1
|
Kim YM, Jang CS. Development of molecular markers based on real-time PCR to detect flax and sesame in commercial amaranth products. Food Sci Biotechnol 2024; 33:3313-3322. [PMID: 39328221 PMCID: PMC11422535 DOI: 10.1007/s10068-024-01584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 09/28/2024] Open
Abstract
Amaranthus, Sesamum indicum, and Linum usitatissimum are the most popular oilseed grains worldwide. Protein-rich Amaranthus contains bioactive peptides, is nutritious, and exhibits anti-allergic properties. Sesamum indicum is a primary trigger of anaphylaxis. Linum usitatissimum also displays allergenic properties. A DNA marker assessable using quantitative real-time PCR was developed to detect S. indicum and L. usitatissimum as allergenic contaminants of anti-allergenic Amaranthus. The efficiency of each primer set ranged from 90-98%, and high linear correlation (R2 > 0.99) was obtained between crossover values and the log DNA concentration. We established a Ct value of 0.1% of the binary as a cutoff. The practical application of the designed marker was confirmed by analyzing 20 commercial products. The qPCR system developed for detecting flaxseed and sesame can be applied for regulatory monitoring of allergenic substances in commercial amaranth-containing foods, thus contributing to protecting public health and safety. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01584-2.
Collapse
Affiliation(s)
- Yeon Mi Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
2
|
Iqbal Z, Shafiq M, Briddon RW. Cotton leaf curl Multan betasatellite impaired ToLCNDV ability to maintain cotton leaf curl Multan alphasatellite. BRAZ J BIOL 2024; 84:e260922. [DOI: 10.1590/1519-6984.260922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Alphasatellites (family Alphasatellitidae) are circular, single-stranded (ss) DNA molecules of ~1350 nucleotide in size that have been characterized in both the Old and New Worlds. Alphasatellites have inherent ability to self-replicate, which is accomplished by a single protein, replication-associated protein (Rep). Although the precise function of alphasatellite is yet unknown, and these consider dispensable for infectivity, however, their Rep protein functions as a suppressor of host defence. While alphasatellites are most frequently associated with begomoviruses, particularly with monopartite than bipartite begomoviruses, they have recently been found associated with mastreviruses. The in planta maintenance of alphasatellites by helper geminivirus is still an enigma, with no available study on the topic. This study aimed to investigate whether a widely distributed bipartite begomovirus, tomato leaf curl New Delhi virus (ToLCNDV), can maintain cotton leaf curl Multan alphasatellite (CLCuMuA) in the presence or absence of cotton leaf curl Multan betasatellite (CLCuMuB). The findings of this study demonstrated that ToLCNDV or its DNA A could maintain CLCuMuA in Nicotiana benthamiana plants. However, the presence of CLCuMuB interferes with the maintenance of CLCuMuA, and mutations in the CP of ToLCNDV further reduces it. Our study highlighted that the maintenance of alphasatellites is impaired in the presence of a betasatellite by ToLCNDV. Further investigation is needed to unravel all the interactions between a helper virus and an alphasatellites.
Collapse
Affiliation(s)
- Z. Iqbal
- National Institute for Biotechnology and Genetic Engineering, Pakistan; King Faisal University, Saudi Arabia
| | - M. Shafiq
- National Institute for Biotechnology and Genetic Engineering, Pakistan; University of Sialkot, Pakistan
| | - R. W. Briddon
- National Institute for Biotechnology and Genetic Engineering, Pakistan
| |
Collapse
|
3
|
Uh YR, Kim YM, Kim MJ, Jang CS. Development of real-time PCR-based markers for differentiation of Oplopanax elatus and Aralia cordata in commercial food products. Food Sci Biotechnol 2023; 32:2153-2161. [PMID: 37869529 PMCID: PMC10582000 DOI: 10.1007/s10068-023-01313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 10/24/2023] Open
Abstract
Oplopanax elatus and Aralia cordata, commonly referred to as "Dureub" in Korea, are generally used as medicinal or food raw materials. Although O. elatus, a rare and endangered plant, is typically sold at high prices, the more abundant A. cordata is comparatively inexpensive. Given their common names and morphological root similarities, both plants can easily be confused, thereby providing potential opportunities for fraudulent use in food products. Species-specific molecular markers that can be used for quantitative real-time PCR (qPCR) analysis were developed. Verification of the six primer pairs revealed a correlation coefficient greater than 0.99, with a slope between -3.33 and -3.56. The assay confirmed specificity based on an analysis of 14 non-target plant species and verified its practicality using 10 commercial products with reliability based on a blind test. Thus, qPCR assays can contribute to food safety and protect consumer rights and interests. Supplementary Information The online version of this article contains supplementary material available 10.1007/s10068-023-01313-1.
