by adding different dosages of EGb 761 (0, 1, 10, 20, 50, 100, 200 mg/mL). The analytical results showed enhanced cell attachment and survival, reduced LDH release and increased MTT values, particularly in the range 10-100 mg/mL. The PLGA nerve conduits seeded with Schwann cells (6 103 cells) and filled with gelatin containing EGb 761 (0, 10, 50, 100 mg/mL) were implanted to 10-mm right sciatic nerve defects in rats. Autograft was performed as another control. Electromyography was assessed based on the motor unit action potential (MUAP) and fibrillation potential (Fib) at 2, 4, and 6 weeks during all periods. The specimens of the experimental and control groups were harvested for histological analysis at 6 weeks after surgery. The Fib was found to gradually decay, and the MUAP was found not to be present until 4 weeks after surgery. Meanwhile, the experimental groups were all statically better than the control group (without EGb 761) and autografts were observed at 6 weeks, especially at the concentration of 10 mg/mL, where there was higher amplitude of MUAP and a significantly larger number of myelinated axons. This study concluded that a proper concentration of EGb 761 (10-50 mg/mL) promoted seeding efficiency of Schwann cells in a tissue-engineered PLGA conduit. Addition of EGb 761 in Schwann cells-seeded conduit could increase the total number of myelinated axons in nerve regeneration and improve peripheral nerve functional recovery.
Collapse
Affiliation(s)
- Shan-Hui Hsu
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan.
| | | | | | | |
Collapse
|
25
|
Abstract
Injury of peripheral nerve in mammals leads to a complex but stereotypical pattern of histological events that comprise a highly reproducible sequence of degenerative reactions (Wallerian degeneration) succeeded by regenerative responses. These reactions are based on a corresponding sequence of cellular and mo lecular interactions that, in turn, reflect the differential expression of specific genes with functions in nerve degeneration and repair. We report on more than 60 genes and their products that show a specific pattern of regulation following peripheral nerve lesion. The group of regulated genes encoding, e.g., transcription factors, growth factors and their receptors, cytokines, neuropeptides, myelin proteins and lipid carriers, and cytoskeletal proteins as well as extracellular matrix and cell adhesion molecules. We describe and compare the distinct time-courses and cellular origin of expression and further discuss established or putative mo lecular interrelationships and functions with respect to the contribution of these genes/gene products to the molecular regeneration program of the PNS. NEUROSCIENTIST 3:112-122, 1997
Collapse
Affiliation(s)
- Clemens Gillen
- Molecular Neurobiology Laboratory, Department of Neurology, University of Düsseldorf Düsseldorf
| | - Christian Korfhage
- Molecular Neurobiology Laboratory, Department of Neurology, University of Düsseldorf Düsseldorf
| | - Hans Werner Müller
- Molecular Neurobiology Laboratory, Department of Neurology, University of Düsseldorf Düsseldorf
| |
Collapse
|
26
|
Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, Chernichenko N, Lee SY, Barajas F, Chen CH, Bakst RL, Vakiani E, He S, Hall A, Wong RJ. Schwann cells induce cancer cell dispersion and invasion. J Clin Invest 2016; 126:1538-54. [PMID: 26999607 DOI: 10.1172/jci82658] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/26/2016] [Indexed: 12/23/2022] Open
Abstract
Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.
Collapse
|
27
|
Fenrich K, Gordon T. Canadian Association of Neuroscience Review: Axonal Regeneration in the Peripheral and Central Nervous Systems – Current Issues and Advances. Can J Neurol Sci 2016; 31:142-56. [PMID: 15198438 DOI: 10.1017/s0317167100053798] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractInjured nerves regenerate their axons in the peripheral (PNS) but not the central nervous system (CNS). The contrasting capacities have been attributed to the growth permissive Schwann cells in the PNS and the growth inhibitory environment of the oligodendrocytes in the CNS. In the current review, we first contrast the robust regenerative response of injured PNS neurons with the weak response of the CNS neurons, and the capacity of Schwann cells and not the oligodendrocytes to support axonal regeneration. We then consider the factors that limit axonal regeneration in both the PNS and CNS. Limiting factors in the PNS include slow regeneration of axons across the injury site, progressive decline in the regenerative capacity of axotomized neurons (chronic axotomy) and progressive failure of denervated Schwann cells to support axonal regeneration (chronic denervation). In the CNS on the other hand, it is the poor regenerative response of neurons, the inhibitory proteins that are expressed by oligodendrocytes and act via a common receptor on CNS neurons, and the formation of the glial scar that prevent axonal regeneration in the CNS. Strategies to overcome these limitations in the PNS are considered in detail and contrasted with strategies in the CNS.
