1
|
Khairnar RC, Parihar N, Prabhavalkar KS, Bhatt LK. Emerging targets signaling for inflammation in Parkinson's disease drug discovery. Metab Brain Dis 2022; 37:2143-2161. [PMID: 35536461 DOI: 10.1007/s11011-022-00999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) patients not only show motor features such as bradykinesia, tremor, and rigidity but also non-motor features such as anxiety, depression, psychosis, memory loss, attention deficits, fatigue, sexual dysfunction, gastrointestinal issues, and pain. Many pharmacological treatments are available for PD patients; however, these treatments are partially or transiently effective since they only decrease the symptoms. As these therapies are unable to restore dopaminergic neurons and stop the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is required. The current review summarizes novel targets for PD, that can be utilized to identify disease-modifying treatments.
Collapse
Affiliation(s)
- Rhema Chandan Khairnar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
2
|
Snitow ME, Bhansali RS, Klein PS. Lithium and Therapeutic Targeting of GSK-3. Cells 2021; 10:255. [PMID: 33525562 PMCID: PMC7910927 DOI: 10.3390/cells10020255] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lithium salts have been in the therapeutic toolbox for better or worse since the 19th century, with purported benefit in gout, hangover, insomnia, and early suggestions that lithium improved psychiatric disorders. However, the remarkable effects of lithium reported by John Cade and subsequently by Mogens Schou revolutionized the treatment of bipolar disorder. The known molecular targets of lithium are surprisingly few and include the signaling kinase glycogen synthase kinase-3 (GSK-3), a group of structurally related phosphomonoesterases that includes inositol monophosphatases, and phosphoglucomutase. Here we present a brief history of the therapeutic uses of lithium and then focus on GSK-3 as a therapeutic target in diverse diseases, including bipolar disorder, cancer, and coronavirus infections.
Collapse
Affiliation(s)
| | | | - Peter S. Klein
- Department of Medicine, Perelman School of Medicine,
University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; (M.E.S.); (R.S.B.)
| |
Collapse
|
3
|
Abstract
New data have emerged over the past 10 years regarding the efficacy and mechanisms of action of lithium. This article briefly summarises the evidence for the use of lithium to treat affective disorders and psychosis, reviews its putative anti-suicidal effect, highlights new research on its mechanism of action and provides an update on some important side-effects and consequences of its use.
Collapse
|
4
|
Lei P, Ayton S, Appukuttan AT, Moon S, Duce JA, Volitakis I, Cherny R, Wood SJ, Greenough M, Berger G, Pantelis C, McGorry P, Yung A, Finkelstein DI, Bush AI. Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Mol Psychiatry 2017; 22:396-406. [PMID: 27400857 DOI: 10.1038/mp.2016.96] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 02/05/2023]
Abstract
Lithium is a first-line therapy for bipolar affective disorder. However, various adverse effects, including a Parkinson-like hand tremor, often limit its use. The understanding of the neurobiological basis of these side effects is still very limited. Nigral iron elevation is also a feature of Parkinsonian degeneration that may be related to soluble tau reduction. We found that magnetic resonance imaging T2 relaxation time changes in subjects commenced on lithium therapy were consistent with iron elevation. In mice, lithium treatment lowers brain tau levels and increases nigral and cortical iron elevation that is closely associated with neurodegeneration, cognitive loss and parkinsonian features. In neuronal cultures lithium attenuates iron efflux by lowering tau protein that traffics amyloid precursor protein to facilitate iron efflux. Thus, tau- and amyloid protein precursor-knockout mice were protected against lithium-induced iron elevation and neurotoxicity. These findings challenge the appropriateness of lithium as a potential treatment for disorders where brain iron is elevated (for example, Alzheimer's disease), and may explain lithium-associated motor symptoms in susceptible patients.