Collapse
Affiliation(s)
- Yo Ram Uh
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Yeon Mi Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Myeong Jo Kim
- Bioactive Natural Product Chemistry Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
4
|
Kim YD, Uh YR, Jang CS. Development of real-time PCR based molecular markers for two medicinal herb Artemisia species A. capillaris and A. iwayomogi. Food Sci Biotechnol 2023; 32:59-69. [PMID: 36606092 PMCID: PMC9807703 DOI: 10.1007/s10068-022-01166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 02/01/2023] Open
Abstract
Artemisia capillaris and Artemisia iwayomogi are well-known herbal medicines which are used as hepatotherapeutic drugs. These two herbal species can be confused with each other, owing to their morphological similarity and similar Korean common names of "Injinho" and "Haninjin," respectively. Molecular markers to distinguish between the two plants were developed. Six primer sets were designed and verified, and their efficiencies were found to range from 90.28 to 98.29%. The developed primer sets had significant correlation coefficient values between the cycle threshold values and the logarithm of DNA concentration for their target species (R2 > 0.98), with slopes ranged from - 3.3637 to - 3.5793. The specificity of the quantitative polymerase chain reaction (qPCR) was confirmed with 14 other species. Additionally, 16 commercial medicinal herbs and 40 blind samples were tested to evaluate their reliability. Collectively, the findings indicate that developed qPCR-based target-specific primer sets have potential applicability toward protection of consumers' rights. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01166-0.
Collapse
Affiliation(s)
- Yea Dam Kim
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Yo Ram Uh
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
5
|
Nilghaz A, Mahdi Mousavi S, Amiri A, Tian J, Cao R, Wang X. Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5463-5476. [PMID: 35471937 DOI: 10.1021/acs.jafc.2c00089] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been identified as a fundamental surface-sensitive technique that boosts Raman scattering by adsorbing target molecules on specific surfaces. The application of SERS highly relies on the development of smart SERS substrates, and thus the fabrication of SERS substrates has been constantly improved. Herein, we investigate the impacts of different substrates on SERS technology including plasmonic metal nanoparticles, semiconductors, and hybrid systems in quantitative food safety and quality analysis. We first discuss the fundamentals, substrate designs, and applications of SERS. We then provide a critical review of the recent progress of SERS in its usage for screening and detecting chemical and biological contaminants including fungicides, herbicides, insecticides, hazardous colorants, and biohazards in food samples to assess the analytical capabilities of this technology. Finally, we investigate the future trends and provide practical techniques that could be used to fulfill the requirements for rapid analysis of food at a low cost.
Collapse
Affiliation(s)
- Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | | | - Amir Amiri
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Junfei Tian
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rong Cao
- Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
6
|
Oh SH, Kim YD, Jang CS. Development and application of DNA markers to detect adulteration with Scopolia japonica in the medicinal herb Atractylodes lancea. Food Sci Biotechnol 2021; 31:89-100. [DOI: 10.1007/s10068-021-01008-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
|
7
|
Abstract
The present paper presents a gliadin detection method. This method is based on a modified Ti electrode. Modification was performed by a simple and cheap anodization. Then, a layer of graphene oxide was added, and gliadin antibody was fixed on the electrode surface. Using this complex system, electrochemical impedance spectroscopy was used for gliadin detection. Solutions with known gliadin (a fraction from gluten) content were used for analysis. Impedance measured at a certain frequency and coating resistance were analyzed. Better results (good linearity and lower detection limit) were obtained by plotting impedance at a certain frequency versus gliadin concentration. Coating resistance was proved to be in linear dependency with gliadin concentration only at lower concentrations. This system based on titanium nanostructured electrode has the potential to be used for gluten contamination detection from foods.
Collapse
|
8
|
Allgöwer SM, Hartmann CA, Lipinski C, Mahler V, Randow S, Völker E, Holzhauser T. LAMP-LFD Based on Isothermal Amplification of Multicopy Gene ORF160b: Applicability for Highly Sensitive Low-Tech Screening of Allergenic Soybean ( Glycine max) in Food. Foods 2020; 9:foods9121741. [PMID: 33255927 PMCID: PMC7760099 DOI: 10.3390/foods9121741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022] Open
Abstract
Soybean (Glycine max) allergy can be life threatening. A lack of causative immunotherapy of soybean allergy makes soybean avoidance indispensable. Detection methods are essential to verify allergen labeling and unintentional allergen cross contact during food manufacture. Here, we aimed at evaluating our previously described primers for loop-mediated isothermal amplification (LAMP) of multicopy gene ORF160b, combined with a lateral flow dipstick (LFD)-like detection, for their performance of soybean detection in complex food matrices. The results were compared with those obtained using quantitative real-time Polymerase Chain Reaction (qPCR) as the current standard of DNA-based allergen detection, and antibody-based commercial lateral flow device (LFD) as the current reference of protein-based rapid allergen detection. LAMP-LFD allowed unequivocal and reproducible detection of 10 mg/kg soybean incurred in three representative matrices (boiled sausage, chocolate, instant tomato soup), while clear visibility of positive test lines of two commercial LFD tests was between 10 and 102 mg/kg and depending on the matrix. Sensitivity of soybean detection in incurred food matrices, commercial retail samples, as well as various processed soybean products was comparable between LAMP-LFD and qPCR. The DNA-based LAMP-LFD proved to be a simple and low-technology soybean detection tool, showing sensitivity and specificity that is comparable or superior to the investigated commercial protein-based LFD.