Collapse
Affiliation(s)
- Keith Fenrich
- Centre for Neuroscience, Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
28
|
Belanger K, Dinis TM, Taourirt S, Vidal G, Kaplan DL, Egles C. Recent Strategies in Tissue Engineering for Guided Peripheral Nerve Regeneration. Macromol Biosci 2016; 16:472-81. [PMID: 26748820 DOI: 10.1002/mabi.201500367] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/19/2015] [Indexed: 11/10/2022]
Abstract
The repair of large crushed or sectioned segments of peripheral nerves remains a challenge in regenerative medicine due to the complexity of the biological environment and the lack of proper biomaterials and architecture to foster reconstruction. Traditionally such reconstruction is only achieved by using fresh human tissue as a surrogate for the absence of the nerve. However, recent focus in the field has been on new polymer structures and specific biofunctionalization to achieve the goal of peripheral nerve regeneration by developing artificial nerve prostheses. This review presents various tested approaches as well their effectiveness for nerve regrowth and functional recovery.
Collapse
Affiliation(s)
- Kayla Belanger
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Tony M Dinis
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Sami Taourirt
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Guillaume Vidal
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Christopher Egles
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France.,Department of Oral and Maxillofacial Pathology, Tufts University, School of Dental Medicine, 55 Kneeland Street, Boston, MA, 02111, USA
| |
Collapse
|
29
|
Isaacman-Beck J, Schneider V, Franzini-Armstrong C, Granato M. The lh3 Glycosyltransferase Directs Target-Selective Peripheral Nerve Regeneration. Neuron 2015; 88:691-703. [PMID: 26549330 PMCID: PMC4655140 DOI: 10.1016/j.neuron.2015.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/16/2015] [Accepted: 09/28/2015] [Indexed: 12/26/2022]
Abstract
Functional PNS regeneration requires injured axons to return to their original synaptic targets, yet the mechanisms underlying target-selective regeneration have remained elusive. Using live-cell imaging in zebrafish we find that regenerating motor axons exhibit a strong preference for their original muscle territory and that axons probe both correct and incorrect trajectories extensively before selecting their original path. We show that this process requires the glycosyltransferase lh3 and that post-injury expression of lh3 in Schwann cells is sufficient to restore target-selective regeneration. Moreover, we demonstrate that Schwann cells neighboring the transection site express the lh3 substrate collagen4a5 and that during regeneration collagen4a5 destabilizes axons probing inappropriate trajectories to ensure target-selective regeneration, possibly through the axonal repellant slit1a. Our results demonstrate that selective ECM components match subpopulations of regenerating axons with their original targets and reveal a previously unappreciated mechanism that conveys synaptic target selection to regenerating axons in vivo. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jesse Isaacman-Beck
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6058, USA
| | - Valerie Schneider
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6058, USA
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6058, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
30
|
Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 2015; 104:226-42. [PMID: 26577017 DOI: 10.1016/j.neuropharm.2015.11.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
In the present review, we stress the importance of the purine nucleosides, adenosine and guanosine, in protecting the nervous system, both centrally and peripherally, via activation of their receptors and intracellular signalling mechanisms. A most novel part of the review focus on the mechanisms of neuronal regeneration that are targeted by nucleosides, including a recently identified action of adenosine on axonal growth and microtubule dynamics. Discussion on the role of the purine nucleosides transversally with the most established neurotrophic factors, e.g. brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), is also focused considering the intimate relationship between some adenosine receptors, as is the case of the A2A receptors, and receptors for neurotrophins. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
31
|
Gundogdu EB, Bekar A, Turkyilmaz M, Gumus A, Kafa IM, Cansev M. CDP-choline modulates matrix metalloproteinases in rat sciatic injury. J Surg Res 2015; 200:655-63. [PMID: 26521098 DOI: 10.1016/j.jss.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/25/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND CDP-choline (cytidine-5'-diphosphocholine) improves functional recovery, promotes nerve regeneration, and decreases perineural scarring in rat peripheral nerve injury. The aim of the present study was to investigate the mechanism of action of CDP-choline with regard to matrix metalloproteinase (MMP) activity in the rat-transected sciatic nerve injury model. MATERIALS AND METHODS Male Wistar rats were randomized into Sham, Saline, and CDP-choline groups. Rats in Sham group received Sham surgery, whereas rats in Saline and CDP-choline groups underwent right sciatic nerve transection followed by immediate primary saturation and injected intraperitoneally with 0.9% NaCl (1 mL/kg) and CDP-choline (600 μg/kg), respectively. Sciatic nerve samples were obtained 1, 3, and 7 d after the surgery and analyzed for levels and activities of MMP-2 and MMP-9, levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) and TIMP-3, and axonal regeneration. RESULTS CDP-choline treatment decreased the levels and activities of MMP-2 and MMP-9, whereas increasing levels of TIMP-1 and TIMP-3 significantly on the third and seventh day after injury compared to Saline group. In addition, CDP-choline administration resulted in new axon formation and formation and advancement of myelination on newly formed islets (compartments) of axonal regrowth. CONCLUSIONS Our data show, for the first time, that CDP-choline modulates MMP activity and promotes the expression of TIMPs to stimulate axonal regeneration. These data help to explain one mechanism by which CDP-choline provides neuroprotection in peripheral nerve injury.