Collapse
Affiliation(s)
- P Lei
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, China.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - S Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - A T Appukuttan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - S Moon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - J A Duce
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, West Yorkshire, UK
| | - I Volitakis
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - R Cherny
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - S J Wood
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,School of Psychology, University of Birmingham, Birmingham, UK
| | - M Greenough
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - G Berger
- ORYGEN Research Centre, University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,Department of Child and Adolescent Psychiatry, University of Zürich, Zurich, Switzerland
| | - C Pantelis
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC, Australia
| | - P McGorry
- ORYGEN Research Centre, University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - A Yung
- Institute of Brain, Behaviour and Mental Health, University of Manchester and Greater Manchester West NHS Mental Health Trust, Manchester, UK
| | - D I Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - A I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Kanazawa LK, Vecchia DD, Wendler EM, Hocayen PDA, Beirão PS, de Mélo ML, dos Reis Lívero FA, Corso CR, Stipp MC, Acco A, Andreatini R. Effects of acute and chronic quercetin administration on methylphenidate-induced hyperlocomotion and oxidative stress. Life Sci 2017; 171:1-8. [DOI: 10.1016/j.lfs.2017.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 12/19/2022]
|
6
|
Can A, Frost DO, Cachope R, Cheer JF, Gould TD. Chronic lithium treatment rectifies maladaptive dopamine release in the nucleus accumbens. J Neurochem 2016; 139:576-585. [PMID: 27513916 DOI: 10.1111/jnc.13769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/21/2016] [Accepted: 07/26/2016] [Indexed: 12/15/2022]
Abstract
Chronic lithium treatment effectively reduces behavioral phenotypes of mania in humans and rodents. The mechanisms by which lithium exerts these actions are poorly understood. Pre-clinical and clinical evidence have implicated increased mesolimbic dopamine (DA) neurotransmission with mania. We used fast-scan cyclic voltammetry to characterize changes in extracellular DA concentrations in the nucleus accumbens (NAc) core evoked by 20 and 60 Hz electrical stimulation of the ventral tegmental area (VTA) in C57BL6/J mice treated either acutely or chronically with lithium. The effects of chronic lithium treatment on the availability of DA for release were assessed by depleting readily releasable DA using short inter-train intervals, or administering d-amphetamine acutely to mobilize readily releasable DA. Chronic, but not acute, lithium treatment decreased the amplitude of DA responses in the NAc following 60 Hz pulse train stimulation. Neither lithium treatment altered the kinetics of DA release or reuptake. Chronic treatment did not impact the progressive reduction in the amplitude of DA responses when, using 20 or 60 Hz pulse trains, the VTA was stimulated every 6 s to deplete DA. Specifically, the amplitude of DA responses to 60 Hz pulse trains was initially reduced compared to control mice, but by the fifth pulse train, there was no longer a treatment effect. However, chronic lithium treatment attenuated d-amphetamine-induced increases in DA responses to 20 Hz pulse trains stimulation. Our data suggest that long-term administration of lithium may ameliorate mania phenotypes by normalizing the readily releasable DA pool in VTA axon terminals in the NAc. Read the Editorial Highlight for this article on Page 520.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Douglas O Frost
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Joseph F Cheer
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Lei P, Ayton S, Bush AI, Adlard PA. GSK-3 in Neurodegenerative Diseases. Int J Alzheimers Dis 2011; 2011:189246. [PMID: 21629738 PMCID: PMC3100544 DOI: 10.4061/2011/189246] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/07/2011] [Indexed: 12/12/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) regulates multiple cellular processes, and its dysregulation is implicated in the pathogenesis of diverse diseases. In this paper we will focus on the dysfunction of GSK-3 in Alzheimer's disease and Parkinson's disease. Specifically, GSK-3 is known to interact with tau, β-amyloid (Aβ), and α-synuclein, and as such may be crucially involved in both diseases. Aβ production, for example, is regulated by GSK-3, and its toxicity is mediated by GSK-induced tau phosphorylation and degeneration. α-synuclein is a substrate for GSK-3 and GSK-3 inhibition protects against Parkinsonian toxins. Lithium, a GSK-3 inhibitor, has also been shown to affect tau, Aβ, and α-synuclein in cell culture, and transgenic animal models. Thus, understanding the role of GSK-3 in neurodegenerative diseases will enhance our understanding of the basic mechanisms underlying the pathogenesis of these disorders and also facilitate the identification of new therapeutic avenues.