Collapse
|
9
|
Ramalingam S, Elsayed A, Singh A. An electrochemical microfluidic biochip for the detection of gliadin using MoS 2/graphene/gold nanocomposite. Mikrochim Acta 2020; 187:645. [PMID: 33165715 DOI: 10.1007/s00604-020-04589-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Testing gluten content in food, before it reaches the consumer, becomes a major challenge where cross-contamination during processing and transportation is a very common occurrence. In this study, a microfluidic electrochemical aptasensing system for the detection of gliadin has been proposed. The fabrication of the sensor involves its modification by using a combination of 2D nanomaterial molybdenum disulfide (MoS2)/graphene with the addition of gold (Au) nanoparticles. Aptamers, a short string of nucleotide bases that are very specific to gliadin, were used in this sensor as the biomarker. The electrochemical standard reduction potential of the ferro-ferricyanide indicator was found to be ~ 530 mV. This setup was integrated with a unique polydimethylsiloxane (PDMS)-based flexible microfluidic device for sample enrichment and portability. The results of this sensor show that the limit of detection was 7 pM. The total sample assay time was 20 min and a good linear range was observed from 4 to 250 nM with an R2 value of 0.982. Different flour samples sourced from the local market were tested and interfering molecules were added to ensure selectivity. The study shows promise in its applicability in real-time gliadin detection.Graphical abstract.
Collapse
Affiliation(s)
| | - Abdallah Elsayed
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
10
|
Oh SH, Jang CS. Development and Validation of a Real-Time PCR Based Assay to Detect Adulteration with Corn in Commercial Turmeric Powder Products. Foods 2020; 9:foods9070882. [PMID: 32635672 PMCID: PMC7404567 DOI: 10.3390/foods9070882] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/21/2023] Open
Abstract
Turmeric, or Curcuma longa, is commonly consumed in the South East Asian countries as a medical product and as food due to its therapeutic properties. However, with increasing demand for turmeric powder, adulterated turmeric powders mixed with other cheap starch powders, such as from corn or cassava, are being distributed by food suppliers for economic benefit. Here, we developed molecular markers using quantitative real-time PCR to identify adulteration in commercial turmeric powder products. Chloroplast genes, such as matK, atpF, and ycf2, were used to design species-specific primers for C. longa and Zea mays. Of the six primer pairs designed and tested, the correlation coefficients (R2) were higher than 0.99 and slopes were -3.136 to -3.498. The efficiency of the primers was between 93.14 and 108.4%. The specificity of the primers was confirmed with ten other species, which could be intentionally added to C. longa powders or used as ingredients in complex turmeric foods. In total, 20 blind samples and 10 commercial C. longa food products were tested with the designed primer sets to demonstrate the effectiveness of this approach to detect the addition of Z. mays products in turmeric powders. Taken together, the real-time PCR assay developed here has the potential to contribute to food safety and the protection of consumer's rights.
Collapse
|
11
|
Allgöwer SM, Hartmann CA, Holzhauser T. The Development of Highly Specific and Sensitive Primers for the Detection of Potentially Allergenic Soybean ( Glycine max) Using Loop-Mediated Isothermal Amplification Combined with Lateral Flow Dipstick (LAMP-LFD). Foods 2020; 9:foods9040423. [PMID: 32260089 PMCID: PMC7231045 DOI: 10.3390/foods9040423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 01/27/2023] Open
Abstract
The soybean (Glycine max) has been recognized as a frequent elicitor of food allergy worldwide. A lack of causative immunotherapy of soybean allergy makes soybean avoidance essential. Therefore, sensitive and specific methods for soybean detection are needed to allow for soybean verification in foods. Loop-mediated isothermal amplification (LAMP) represents a rapid and simple DNA-based detection method principally suitable for field-like applications or on-site analytical screening for allergens during the manufacturing of foods. This work describes the systematic development and selection of suitable LAMP primers based on soybean multicopy genes. The chemistry applied allows for a versatile detection of amplified DNA, using either gel electrophoresis, fluorescence recording, or a simple Lateral Flow Dipstick (LFD). LAMP based on the ORF160b gene was highly specific for the soybean and may allow for a detection level equivalent to approximately 10 mg soy per kg food. Various soybean cultivars were detectable at a comparable level of sensitivity. LAMP combined with LFD-like detection facilitates a simple, highly specific and sensitive detection of the soybean without the need for expensive analytical equipment. In contrast to the majority of antibody-based methods for soybean detection, all identified primer sequences and optimized protocols are disclosed and broadly available to the community.
Collapse
|
12
|
Development of a DNA-Based Detection Method for Cocos Nucifera Using TaqMan™ Real-Time PCR. Foods 2020; 9:foods9030332. [PMID: 32178274 PMCID: PMC7143811 DOI: 10.3390/foods9030332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 02/01/2023] Open
Abstract
So far, only a few cases of immunoglobulin E (IgE)-mediated coconut allergies have been described in the literature. Due to a growing consumption of coconut-containing foods in occidental countries, the number of coconut allergies may also increase. As there is no causative immunotherapy in clinical routine, appropriate food labelling is particularly important, also with regard to cross-contamination, to prevent serious health consequences. The purpose of this study was to develop a DNA-based detection method for coconut (Cocos nucifera). Initially, three sets of coconut-specific primers were designed and tested. A TaqMan™ probe was then developed to identify and quantify coconut by real-time PCR assay. With 27 other plant and animal species, the specificity of the primer/probe system was tested and cross reactivity was excluded. In a dilution series, a limit of detection of 1 pg/µL was determined. Thus, the developed real-time PCR assay is a suitable method to detect coconut in food.