Collapse
Affiliation(s)
| | - Ahmet Bekar
- Department of Neurosurgery, Uludag University Medical School, Bursa, Turkey.
| | - Mesut Turkyilmaz
- Department of Pharmacology, Uludag University Medical School, Bursa, Turkey
| | | | | | - Mehmet Cansev
- Department of Pharmacology, Uludag University Medical School, Bursa, Turkey
| |
Collapse
|
32
|
Junka R, Yu X. Novel Acellular Scaffold Made from Decellularized Schwann Cell Sheets for Peripheral Nerve Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2015; 1:22-31. [PMID: 26848489 DOI: 10.1007/s40883-015-0003-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Extracellular matrix surrounding Schwann cells and neurons provides critical determinants of cellular phenotype during development as well as essential cues in stimulating and guiding regrowth. Using cell sheet technology, we developed a novel scaffold enriched with native extracellular matrix from Schwann cells. Schwann cells were grown into sheets and layered onto polycaprolactone fibers for support. Upon decellularization of these constructs, extracellular matrix remained with few traces of nucleic acids. This method of deposition of extracellular matrix provided more protein than traditional seeding method after decellularization. Additionally, the isolated matrix supported proliferation of Schwann cells better than covalently bound laminin. The proliferation and differentiation of Schwann cells grown on decellularized sheets were complemented by upregulation of Erbb2 and myelin protein zero. Laminin expression of β1 and γ1 chains was also elevated. PC12 cells grown on decellularized sheets produced longer neurite extensions than aligned polycaprolactone fibers alone, proving potential of these scaffolds to be used in future peripheral nerve regenerative studies. LAY SUMMARY Peripheral nerve injuries present a serious clinical need with approximately 50 % of surgical cases achieving only some restoration of function. In order to better guide regenerating nerves, supporting cells of the nerve tissue were grown into sheets and subsequently decellularized, leaving a myriad of surrounding protein as a scaffold. Constructs have been shown to support cell growth and neurite extension in vitro. Future projects will combine various cell types present in the nerve tissue as well as stem cells to fully support and reconstruct architecture of the peripheral nerves.