Collapse
Affiliation(s)
- Peng Lei
- Mental Health Research Institute, 155 Oak Street, Parkville, VIC 3052, Australia
| | | | | | | |
Collapse
|
8
|
Tandon A, Bhalla P, Nagpaul JP, Dhawan DK. Effect of Lithium on Rat Cerebrum Under Different Dietary Protein Regimens. Drug Chem Toxicol 2008; 29:333-44. [PMID: 16931437 DOI: 10.1080/01480540600820122] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study was designed to investigate the effects of lithium in adult rat brain under different dietary protein regimens. Lithium as carbonate was given at a dose of 1.1 g/kg diet to female rats fed normal (18% protein), low protein (8% protein), and high protein (30% protein) diets for 30 days. Lithium treatment resulted in a significant decrease in the levels of norepinephrine, dopamine, and serotonin in the cerebrum of the rat brain. Further, administration of lithium to rats fed low protein (LP) and high protein (HP) diets also showed a significant decrease in the levels of norepinephrine and dopamine but caused no significant change in the serotonin concentration. Lithium administration to normal diet, LP, and HP groups resulted in a significant increase in the activities of acetylcholinesterase and monoamine oxidase. Lithium treatment led to decrease in the activity of enzyme Na+ K+ ATPase in all groups. On the second day, the LP group showed enhanced transfer latency (TL), a dependent variable to study elevated plus-maze test, whereas HP diet went from 34% reduction to normal. On the other hand, lithium administration restored the already enhanced TL in the LP group. The study concludes that lithium treatment to protein-deficient cases may not further aggravate the effects of protein-deficient conditions, but it may afford protection.
Collapse
Affiliation(s)
- Aparna Tandon
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | | | | |
Collapse
|
9
|
Gould TD, O'Donnell KC, Picchini AM, Manji HK. Strain differences in lithium attenuation of d-amphetamine-induced hyperlocomotion: a mouse model for the genetics of clinical response to lithium. Neuropsychopharmacology 2007; 32:1321-33. [PMID: 17151598 DOI: 10.1038/sj.npp.1301254] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lithium attenuation of stimulant-induced hyperlocomotion is a rodent model that may be useful both to understand the mechanism of the therapeutic action of lithium and to develop novel lithium-mimetic compounds. To lay the foundation for future investigations into the neurobiology and genetics of lithium as a therapeutic agent, we studied the effect of lithium on d-amphetamine-induced hyperlocomotion in 12 (3 outbred) mouse strains. In our initial screening, mice received either (1) no drugs, (2) LiCl only, (3) d-amphetamine only, or (4) d-amphetamine and LiCl. Whereas there was no significant effect of LiCl alone on locomotion in any strain, there was a large degree of strain variation in the effects of LiCl combined with d-amphetamine. LiCl attenuated d-amphetamine-induced hyperlocomotion in C57BL/6J, C57BL/6Tac, Black Swiss, and CBA/J mice, whereas CD-1, FVB/NJ, SWR/J, and NIH Swiss mice, which were responsive to d-amphetamine, showed no significant effect of LiCl. d-Amphetamine-induced hyperlocomotion in the C3H/HeJ strain was increased by pretreatment with lithium. A subset of strains were treated for 4 weeks with lithium carbonate before the d-amphetamine challenge, and in each of these strains, lithium produced effects identical to those seen following acute administration. Strain responsiveness to lithium was not dependent upon the dose of either d-amphetamine or LiCl. Further, the results are not explained by brain lithium levels, which suggests that these behavioral responses to lithium are under the control of inherent genetic or other biological mechanisms specific to the effects of lithium on brain function.