Collapse
|
13
|
Osorio CE, Mejías JH, Rustgi S. Gluten Detection Methods and Their Critical Role in Assuring Safe Diets for Celiac Patients. Nutrients 2019; 11:E2920. [PMID: 31810336 PMCID: PMC6949940 DOI: 10.3390/nu11122920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Celiac disease, wheat sensitivity, and allergy represent three different reactions, which may occur in genetically predisposed individuals on the ingestion of wheat and derived products with various manifestations. Improvements in the disease diagnostics and understanding of disease etiology unveiled that these disorders are widespread around the globe affecting about 7% of the population. The only known treatment so far is a life-long gluten-free diet, which is almost impossible to follow because of the contamination of allegedly "gluten-free" products. Accidental contamination of inherently gluten-free products could take place at any level from field to shelf because of the ubiquity of these proteins/grains. Gluten contamination of allegedly "gluten-free" products is a constant threat to celiac patients and a major health concern. Several detection procedures have been proposed to determine the level of contamination in products for celiac patients. The present article aims to review the advantages and disadvantages of different gluten detection methods, with emphasis on the recent technology that allows identification of the immunogenic-gluten peptides without the use of antibodies. The possibility to detect gluten contamination by different approaches with similar or better detection efficiency in different raw and processed foods will guarantee the safety of the foods for celiac patients.
Collapse
Affiliation(s)
- Claudia E. Osorio
- Agriaquaculture Nutritional Genomic Center, CGNA, Las Heras 350, Temuco 4781158, Chile
| | - Jaime H. Mejías
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Temuco 4880000, Chile
| | - Sachin Rustgi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA
| |
Collapse
|
14
|
Su WH, Sun DW. Advanced Analysis of Roots and Tubers by Hyperspectral Techniques. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 87:255-303. [PMID: 30678816 DOI: 10.1016/bs.afnr.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hyperspectral techniques in terms of spectroscopy and hyperspectral imaging have become reliable analytical tools to effectively describe quality attributes of roots and tubers (such as potato, sweet potato, cassava, yam, taro, and sugar beet). In addition to the ability for obtaining rapid information about food external or internal defects including sprout, bruise, and hollow heart, and identifying different grades of food quality, such techniques have also been implemented to determine physical properties (such as color, texture, and specific gravity) and chemical constituents (such as protein, vitamins, and carotenoids) in root and tuber products with avoidance of extensive sample preparation. Developments of related quality evaluation systems based on hyperspectral data that determine food quality parameters would bring about economic and technical values to the food industry. Consequently, a comprehensive review of hyperspectral literature is carried out in this chapter. The spectral data acquired, the multivariate statistical methods used, and the main breakthroughs of recent studies on quality determinations of root and tuber products are discussed and summarized. The conclusion elaborates the promise of how hyperspectral techniques can be applied for non-invasive and rapid evaluations of tuber quality properties.
Collapse
Affiliation(s)
- Wen-Hao Su
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), National University of Ireland, Dublin, Ireland
| | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), National University of Ireland, Dublin, Ireland.
| |
Collapse
|
15
|
Addressing concerns over the fate of DNA derived from genetically modified food in the human body: A review. Food Chem Toxicol 2018; 124:423-430. [PMID: 30580028 DOI: 10.1016/j.fct.2018.12.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
Global commercialization of GM food and feed has stimulated much debate over the fate of GM food-derived DNA in the body of the consumer and as to whether it poses any health risks. We reviewed the fate of DNA derived from GM food in the human body. During mechanical/chemical processing, integrity of DNA is compromised. Food-DNA can survive harsh processing and digestive conditions with fragments up to a few hundred bp detectable in the gastrointestinal tract. Compelling evidence supported the presence of food (also GM food) derived DNA in the blood and tissues of human/animal. There is limited evidence of food-born DNA integrating into the genome of the consumer and of horizontal transfer of GM crop DNA into gut-bacteria. We find no evidence that transgenes in GM crop-derived foods have a greater propensity for uptake and integration than the host DNA of the plant-food. We found no evidence of plant-food DNA function/expression following transfer to either the gut-bacteria or somatic cells. Strong evidence suggested that plant-food-miRNAs can survive digestion, enter the body and affect gene expression patterns. We envisage that this multi-dimensional review will address questions regarding the fate of GM food-derived DNA and gene-regulatory-RNA in the human body.