Collapse
Affiliation(s)
- Radoslaw Junka
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Xiaojun Yu
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
33
|
Gillon A, Sheard P. Elderly mouse skeletal muscle fibres have a diminished capacity to upregulate NCAM production in response to denervation. Biogerontology 2015; 16:811-23. [PMID: 26385499 DOI: 10.1007/s10522-015-9608-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/14/2015] [Indexed: 01/17/2023]
Abstract
Sarcopenia is a major contributor to the loss of independence and deteriorating quality of life in elderly individuals, it manifests as a decline in skeletal muscle mass and strength beyond the age of 65. Muscle fibre atrophy is a major contributor to sarcopenia and the most severely atrophic fibres are commonly found in elderly muscles to have permanently lost their motor nerve input. By contrast with elderly fibres, when fibres in young animals lose their motor input they normally mount a response to induce restoration of nerve contact, and this is mediated in part by upregulated expression of the nerve cell adhesion molecule (NCAM). Therefore, skeletal muscles appear to progressively lose their ability to become reinnervated, and here we have investigated whether this decline occurs via loss of the muscle's ability to upregulate NCAM in response to denervation. We performed partial denervation (by peripheral nerve crush) of the extensor digitorum longus muscle of the lower limb in both young and elderly mice. We used immunohistochemistry to compare relative NCAM levels at denervated and control innervated muscle fibres, focused on measurements at neuromuscular junctional, extra-junctional and cytoplasmic locations. Muscle fibres in young animals responded to denervation with significant (32.9%) increases in unpolysialylated NCAM at extra-junctional locations, but with no change in polysialylated NCAM. The same partial denervation protocol applied to elderly animals resulted in no significant change in either polysialylated or unpolysialylated NCAM at junctional, extra-junctional or cytoplasmic locations, therefore muscle fibres in young mice upregulated NCAM in response to denervation but fibres in elderly mice failed to do so. Elevation of NCAM levels is likely to be an important component of the muscle fibre's ability to attract or reattract a neural input, so we conclude that the presence of increasing numbers of long-term denervated fibres in elderly muscles is due, at least in part, to the fibre's declining ability to mount a normal response to loss of motor input.
Collapse
Affiliation(s)
- Ashley Gillon
- Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | - Philip Sheard
- Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| |
Collapse
|
34
|
Wakao S, Matsuse D, Dezawa M. Mesenchymal stem cells as a source of Schwann cells: their anticipated use in peripheral nerve regeneration. Cells Tissues Organs 2015; 200:31-41. [PMID: 25765009 DOI: 10.1159/000368188] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2014] [Indexed: 11/19/2022] Open
Abstract
Schwann cells form myelin, sustain axons and provide the microenvironment for nerve fibers, thereby playing a key role in the peripheral nervous system (PNS). Schwann cells also provide support for the damaged PNS by producing factors that strongly promote axonal regrowth and contribute to remyelination, which is crucial for the recovery of neural function. These advantages are not confined to the PNS and also apply to the central nervous system. Many diseases, including peripheral nerve injury, neuropathy, multiple sclerosis and spinal cord injury, are targets for Schwann cell therapy. The collection of Schwann cells, however, causes new damage to other peripheral nerve segments. Furthermore, the doubling time of Schwann cells is not very fast, and thus adequate amounts of Schwann cells for clinical use cannot be collected within a reasonable amount of time. Mesenchymal stem cells, which are highly proliferative, are easily accessible from various types of mesenchymal tissues, such as the bone marrow, umbilical cord and fat tissue. Because these cells have the ability to cross oligolineage boundaries between mesodermal to ectodermal lineages, they are capable of differentiating into Schwann cells with step-by-step cytokine stimulation. In this review, we summarize the properties of mesenchymal stem cell-derived Schwann cells, which are comparable to authentic Schwann cells, and discuss future perspectives.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
35
|
Romano NH, Madl CM, Heilshorn SC. Matrix RGD ligand density and L1CAM-mediated Schwann cell interactions synergistically enhance neurite outgrowth. Acta Biomater 2015; 11:48-57. [PMID: 25308870 DOI: 10.1016/j.actbio.2014.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 11/26/2022]
Abstract
The innate biological response to peripheral nerve injury involves a complex interplay of multiple molecular cues to guide neurites across the injury gap. Many current strategies to stimulate regeneration take inspiration from this biological response. However, little is known about the balance of cell-matrix and Schwann cell-neurite dynamics required for regeneration of neural architectures. We present an engineered extracellular matrix (eECM) microenvironment with tailored cell-matrix and cell-cell interactions to study their individual and combined effects on neurite outgrowth. This eECM regulates cell-matrix interactions by presenting integrin-binding RGD (Arg-Gly-Asp) ligands at specified densities. Simultaneously, the addition or exclusion of nerve growth factor (NGF) is used to modulate L1CAM-mediated Schwann cell-neurite interactions. Individually, increasing the RGD ligand density from 0.16 to 3.2mM resulted in increasing neurite lengths. In matrices presenting higher RGD ligand densities, neurite outgrowth was synergistically enhanced in the presence of soluble NGF. Analysis of Schwann cell migration and co-localization with neurites revealed that NGF enhanced cooperative outgrowth between the two cell types. Interestingly, neurites in NGF-supplemented conditions were unable to extend on the surrounding eECM without the assistance of Schwann cells. Blocking studies revealed that L1CAM is primarily responsible for these Schwann cell-neurite interactions. Without NGF supplementation, neurite outgrowth was unaffected by L1CAM blocking or the depletion of Schwann cells. These results underscore the synergistic interplay between cell-matrix and cell-cell interactions in enhancing neurite outgrowth for peripheral nerve regeneration.