Collapse
Affiliation(s)
- Todd D Gould
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Program, National Institute of Mental Health, NIH, HHS, Bethesda, MD 20892-3711, USA.
| | | | | | | |
Collapse
|
10
|
Montezinho LP, Mørk A, Duarte CB, Penschuck S, Geraldes CF, Castro MMC. Effects of mood stabilizers on the inhibition of adenylate cyclase via dopamine D(2)-like receptors. Bipolar Disord 2007; 9:290-7. [PMID: 17430304 DOI: 10.1111/j.1399-5618.2007.00354.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The mood stabilizing drugs lithium, carbamazepine and valproate modulate brain adenosine monophosphate (cAMP) levels, which are assumed to be elevated in bipolar disorder patients. The aim of this work was to investigate how these three mood stabilizing agents affect the regulation of cAMP levels by dopamine D(2)-like receptors in vitro in rat cortical neurons in culture and in vivo in the rat prefrontal cortex. METHODS The production of cAMP was measured in the cultured cortical neurons or in microdialysis samples collected from the prefrontal cortex of freely moving rats using the [8-(3)H] and [(125)I] radioimmunoassay kits. RESULTS In vitro and in vivo data showed that the treatment with the mood stabilizing drugs had no effect on basal cAMP levels in vitro, but had differential effects in vivo. Direct stimulation of adenylate cyclase (AC) with forskolin increased cAMP levels both in vitro and in vivo, and this effect was significantly inhibited by all three mood stabilizers. Activation of dopamine D(2)-like receptors with quinpirole partially inhibited forskolin-induced increase in cAMP in untreated cultures, but no effect was observed in cortical neuron cultures treated with the mood stabilizing drugs. Similar results were obtained by chronic treatment with lithium and valproate in the prefrontal cortex in vivo. However, surprisingly, in carbamazepine-treated rats the activation of dopamine D(2)-like receptors enhanced the responsiveness of AC to subsequent activation by forskolin, possibly as a consequence of chronic inhibition of the activity of the enzyme. CONCLUSIONS It was shown that each of these drugs affects basal- and forskolin-evoked cAMP levels in a distinct way, resulting in differential responses to dopamine D(2)-like receptors activation.
Collapse
Affiliation(s)
- Liliana P Montezinho
- Department of Biochemistry, NMR Centre, and Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
11
|
Bourin M, Prica C. The role of mood stabilisers in the treatment of the depressive facet of bipolar disorders. Neurosci Biobehav Rev 2007; 31:963-75. [PMID: 17462734 DOI: 10.1016/j.neubiorev.2007.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 11/17/2022]
Abstract
It was previously shown that available mood stabilisers are used to treat bipolar depression. As part of the natural course of illness, patients with bipolar disorder often suffer from episodes of depression more frequently and for longer durations than mania. A major challenge in the treatment of bipolar depression is the tendency for antidepressant medications, particularly tricyclic antidepressants, to precipitate episodes of mania, or to increase cycle frequency or symptom intensity. Thus, exploring the utility of mood stabilisers as monotherapy for bipolar depression is important. The aim of this review it to collate data involving the effects of some mood stabilisers like lithium, carbamazepine, valproate and lamotrigine in depressive aspects of bipolar disorder, but as well using an animal model of depression, to understand their mechanism of action.
Collapse
Affiliation(s)
- Michel Bourin
- EA 3256 Neurobiologie de l'anxiété et de la dépression, Faculté de Médecine 1, rue Gaston Veil BP 53508, 44035 Nantes cedex 01, France.