Collapse
|
16
|
Ahmed N, Meng M. Detection of Gluten-Rich Cereals in Processed Foods with Enhanced Sensitivity by Targeting Mitochondrial DNA Using PCR. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-01415-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Identification of undeclared ingredients in red pepper products sold on the South Korea commercial market using real-time PCR methods. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Su WH, Sun DW. Multispectral Imaging for Plant Food Quality Analysis and Visualization. Compr Rev Food Sci Food Saf 2018; 17:220-239. [DOI: 10.1111/1541-4337.12317] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Wen-Hao Su
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, Univ. College Dublin (UCD); National Univ. of Ireland; Belfield Dublin 4 Ireland
| | - Da-Wen Sun
- Food Refrigeration and Computerized Food Technology (FRCFT), School of Biosystems and Food Engineering, Agriculture & Food Science Centre, Univ. College Dublin (UCD); National Univ. of Ireland; Belfield Dublin 4 Ireland
| |
Collapse
|
19
|
Eugster A, Murmann P, Känzig A, Breitenmoser A. A specific but nevertheless simple real-time PCR method for the detection of irradiated food shown detailed at the example of garlic (Allium sativum). Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2998-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Determination of wheat, rye and spelt authenticity in bread by targeted peptide biomarkers. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Funari R, Terracciano I, Della Ventura B, Ricci S, Cardi T, D'Agostino N, Velotta R. Label-Free Detection of Gliadin in Food by Quartz Crystal Microbalance-Based Immunosensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1281-1289. [PMID: 28121432 DOI: 10.1021/acs.jafc.6b04830] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gluten is a protein composite found in wheat and related grains including barley, rye, oat, and all their species and hybrids. Gluten matrix is a biomolecular network of gliadins and glutenins that contribute to the texture of pastries, breads, and pasta. Gliadins are mainly responsible for celiac disease, one of the most widespread food-related pathologies in Western world. In view of the importance of gliadin proteins, by combining the quartz crystal microbalance technology, a cheap and robust piezoelectric transducer, with the so-called photonic immobilization technique, an effective surface functionalization method that provides spatially oriented antibodies on gold substrates, we realized a sensitive and reliable biosensor for quantifying these analytes extracted from real samples in a very short time. The resulting immunosensor has a limit of detection of about 4 ppm and, more remarkably, shows excellent sensitivity in the range 7.5-15 ppm. This feature makes our device reliable and effective for practical applications since it is able to keep low the influence of false positives.
Collapse
Affiliation(s)
- Riccardo Funari
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| | - Irma Terracciano
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Orticoltura , via dei Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Bartolomeo Della Ventura
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| | - Sara Ricci
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Orticoltura , via dei Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Teodoro Cardi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Orticoltura , via dei Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Nunzio D'Agostino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Orticoltura , via dei Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Raffaele Velotta
- Department of Physics Ettore Pancini, Università di Napoli Federico II , via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
22
|
Martín-Fernández B, Costa J, Oliveira MBP, López-Ruiz B, Mafra I. Screening new gene markers for gluten detection in foods. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
A new specific reference gene based on growth hormone gene (GH1) used for detection and relative quantification of Aquadvantage® GM salmon (Salmo salar L.) in food products. Food Chem 2015. [PMID: 26213073 DOI: 10.1016/j.foodchem.2015.06.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genetic transformation of fish is mainly oriented towards the improvement of growth for the benefit of the aquaculture. Actually, Atlantic salmon (Salmo salar) is the species most transformed to achieve growth rates quite large compared to the wild. To anticipate the presence of contaminations with GM salmon in fish markets and the lack of labeling regulations with a mandatory threshold, the proper methods are needed to test the authenticity of the ingredients. A quantitative real-time polymerase chain reaction (QRT-PCR) method was used in this study. Ct values were obtained and validated using 15 processed food containing salmon. The relative and absolute limits of detection were 0.01% and 0.01 ng/μl of genomic DNA, respectively. Results demonstrate that the developed QRT-PCR method is suitable specifically for identification of S. salar in food ingredients based on the salmon growth hormone gene 1 (GH1). The processes used to develop the specific salmon reference gene case study are intended to serve as a model for performing quantification of Aquadvantage® GM salmon on future genetically modified (GM) fish to be commercialized.
Collapse
|
24
|
Guo L, Wu Y, Liu M, Wang B, Ge Y, Chen Y. Authentication of Edible Bird's nests by TaqMan-based real-time PCR. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Ženišová K, Chovanová K, Chebeňová-Turcovská V, Godálová Z, Kraková L, Kuchta T, Pangallo D, Brežná B. Mapping of wine yeast and fungal diversity in the Small Carpathian wine-producing region (Slovakia): evaluation of phenotypic, genotypic and culture-independent approaches. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0827-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
26
|
Chaouachi M, Nabi N, Hafsa AB, Zellama MS, Skhiri F, Saïd K. Monitoring of genetically modified food and feed in the Tunisian market using qualitative and quantitative real-time PCR. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0198-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
27
|
Röder M, Kleiner K, Sachs A, Keil N, Holzhauser T. Detectability of lupine seeds by ELISA and PCR may be strongly influenced by potential differences between cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5936-5945. [PMID: 23758099 DOI: 10.1021/jf400508a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Accurate methods for allergen detection are needed for the verification of allergen labeling and the avoidance of hidden allergens. But systematic data on the influence of different cultivars of allergenic crop species on their detectability in enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are lacking. As one example, seeds of 14 different cultivars of lupine (Lupinus albus, Lupinus angustifolius, Lupinus luteus) were investigated for total protein according to a Kjeldahl method, and for their relative quantitative detectability in three commercial lupine-specific ELISA tests and four lupine-specific PCR methods. Total Kjeldahl nitrogen allowed an accurate quantification of total protein. Relative differences in quantitative response between cultivars of 390-5050% and 480-13,600% were observed between ELISA kits and PCR methods, respectively. Hence, quantitative results of selected ELISA and PCR methods may be strongly influenced by the examined lupine cultivar.