Collapse
|
36
|
Shakhbazau A, Archibald SJ, Shcharbin D, Bryszewska M, Midha R. Aligned collagen-GAG matrix as a 3D substrate for Schwann cell migration and dendrimer-based gene delivery. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1979-1989. [PMID: 24801062 DOI: 10.1007/s10856-014-5224-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
The development of artificial off-the-shelf conduits that facilitate effective nerve regeneration and recovery after repair of traumatic nerve injury gaps is of fundamental importance. Collagen-glycosaminoglycan (GAG) matrix mimicking Schwann cell (SC) basal lamina has been proposed as a suitable and biologically rational substrate for nerve regeneration. In the present study, we have focused on the permissiveness of this matrix type for SC migration and repopulation, as these events play an essential role in nerve remodeling. We have also demonstrated that SCs cultured within collagen-GAG matrix are compatible with non-viral dendrimer-based gene delivery, that may allow conditioning of matrix-embedded cells for future gene therapy applications.
Collapse
Affiliation(s)
- Antos Shakhbazau
- Department of Clinical Neuroscience, Faculty of Medicine, University of Calgary, HMRB 109-3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada,
| | | | | | | | | |
Collapse
|
37
|
Wang B, Sun S, Liu Z. Analysis of dysregulation of immune system in pancreatic cancer based on gene expression profile. Mol Biol Rep 2014; 41:4361-7. [PMID: 24619357 DOI: 10.1007/s11033-014-3307-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/14/2014] [Indexed: 01/08/2023]
Abstract
The aim of this study was to explore the dysregulated expression of the immune system in pancreatic cancer and clarify the pathogenesis of pancreatic cancer. The Dataset GSE15471 was downloaded from GEO database, Student's t test was used to screen differentially expressed genes (DEGs) between the pancreatic cancer group and the normal control group. Kyoto Encyclopedia of Genes and Genomes (KEGG) provides functional annotation was employed to explore the significant DEGs involved in biological functions. We got 988 significantly DEGs, including 832 up-regulated genes and 156 down-regulated genes. The ratio of up-regulated genes and down-regulated genes was 5.3. Total 13 biological pathways which were significant enriched with DEGs by KEGG pathway enrichment analysis. Finally, we constructed a overall network of the immune system in pancreatic cancer with these biological pathways information. Our study reveals that dysregulated pathways in pancreatic cancer associated with the immune system. Besides, we also identify some important molecular biomarkers of the pancreatic cancer, including CXCR4 and CD4. Dysfunctional pathways and important molecular biomarkers of pancreatic cancer will provide useful information for potential treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Baosheng Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China,
| | | | | |
Collapse
|
38
|
Abstract
SUMMARY Peripheral nerve injury is a significant problem affecting greater that 1 million people around the world each year and poses major challenges to the plastic and reconstructive surgeon. When primary nerve repair is not possible, several options for management of the nerve gap include a nerve autograft, nerve conduit, and acellular nerve allograft. For extensive and proximal nerve injuries, cellular nerve allografts and nerve transfers may be considered. This article reviews the indications and outcomes for each option, as in many cases more than one option may be acceptable.
Collapse
|
39
|
Abstract
Injuries to peripheral nerves can cause paralysis and sensory disturbances, but such functional impairments are often short lived because of efficient regeneration of damaged axons. The time required for functional recovery, however, increases with advancing age (Verdú et al., 2000; Kawabuchi et al., 2011). Incomplete or delayed recovery after peripheral nerve damage is a major health concern in the aging population because it can severely restrict a person's mobility and independence. A variety of possible causes have been suggested to explain why nervous systems in aged individuals recover more slowly from nerve damage. Potential causes include age-related declines in the regenerative potential of peripheral axons and decreases in the supply or responsivity to trophic and/or tropic factors. However, there have been few direct analyses of age-related axon regeneration. Our aim here was to observe axons directly in young and old mice as they regenerate and ultimately reoccupy denervated neuromuscular synaptic sites to learn what changes in this process are age related. We find that damaged nerves in aged animals clear debris more slowly than nerves in young animals and that the greater number of obstructions regenerating axons encounter in the endoneurial tubes of old animals give rise to slower regeneration. Surprisingly, however, axons from aged animals regenerate quickly when not confronted by debris and reoccupy neuromuscular junction sites efficiently. These results imply that facilitating clearance of axon debris might be a good target for the treatment of nerve injury in the aged.