| | | |
Collapse
|
12
|
Montezinho LP, Castro MMCA, Duarte CB, Penschuck S, Geraldes CFGC, Mørk A. The interaction between dopamine D2-like and beta-adrenergic receptors in the prefrontal cortex is altered by mood-stabilizing agents. J Neurochem 2006; 96:1336-48. [PMID: 16478526 DOI: 10.1111/j.1471-4159.2005.03654.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Several studies have suggested the involvement of biogenic monoaminergic neurotransmission in bipolar disorder and in the therapy for this disease. In this study, the effects of the mood-stabilizing drugs lithium, carbamazepine or valproate on the dopaminergic and adrenergic systems, particularly on D2-like and beta-adrenergic receptors, were studied both in cultured rat cortical neurones and in rat prefrontal cortex. In vitro and in vivo data showed that stimulation of beta-adrenergic receptors with isoproterenol increased cyclic adenosine monophosphate (cAMP) levels and this effect was significantly inhibited by lithium, carbamazepine or valproate. The activation of dopamine D2-like receptors with quinpirole decreased the isoproterenol-induced rise in cAMP in control conditions. This inhibition was observed in vivo after chronic treatment of the rats with carbamazepine or valproate, but not after treatment with lithium or in cultured rat cortical neurones after 48 h exposure to the three mood stabilizers. Dopamine D2 and beta1-adrenergic receptors were found to be co-localized in prefrontal cortical cells, as determined by immunohistochemistry, but western blot experiments revealed that receptor levels were differentially affected by treatment with the three mood stabilizers. These data show that mood stabilizers affect D2 receptor-mediated regulation of beta-adrenergic signalling and that each drug acts by a unique mechanism.
Collapse
Affiliation(s)
- Liliana P Montezinho
- Department of Biochemistry, Faculty of Science and Technoloigy, University of Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
13
|
Serretti A, Artioli P. Predicting response to lithium in mood disorders: role of genetic polymorphisms. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 3:17-30. [PMID: 12562213 DOI: 10.2165/00129785-200303010-00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lithium is considered to be the first choice mood stabilizer in recurrent mood disorders. Its widespread and large-scale use is the result of its proven efficacy. In spite of this fact, patients have been observed to show a variable response to lithium treatment: in some cases it is completely effective in preventing manic or depressive relapses, while in other cases it appears to show no influence on the disease course. The possible definition of a genetic liability profile for adverse effects and efficacy will be of great help, as lithium therapy needs at least 6 months to be effective in stabilizing mood disorders. During the last few years, a number of groups have reported possible liability genes. Lithium long-term prophylactic efficacy has been associated with serotonin transporter protein, tryptophan hydroxylase and inositol polyphosphate 1-phosphatase variants. A number of other candidate genes and anonymous markers did not yield positive associations. Therefore, even if some positive results have been reported, no unequivocal susceptibility gene for lithium efficacy has been identified. Although the available data may not currently allow a meaningful prediction of lithium response, future research is aimed at the development of individualized treament of mood disorders, including the possibility of 'pharmacological genetic counseling'.
Collapse
Affiliation(s)
- Alessandro Serretti
- Department of Psychiatry, Vita-Salute University, San Raffaele Institute, Milan, Italy.
| | | |
Collapse
|
14
|
Serretti A, Lorenzi C, Lilli R, Mandelli L, Pirovano A, Smeraldi E. Pharmacogenetics of lithium prophylaxis in mood disorders: analysis of COMT, MAO-A, and Gbeta3 variants. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 114:370-9. [PMID: 11992559 DOI: 10.1002/ajmg.10357] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We studied the possible association between the prophylactic efficacy of lithium in mood disorders and the following gene variants: catechol-O-methyltransferase (COMT) G158A, monoamine oxydase A (MAO-A) 30-bp repeat, G-protein beta 3-subunit (Gbeta3) C825T. A total of 201 subjects affected by bipolar (n = 160) and major depressive (n = 41) disorder were followed prospectively for an average of 59.8 months and were typed for their gene variants using PCR techniques. COMT, MAO-A, and Gbeta3 variants were not associated with lithium outcome, even when possible stratification effects such as sex, polarity, age at onset, duration of lithium treatment, and previous episodes were included in the model. The pathways influenced by those variants are not therefore involved with long-term lithium outcome in our sample.