Collapse
Affiliation(s)
- Martin Röder
- Division of Allergology, Paul-Ehrlich-Institut, ‡Division of Immunology; Paul-Ehrlich-Institut , Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | | | | | | | | |
Collapse
|
28
|
Ballari RV, Martin A, Gowda LR. Detection and identification of genetically modified EE-1 brinjal (Solanum melongena) by single, multiplex and SYBR® real-time PCR. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:340-347. [PMID: 22729745 DOI: 10.1002/jsfa.5764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/28/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Brinjal is an important vegetable crop. Major crop loss of brinjal is due to insect attack. Insect-resistant EE-1 brinjal has been developed and is awaiting approval for commercial release. Consumer health concerns and implementation of international labelling legislation demand reliable analytical detection methods for genetically modified (GM) varieties. RESULTS End-point and real-time polymerase chain reaction (PCR) methods were used to detect EE-1 brinjal. In end-point PCR, primer pairs specific to 35S CaMV promoter, NOS terminator and nptII gene common to other GM crops were used. Based on the revealed 3' transgene integration sequence, primers specific for the event EE-1 brinjal were designed. These primers were used for end-point single, multiplex and SYBR-based real-time PCR. End-point single PCR showed that the designed primers were highly specific to event EE-1 with a sensitivity of 20 pg of genomic DNA, corresponding to 20 copies of haploid EE-1 brinjal genomic DNA. The limits of detection and quantification for SYBR-based real-time PCR assay were 10 and 100 copies respectively. CONCLUSION The prior development of detection methods for this important vegetable crop will facilitate compliance with any forthcoming labelling regulations.
Collapse
MESH Headings
- Bacillus thuringiensis Toxins
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Benzothiazoles
- Crops, Agricultural/genetics
- Crops, Agricultural/metabolism
- Diamines
- Endotoxins/genetics
- Endotoxins/metabolism
- Fluorescent Dyes/chemistry
- Food Inspection/methods
- Food Inspection/standards
- Food Labeling/legislation & jurisprudence
- Food, Genetically Modified/adverse effects
- Hemolysin Proteins/genetics
- Hemolysin Proteins/metabolism
- India
- Legislation, Food
- Limit of Detection
- Multiplex Polymerase Chain Reaction
- Organic Chemicals/chemistry
- Pest Control, Biological
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Proteins, Dietary/genetics
- Plant Proteins, Dietary/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Promoter Regions, Genetic
- Quinolines
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Solanum melongena/genetics
- Solanum melongena/metabolism
- Terminator Regions, Genetic
Collapse
Affiliation(s)
- Rajashekhar V Ballari
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | | | | |
Collapse
|
29
|
Luber F, Demmel A, Hosken A, Busch U, Engel KH. Apricot DNA as an indicator for persipan: detection and quantitation in marzipan using ligation-dependent probe amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5853-5858. [PMID: 22612459 DOI: 10.1021/jf301202s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The confectionery ingredient marzipan is exclusively prepared from almond kernels and sugar. The potential use of apricot kernels, so-called persipan, is an important issue for the quality assessment of marzipan. Therefore, a ligation-dependent probe amplification (LPA) assay was developed that enables a specific and sensitive detection of apricot DNA, as an indicator for the presence of persipan. The limit of detection was determined to be 0.1% persipan in marzipan. The suitability of the method was confirmed by the analysis of 20 commercially available food samples. The integration of a Prunus -specific probe in the LPA assay as a reference allowed for the relative quantitation of persipan in marzipan. The limit of quantitation was determined to be 0.5% persipan in marzipan. The analysis of two self-prepared mixtures of marzipan and persipan demonstrated the applicability of the quantitation method at concentration levels of practical relevance for quality control.
Collapse
Affiliation(s)
- Florian Luber
- Technische Universität München , Lehrstuhl für Allgemeine Lebensmitteltechnologie, Maximus-von-Imhof-Forum 2, D-85350 Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
30
|
Mayer F, Haase I, Graubner A, Heising F, Paschke-Kratzin A, Fischer M. Use of polymorphisms in the γ-gliadin gene of spelt and wheat as a tool for authenticity control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1350-1357. [PMID: 22264072 DOI: 10.1021/jf203945d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Partial sequencing of the γ-gliadin gene of 62 spelt and 14 soft wheat cultivars was performed. Fifty-six of the 62 spelt cultivars and 13 of the 14 soft wheat cultivars were shown to exhibit the typical spelt or soft wheat γ-gliadin sequence, respectively. Exceptions were ascribed to crossbreeding of soft wheat and spelt. Using the typical soft wheat γ-gliadin sequence, two alternative DNA-based analytical methods were developed for the detection and quantification of spelt flour "adulteration" with soft wheat. A simple and fast detection of soft wheat in spelt flours could be achieved by restriction fragment length (RFLP) analysis. In combination with lab-on-a-chip capillary gel electrophoresis (LOC-CE) the soft wheat proportion could be estimated. Heteroduplex formation served as additional confirmation for the presence of spelt besides soft wheat. Hence, RFLP-LOC-CE constitutes a perfect analysis tool for the quality control of cereal seeds and pure cultivars. A precise quantification of soft wheat "adulterations" in spelt flour down to 1% could be achieved by the developed real-time PCR method. The calibration parameters of the real-time PCR assay fulfilled the minimum performance requirements of the European Network of GMO (genetically modified organisms) Laboratories (ENGL).