Collapse
|
40
|
Klein D, Groh J, Wettmarshausen J, Martini R. Nonuniform molecular features of myelinating Schwann cells in models for CMT1: Distinct disease patterns are associated with NCAM and c-Jun upregulation. Glia 2014; 62:736-50. [DOI: 10.1002/glia.22638] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Dennis Klein
- Department of Neurology; Developmental Neurobiology; University of Würzburg; Josef-Schneider-Str. 11 D-97080 Würzburg Germany
| | - Janos Groh
- Department of Neurology; Developmental Neurobiology; University of Würzburg; Josef-Schneider-Str. 11 D-97080 Würzburg Germany
| | - Jennifer Wettmarshausen
- Department of Neurology; Developmental Neurobiology; University of Würzburg; Josef-Schneider-Str. 11 D-97080 Würzburg Germany
| | - Rudolf Martini
- Department of Neurology; Developmental Neurobiology; University of Würzburg; Josef-Schneider-Str. 11 D-97080 Würzburg Germany
| |
Collapse
|
41
|
Guseva D, Loers G, Schachner M. Function-triggering antibodies to the adhesion molecule L1 enhance recovery after injury of the adult mouse femoral nerve. PLoS One 2014; 9:e112984. [PMID: 25393007 PMCID: PMC4231121 DOI: 10.1371/journal.pone.0112984] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/19/2014] [Indexed: 02/05/2023] Open
Abstract
L1 is among the few adhesion molecules that favors repair after trauma in the adult central nervous system of vertebrates by promoting neuritogenesis and neuronal survival, among other beneficial features. In the peripheral nervous system, L1 is up-regulated in Schwann cells and regrowing axons after nerve damage, but the functional consequences of this expression remain unclear. Our previous study of L1-deficient mice in a femoral nerve injury model showed an unexpected improved functional recovery, attenuated motoneuronal cell death, and enhanced Schwann cell proliferation, being attributed to the persistent synthesis of neurotrophic factors. On the other hand, transgenic mice over-expressing L1 in neurons led to improved remyelination, but not improved functional recovery. The present study was undertaken to investigate whether the monoclonal L1 antibody 557 that triggers beneficial L1 functions in vitro would trigger these also in femoral nerve repair. We analyzed femoral nerve regeneration in C57BL/6J mice that received this antibody in a hydrogel filled conduit connecting the cut and sutured nerve before its bifurcation, leading to short-term release of antibody by diffusion. Video-based quantitative analysis of motor functions showed improved recovery when compared to mice treated with conduits containing PBS in the hydrogel scaffold, as a vehicle control. This improved recovery was associated with attenuated motoneuron loss, remyelination and improved precision of preferential motor reinnervation. We suggest that function-triggering L1 antibodies applied to the lesion site at the time of injury over a limited time period will not only be beneficial in peripheral, but also central nervous system regeneration.
Collapse
Affiliation(s)
- Daria Guseva
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
42
|
Gao X, Wang Y, Chen J, Peng J. The role of peripheral nerve ECM components in the tissue engineering nerve construction. Rev Neurosci 2013; 24:443-53. [PMID: 23907421 DOI: 10.1515/revneuro-2013-0022] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/05/2013] [Indexed: 11/15/2022]
Abstract
The extracellular matrix (ECM) is the naturally occurring substrate that provides a support structure and an attachment site for cells. It also produces a biological signal, which plays an important role in and has significant impact on cell adhesion, migration, proliferation, differentiation, and gene expression. Peripheral nerve repair is a complicated process involving Schwann cell proliferation and migration, 'bands of Büngner' formation, and newborn nerve extension. In the ECM of peripheral nerves, macromolecules are deposited among cells; these constitute the microenvironment of Schwann cell growth. Such macromolecules include collagen (I, III, IV, V), laminin, fibronectin, chondroitin sulfate proteoglycans (CSPGs), and other nerve factors. Collagen, the main component of ECM, provides structural support and guides newborn neurofilament extension. Laminin, fibronectin, CSPGs, and neurotrophic factors, are promoters or inhibitors, playing different roles in nerve repair after injury. By a chemical decellularization process, acellular nerve allografting eliminates the antigens responsible for allograft rejection and maintains most of the ECM components, which can effectively guide and enhance nerve regeneration. Thus, the composition and features of peripheral nerve ECM suggest its superiority as nerve repair material. This review focuses on the structure, function, and application in the tissue engineering nerve construction of the peripheral nerve ECM components.