Collapse
Affiliation(s)
- Alessandro Serretti
- Department of Psychiatry, Vita-Salute University, Fondazione Centro San Raffaele del Monte Tabor, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Pharmacogenetics will be of substantial help in the field of affective disorders pharmacotherapy. The possible definition of a genetic liability profile for drug side-effects and efficacy will be of great help in treatments that need weeks to months to be effective. During the last few years, a number of groups have reported possible liability genes. The efficacy and time of onset of selective serotonin reuptake inhibitors have been associated with a polymorphism in the promoter region of the transporter (SERTPR) in many independent studies, while variants at the tryptophan hydroxylase gene, 5-HT2a receptor and G-protein beta3 have been associated with them in pilot studies. Lithium long-term prophylactic efficacy has been associated with SERTPR, TPH and inositol polyphosphate 1-phosphatase variants, though in unreplicated samples. A number of further candidate genes were not associated with these treatments. In conclusion, both acute and long-term treatments appear to be, at least to some extent, under genetic influence and preliminary data have identified possible liability genes.
Collapse
Affiliation(s)
- Alessandro Serretti
- Department of Psychiatry, Instituto Scientifico H San Raffaele, Vita-Salute University, Fondazione Centro San Raffaele del Monte Tabor, Via Stamira D'Ancona 20, 20127, Milan, Italy.
| | | | | |
Collapse
|
16
|
Serretti A. Lithium long-term treatment in mood disorders: clinical and genetic predictors. Pharmacogenomics 2002; 3:117-29. [PMID: 11966408 DOI: 10.1517/14622416.3.1.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lithium is the most widely used long-term treatment for recurrent mood disorders. Despite its proven efficacy, patients show a variable response, ranging from complete efficacy to no influence at all. This paper reviews possible predictors of response focusing on molecular genetic studies. The functional polymorphism in the upstream regulatory region of the serotonin transporter gene (5-HTTLPR) has been associated with lithium long-term efficacy in two independent studies, marginal associations have been reported for tryptophan hydroxylase and inositol polyphosphate 1-phosphatase (INPP1). A number of other candidate genes and anonymous markers did not yield positive associations. Therefore, even though some positive results have been reported, no unequivocal susceptibility gene for lithium efficacy has been identified.
Collapse
Affiliation(s)
- Alessandro Serretti
- Department of Psychiatry, Istituto Scientifico H San Raffaele, Vita-Salute University, San Raffaele Institute, via Stamira D'Ancona 20, 20127 Milan, Italy.
| |
Collapse
|
17
|
Antonelli T, Ferioli V, Lo Gallo G, Tomasini MC, Fernandez M, O'Connor WT, Glennon JC, Tanganelli S, Ferraro L. Differential effects of acute and short-term lithium administration on dialysate glutamate and GABA levels in the frontal cortex of the conscious rat. Synapse 2000; 38:355-62. [PMID: 11020239 DOI: 10.1002/1098-2396(20001201)38:3<355::aid-syn15>3.0.co;2-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we employed in vivo microdialysis in the frontal cortex of the awake rat to investigate the effects of acute and short-term (twice daily, 3 days) lithium chloride administration (1, 2, and 4 meq/kg, s.c.) on local dialysate glutamate and GABA levels. Acute lithium (1 meq/kg) failed to influence cortical glutamate levels while the higher (2 and 4 meq/kg) doses increased (+38 +/- 6% of basal levels) and reduced (-27 +/- 4%) cortical glutamate levels, respectively. Cortical GABA levels were affected by acute lithium only at the highest 4 meq/kg dose (+62 +/- 6%). Furthermore, these effects were prevented by tetrodotoxin (1 microM) and low-calcium (0.2 mM) medium perfusion. Following short-term administration, lithium increased (+58 +/- 4%) cortical dialysate glutamate levels at the 1 meq/kg dose, was ineffective at 2 meq/kg, while the effect of the 4 meq/kg dose was similar to that observed after acute administration. Interestingly, intracortical perfusion with the GABA(B) receptor antagonist CGP 35348 (100 microM) reversed the acute lithium (4 meq/kg)-induced decrease in glutamate levels. Taken together, these findings indicate a differential dose and duration dependent effect of lithium on cortical dialysate glutamate levels involving both a direct enhancement and an indirect inhibition that is mediated via an activation of local GABA(B) receptor. These findings may be relevant for the therapeutic effects of the drug.