Collapse
Affiliation(s)
- Franz Mayer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman(®) real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay. Anal Chim Acta 2010; 685:74-83. [PMID: 21168554 DOI: 10.1016/j.aca.2010.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/02/2010] [Accepted: 11/09/2010] [Indexed: 11/22/2022]
Abstract
Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg(-1) almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg(-1). We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman(®) probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg(-1) almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg(-1). Further, between 100 and 100,000 mg kg(-1) spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman(®) real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n=5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a specific and potentially quantitative almond detection. This PCR method detects almond at a level where severe allergic reactions should not be expected for the majority of the almond allergic individuals.
Collapse
|
33
|
|
34
|
A novel, sensitive and specific real-time PCR for the detection of traces of allergenic Brazil nut (Bertholletia excelsa) in processed foods. Anal Bioanal Chem 2010; 398:2279-88. [DOI: 10.1007/s00216-010-4072-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/26/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
35
|
Nakamura S, Ohtsubo K. PCR method for the detection and identification of cultivars of rice flours used in yeast leavened breads containing both wheat and rice flours. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2010.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Celiac disease diagnosis and gluten-free food analytical control. Anal Bioanal Chem 2010; 397:1743-53. [DOI: 10.1007/s00216-010-3753-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 01/14/2023]
|
37
|
Debnath J, Martin A, Gowda LR. A polymerase chain reaction directed to detect wheat glutenin: Implications for gluten-free labelling. Food Res Int 2009. [DOI: 10.1016/j.foodres.2009.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Khairalla KMS, Aradaib IE, Bakhiet AO, Hassan T, Hago BE, Saeed AR. A simple and rapid assay for specific identification of bovine derived products in biocomplex materials. Pak J Biol Sci 2009; 10:1170-4. [PMID: 19069911 DOI: 10.3923/pjbs.2007.1170.1174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A simple and rapid method for specific identification of beef or bovine-derived products in processed food and in animal feed concentrates was developed and evaluated using Polymerase Chain Reaction (PCR). The mitochondrial cytochrome-b (mtcyt-b) gene was used as a target DNA for PCR amplification. Three primers derived from a highly conserved region of bovine mtcyt-b gene were used. The outer pair of primers (RSL1 and CSR2) produced a 365 base pair (bp) PCR ampilicon from bovine DNA, while the internal semi-nested pair of primers (CSL1 and CSR2) were used to amplify a 284 bp PCR ampilicon, internal to the annealing sites of primers (RSL1 and CSR2). Both ampilicons were identified easily after visualization on agarose gel stained with ethidium bromide. The specificity studies indicated that the primary or the semi-nested PCR products were not amplified from DNA extracted from different ruminant species including, sheep, goat and ghazals; or from non-ruminant animals including camels, horses and pigs. Also was found very sensitive because could detect 0.001% (W/V) of bovine mtcyt-b gene. The semi-nested amplification was necessary to increase the sensitivity of the PCR assay and to confirm the identity of the primary PCR ampilicons. The described PCR assay detected the primary and the semi-nested PCR ampilicons from different animal feed concentrates containing bovine-derived product including, canned food, poultry and dairy feed concentrates. The described PCR assay should facilitate rapid detection of beef and bovine-derived products in processed food and in animal feed concentrates.
Collapse
Affiliation(s)
- Khairalla M S Khairalla
- Department of Molecular Biology, Faculty of Medical Laboratories, The National Ribat University, Khartoum, Sudan
| | | | | | | | | | | |
Collapse
|
39
|
Nassef HM, Bermudo Redondo MC, Ciclitira PJ, Ellis HJ, Fragoso A, O’Sullivan CK. Electrochemical Immunosensor for Detection of Celiac Disease Toxic Gliadin in Foodstuff. Anal Chem 2008; 80:9265-71. [DOI: 10.1021/ac801620j] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hossam M. Nassef
- Nanobiotechnology & Bioanalysis Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain, Division of Nutritional Sciences, Rayne Institute, King’s College London, St. Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, U.K., and Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 barcelona, Spain
| | - M. Carmen Bermudo Redondo
- Nanobiotechnology & Bioanalysis Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain, Division of Nutritional Sciences, Rayne Institute, King’s College London, St. Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, U.K., and Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 barcelona, Spain
| | - Paul J. Ciclitira
- Nanobiotechnology & Bioanalysis Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain, Division of Nutritional Sciences, Rayne Institute, King’s College London, St. Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, U.K., and Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 barcelona, Spain
| | - H. Julia Ellis
- Nanobiotechnology & Bioanalysis Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain, Division of Nutritional Sciences, Rayne Institute, King’s College London, St. Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, U.K., and Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 barcelona, Spain
| | - Alex Fragoso
- Nanobiotechnology & Bioanalysis Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain, Division of Nutritional Sciences, Rayne Institute, King’s College London, St. Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, U.K., and Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 barcelona, Spain
| | - Ciara K. O’Sullivan
- Nanobiotechnology & Bioanalysis Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007 Tarragona, Spain, Division of Nutritional Sciences, Rayne Institute, King’s College London, St. Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, U.K., and Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 barcelona, Spain
| |
Collapse
|
40
|
Brežná B, Dudášová H, Kuchta T. A novel real-time polymerase chain reaction method for the qualitative detection of pistachio in food. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0923-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Real-time PCR systems for the detection of the gluten-containing cereals wheat, spelt, kamut, rye, barley and oat. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0937-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Specific discrimination of chicken DNA from other poultry DNA in processed foods using the polymerase chain reaction. Biosci Biotechnol Biochem 2008; 72:909-13. [PMID: 18323631 DOI: 10.1271/bbb.70662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, specific discrimination of chicken DNA contamination in processed foods using the polymerase chain reaction was investigated. The primer pair was designed to amplify a 102-bp fragment of the chicken mitochondrial 16S ribosomal RNA gene. While the DNA from chicken meat was amplified, the DNA from other poultry meat, mammalian meat, fish, shellfish, and cereals was not amplified. The primer amplified DNA fragments derived from model processed and nonprocessed food samples containing 0.001, 0.01, 0.1, 1, 10, and 100% chicken.