Collapse
|
43
|
Repair of the Peripheral Nerve-Remyelination that Works. Brain Sci 2013; 3:1182-97. [PMID: 24961524 PMCID: PMC4061866 DOI: 10.3390/brainsci3031182] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/07/2013] [Accepted: 07/19/2013] [Indexed: 12/15/2022] Open
Abstract
In this review we summarize the events known to occur after an injury in the peripheral nervous system. We have focused on the Schwann cells, as they are the most important cells for the repair process and facilitate axonal outgrowth. The environment created by this cell type is essential for the outcome of the repair process. The review starts with a description of the current state of knowledge about the initial events after injury, followed by Wallerian degeneration, and subsequent regeneration. The importance of surgical repair, carried out as soon as possible to increase the chances of a good outcome, is emphasized throughout the review. The review concludes by describing the target re-innervation, which today is one of the most serious problems for nerve regeneration. It is clear, compiling this data, that even though regeneration of the peripheral nervous system is possible, more research in this area is needed in order to perfect the outcome.
Collapse
|
44
|
Martini R, Klein D, Groh J. Similarities between inherited demyelinating neuropathies and Wallerian degeneration: an old repair program may cause myelin and axon perturbation under nonlesion conditions. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:655-60. [PMID: 23831295 DOI: 10.1016/j.ajpath.2013.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 01/09/2023]
Abstract
Wallerian degeneration (WD) and inherited demyelinating neuropathies of the Charcot-Marie-Tooth type 1 (CMT1) appear to represent completely distinct events. CMT1-like diseases are chronic disorders of peripheral nerves that are genetically caused and lead to secondary neurodegenerative events, resulting in usually non-treatable disabilities, whereas WD is an acute, usually transient, reaction on injuries, aiming to allow peripheral nerve regeneration. Despite these differences, there are some striking similarities regarding molecular characteristics of neural cells in the affected peripheral nerves. The most conspicuous similarities might comprise the inflammatory component in both situations, as identified in appropriate mouse models. However, although inflammation is a beneficial component in WD, leading to removal of regrowth-repellent myelin debris, inflammation in CMT1 mouse models causes damage of initially intact nerve fibers. We hypothesize that, in CMT1 models, molecular pathways are activated that are shared with an important repair program after peripheral nerve injury, but lead to neural perturbation when activated under nonlesion conditions, as is the case in CMT1. These novel insights into the pathogenesis of CMT1 might be instrumental for the development of new therapeutic options in humans.
Collapse
Affiliation(s)
- Rudolf Martini
- Section of Developmental Neurobiology, Department of Neurology, University of Würzburg, Würzburg, Germany.
| | | | | |
Collapse
|
45
|
Autocrine motility factor injection for motor plate regeneration and muscle function restoration--a pilot study. Acta Neurochir (Wien) 2013; 155:927-33. [PMID: 23443886 DOI: 10.1007/s00701-013-1645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Autocrine motility factor (AMF) is a multifunctional cytokine that promotes cellular adhesion, proliferation, motility, anti-apoptosis, and tissue repair. Direct nerve implantation (DNI) is considered to be effective in peripheral motor nerve injuries with disuse of the distal nerve; however, the repaired muscle function is not satisfactory. In our study, purified AMF was injected in reinnervated muscle after DNI with the intention of assessing if AMF, as a malignant tumor-related cytokine, could improve motor plate regeneration and neuromuscular function restoration. METHODS Purified AMF, which was extracted from AMF-transfected myoblast-conditioned medium, was regularly injected into the rat gastrocnemius in an established rat gastrocnemius denervation and reinnervation model. The nerve conduction velocity (NCV) of the tibial nerve, peak-to-peak value (PPV), area under the curve (AUC) of the compound muscle action potential (CMAP) and the Tibial Functional Index (TFI) were measured at 8, 16 and 24 weeks after injection. The regenerated endplates in gastrocnemius were examined by histochemical staining. In another group, an AMF-free solution was injected as the control. RESULTS After the AMF injection, the direct-nerve-implanted muscle function recovery was better in terms of both the nerve velocity and the quality. The endplates in the experimental group also had a quantitative advantage in restoration. After comparing the histochemical-stained tissues, no indications of tumorigenesis were detected. CONCLUSIONS AMF had positive effects on neuromuscular reparation and need more detailed research to determine the signalling pathways and side effects of AMF.