Collapse
Affiliation(s)
- T Antonelli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Serretti A, Lilli R, Lorenzi C, Franchini L, Di Bella D, Catalano M, Smeraldi E. Dopamine receptor D2 and D4 genes, GABA(A) alpha-1 subunit genes and response to lithium prophylaxis in mood disorders. Psychiatry Res 1999; 87:7-19. [PMID: 10512150 DOI: 10.1016/s0165-1781(99)00056-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lithium is an effective prophylactic agent in mood disorders, and genetic factors are likely to modulate individual susceptibility to lithium treatment. The aim of this study is to investigate the influence of dopamine receptor D2 (DRD2), D4 exon 3 (DRD4), and gamma-aminobutyric acid type A (GABA(A)) receptor alpha-1 subunit (GABRA1) gene variants on the efficacy of lithium prophylaxis in mood disorders. Patients with mood disorders (N = 125: bipolar subtype, n = 100; major depressive disorder subtype, n = 25) were followed prospectively for an average of 53 months and were typed for DRD2 (Ser311/Cys311: n = 121, VNTR: n = 63), DRD4 (n = 125) and GABRA1 (n = 61) variants using polymerase chain reaction (PCR) techniques. DRD2, DRD4 and GABRA1 variants were not associated with response to lithium. A trend was observed toward a better outcome of DRD4* 2/4 subjects, but it was due to only two subjects. Consideration of possible stratification effects like gender, polarity, family history, age at onset and duration of lithium treatment did not reveal any association either. DRD2, DRD4 and GABRA1 variants therefore do not appear to be associated with the outcome of lithium prophylaxis in mood disorders.
Collapse
Affiliation(s)
- A Serretti
- Istituto Scientifico Ospedale San Raffaele, Department of Neuropsychiatric Sciences, University of Milan School of Medicine, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Dziedzicka-Wasylewska M. The effect of imipramine on the amount of mRNA coding for rat dopamine D2 autoreceptors. Eur J Pharmacol 1997; 337:291-6. [PMID: 9430428 DOI: 10.1016/s0014-2999(97)01286-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several reports have investigated the possibility that chronic antidepressant treatment alters dopamine autoreceptors. Since radioligand binding studies do not differentiate between presynaptic and postsynaptic dopamine D2 receptors in the rat forebrain, we used the in situ hybridization technique to measure the amount of mRNA coding for dopamine D2 autoreceptors in the dopaminergic cell bodies. The amount of mRNA coding for dopamine D2 autoreceptors in the rat mesencephalon was analyzed following acute and repeated treatment with imipramine, the most widely used antidepressant drug. No significant changes in the amount of mRNA were observed in the substantia nigra of the rat, after acute or repeated treatment with imipramine. In the ventral tegmental area repeated treatment with imipramine (14 days, twice a day) increased the amount of dopamine D2 autoreceptor mRNA in the lateral part of this brain region (containing nucleus paranigralis and n. parabrachialis pigmentosus), without there being any significant changes in the more medial part (n. interfascicularis and n. linearis). The increase in the amount of dopamine D2 autoreceptor mRNA in the ventral tegmental area started to be significant 72 h after acute imipramine. Moreover, this increase was also observed after 14 drug-free days following the acute administration of the drug. The results indicate the different sensitivity of neurons synthesizing dopamine autoreceptors for imipramine. Another interesting finding is the observation that acute treatment with imipramine seems to be sufficient to trigger changes as a function of time regardless of whether imipramine is again administered, providing a possible explanation for the delayed therapeutic effect of the drug.
Collapse
|