Collapse
|
43
|
Affiliation(s)
- Herbert Wieser
- Deutsche Forschungsanstalt für Lebensmittelchemie and Hans-Dieter-Belitz-Institut für Mehl- und Eiweißforschung, Lichtenbergstr. 4, D-85748 Garching, Germany
- Corresponding author. Phone: +49 89 289 13260. Fax: +49 89 289 14183. E-mail:
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie and Hans-Dieter-Belitz-Institut für Mehl- und Eiweißforschung, Lichtenbergstr. 4, D-85748 Garching, Germany
| |
Collapse
|
44
|
Némedi E, Ujhelyi G, Gelencsér É. Detection of gluten contamination with PCR method. ACTA ALIMENTARIA 2007. [DOI: 10.1556/aalim.36.2007.2.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
A novel real-time polymerase chain reaction method for the detection of pecan nuts in food. Eur Food Res Technol 2007. [DOI: 10.1007/s00217-007-0639-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Srinivasan U, Jones E, Carolan J, Feighery C. Immunohistochemical analysis of coeliac mucosa following ingestion of oats. Clin Exp Immunol 2006; 144:197-203. [PMID: 16634791 PMCID: PMC1809658 DOI: 10.1111/j.1365-2249.2006.03052.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2006] [Indexed: 01/25/2023] Open
Abstract
There is now considerable clinical evidence that oats do not activate coeliac disease. Nonetheless, a reluctance to include oats in the gluten-free diet remains. Because gluten-induced damage is accompanied by activation of the gastrointestinal immune system, the purpose of this study was to investigate if similar changes were induced by oats ingestion. Small intestinal histological sections from 10 patients who ingested 50 g of oats daily for 3 months were investigated for possible evidence of immune activation. Tissue obtained before and after oats challenge was stained with a series of antibodies directed against the following molecules: human leucocyte antigen D-related (HLA-DR), Ki-67, CD25, CD54 [intercellular adhesion molecule 1 (ICAM-1)] and mast cell tryptase. None of the patients developed clinical or laboratory evidence of adverse effects. The distribution of intestinal HLA-DR expression was not affected by oats ingestion and the crypt epithelium remained unstained. In the pre-oats biopsies, the percentage of Ki-67 positive enterocytes, 29.5 +/- 6.9 [95% confidence interval (CI) 13.9-45.0] did not differ significantly from that found in post-oats biopsies, 41.2 +/- 3.7 (95% CI, 32.8-49.6), P = 0.19, not significant. Furthermore, oats ingestion did not alter the number of CD25 positive and tryptase positive cells. Finally, the distribution and intensity of ICAM-1 staining was unchanged by dietary oats. In summary, detailed immunohistological studies of biopsies from patients ingesting oats for 3 months did not reveal evidence of immune activation. Together with other reported findings, this study strengthens the view that oats can be included safely in the diet of gluten sensitive patients.
Collapse
Affiliation(s)
- U Srinivasan
- Department of Immunology, Trinity College Dublin and St James's Hospital, Dublin 8, Ireland
| | | | | | | |
Collapse
|
47
|
Brežná B, Hudecová L, Kuchta T. A novel real-time polymerase chain reaction (PCR) method for the detection of walnuts in food. Eur Food Res Technol 2006. [DOI: 10.1007/s00217-005-0214-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Abdullah T, Radu S, Hassan Z, Hashim JK. Detection of genetically modified soy in processed foods sold commercially in Malaysia by PCR-based method. Food Chem 2006. [DOI: 10.1016/j.foodchem.2005.07.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Torp A, Olesen A, Sten E, Stahl Skov P, Bindslev-Jensen U, Poulsen L, Bindslev-Jensen C, Andersen S. Specific, semi-quantitative detection of the soybean allergen Gly m Bd 30K DNA by PCR. Food Control 2006. [DOI: 10.1016/j.foodcont.2004.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Brežná B, Hudecová L, Kuchta T. Detection of pea in food by real-time polymerase chain reaction (PCR). Eur Food Res Technol 2005. [DOI: 10.1007/s00217-005-0168-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|