Collapse
|
46
|
Gladwin KM, Whitby RLD, Mikhalovsky SV, Tomlins P, Adu J. In vitro biocompatibility of multiwalled carbon nanotubes with sensory neurons. Adv Healthc Mater 2013. [PMID: 23184463 DOI: 10.1002/adhm.201200233] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiwalled carbon nanotubes (MWCNTs) possess unique properties rendering them a potentially useful biomaterial for neurobiological applications such as providing nanoscale contact-guidance cues for directing axon growth within peripheral nerve repair scaffolds. The in vitro biocompatibility of MWCNTs with postnatal mouse spinal sensory neurons was assessed for this application. Cell culture medium conditioned with MWCNTs was not significantly toxic to dissociated cultures of postnatal mouse dorsal root ganglia (DRG) neurons. However, exposure of DRG neurons to MWCNTs dispersed in culture medium resulted in a time- and dose-dependent reduction in neuronal viability. At 250 μg mL⁻¹, dispersed MWCNTs caused significant neuronal death and unusual neurite morphologies illustrated by immunofluorescent labelling of the cytoskeletal protein beta (III) tubulin, however, at a dose of 5 μg mL⁻¹ MWCNTs were nontoxic over a 14-day period. DRG neurons grown on fabricated MWCNT substrates produced neurite outgrowths with abnormal morphologies that were significantly inferior in length to neurons grown on the control substrate laminin. This evidence demonstrates that to be utilized as a biomaterial in tissue scaffolds for nerve repair, MWCNTs will require robust surface modification to enhance biocompatibility and growth promoting properties.
Collapse
Affiliation(s)
- Karen M Gladwin
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, BN2 4GJ, UK
| | | | | | | | | |
Collapse
|
47
|
Abstract
The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate.
Collapse
Affiliation(s)
- Grahame J Kidd
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
48
|
FGF-2 Low Molecular Weight Selectively Promotes Neuritogenesis of Motor Neurons In Vitro. Mol Neurobiol 2012; 47:770-81. [DOI: 10.1007/s12035-012-8389-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/14/2012] [Indexed: 01/31/2023]
|
49
|
Jakovcevski I, Miljkovic D, Schachner M, Andjus PR. Tenascins and inflammation in disorders of the nervous system. Amino Acids 2012; 44:1115-27. [DOI: 10.1007/s00726-012-1446-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
|
50
|
Kovačič U, Zele T, Tomšič M, Sketelj J, Bajrović FF. Influence of breaching the connective sheaths of the donor nerve on its myelinated sensory axons and on their sprouting into the end-to-side coapted nerve in the rat. J Neurotrauma 2012; 29:2805-15. [PMID: 22873667 DOI: 10.1089/neu.2011.2298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The influence of breaching the connective sheaths of the donor sural nerve on axonal sprouting into the end-to-side coapted peroneal nerve was examined in the rat. In parallel, the effect of these procedures on the donor nerve was assessed. The sheaths of the donor nerve at the coaptation site were either left completely intact (group A) or they were breached by epineurial sutures (group B), an epineurial window (group C), or a perineurial window (group D). In group A, the compound action potential (CAP) of sensory axons was detected in ~10% and 40% of the recipient nerves at 4 and 8 weeks, respectively, which was significantly less frequently than in group D at both recovery periods. In addition, the number of myelinated axons in the recipient nerve was significantly larger in group D than in other groups at 4 weeks. At 8 weeks, the number of axons in group A was only ~15% of the axon numbers in other groups (p<0.05). Focal subepineurial degenerative changes in the donor nerves were only seen after 4 weeks, but not later. The average CAP area and the total number of myelinated axons in the donor nerves were not different among the experimental groups. In conclusion, myelinated sensory axons are able to penetrate the epiperineurium of donor nerves after end-to-side nerve coaption; however, their ingrowth into recipient nerves is significantly enhanced by breaching the epiperineurial sheets at the coaptation site. Breaching does not cause permanent injury to the donor nerve.
Collapse
Affiliation(s)
- Uroš Kovačič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|