1
|
Yu H, Yu J, Wang M, Jiang X. Characterization of Prognostic Apoptosis-Related Gene Signature to Evaluate Glioma Immune Microenvironment and Experimental Verification. Genet Test Mol Biomarkers 2024; 28:22-32. [PMID: 38294358 DOI: 10.1089/gtmb.2023.0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Purpose: Recently, apoptosis-related genes were shown to modulate cancer immunity. However, the role of apoptosis-related genes in the glioma immune microenvironment (GIME) remains unknown. This study aimed to explore the prognostic value of apoptosis-related genes in glioma. Methods: Doxorubicin was used to induce glioma cell apoptosis, and four differentially expressed apoptosis-related genes were identified: CREM, TNFSF12, PEA15, and PRKCD. Kaplan-Meier analyses, receiver operating characteristic curve analyses, and nomograms were established to determine the relationship between risk markers and the prognosis of patients with glioma. Results: Risk biomarkers were significantly associated with overall survival, immune cell infiltration, and immune checkpoints in patients with glioma. Somatic mutations and anti-PD-1/L1 immunotherapy were associated with worse prognosis in the high-risk group receiving anti-PD-1/L1 therapy. The expression of these four apoptosis-related genes was verified using quantitative polymerase chain reaction and immunohistochemistry, and the relationship between these four genes and apoptosis was examined using flow cytometry. Conclusions: This study suggests that apoptosis-related genes play a critical role in shaping the GIME. Assessing the apoptotic patterns of individual tumors will enhance our understanding of GIME infiltration features and lead to improved strategies for immunotherapy.
Collapse
Affiliation(s)
- Hao Yu
- Department of Neurosurgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jiapeng Yu
- Department of Neurosurgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Minjie Wang
- Department of Neurosurgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Ferraris C, Cavalli R, Panciani PP, Battaglia L. Overcoming the Blood-Brain Barrier: Successes and Challenges in Developing Nanoparticle-Mediated Drug Delivery Systems for the Treatment of Brain Tumours. Int J Nanomedicine 2020; 15:2999-3022. [PMID: 32431498 PMCID: PMC7201023 DOI: 10.2147/ijn.s231479] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
High-grade gliomas are still characterized by a poor prognosis, despite recent advances in surgical treatment. Chemotherapy is currently practiced after surgery, but its efficacy is limited by aspecific toxicity on healthy cells, tumour cell chemoresistance, poor selectivity, and especially by the blood–brain barrier (BBB). Thus, despite the large number of potential drug candidates, the choice of effective chemotherapeutics is still limited to few compounds. Malignant gliomas are characterized by high infiltration and neovascularization, and leaky BBB (the so-called blood–brain tumour barrier); surgical resection is often incomplete, leaving residual cells that are able to migrate and proliferate. Nanocarriers can favour delivery of chemotherapeutics to brain tumours owing to different strategies, including chemical stabilization of the drug in the bloodstream; passive targeting (because of the leaky vascularization at the tumour site); inhibition of drug efflux mechanisms in endothelial and cancer cells; and active targeting by exploiting carriers and receptors overexpressed at the blood–brain tumour barrier. Within this concern, a suitable nanomedicine-based therapy for gliomas should not be limited to cytotoxic agents, but also target the most important pathogenetic mechanisms, including cell differentiation pathways and angiogenesis. Moreover, the combinatorial approach of cell therapy plus nanomedicine strategies can open new therapeutical opportunities. The major part of attempted preclinical approaches on animal models involves active targeting with protein ligands, but, despite encouraging results, a few number of nanomedicines reached clinical trials, and most of them include drug-loaded nanocarriers free of targeting ligands, also because of safety and scalability concerns.
Collapse
Affiliation(s)
- Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Pier Paolo Panciani
- Clinic of Neurosurgery, Spedali Civili and University of Brescia, Brescia, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Silva VAO, Rosa MN, Tansini A, Martinho O, Tanuri A, Evangelista AF, Cruvinel Carloni A, Lima JP, Pianowski LF, Reis RM. Semi-Synthetic Ingenol Derivative from Euphorbia tirucalli Inhibits Protein Kinase C Isotypes and Promotes Autophagy and S-phase Arrest on Glioma Cell Lines. Molecules 2019; 24:molecules24234265. [PMID: 31771098 PMCID: PMC6930609 DOI: 10.3390/molecules24234265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
The identification of signaling pathways that are involved in gliomagenesis is crucial for targeted therapy design. In this study we assessed the biological and therapeutic effect of ingenol-3-dodecanoate (IngC) on glioma. IngC exhibited dose-time-dependent cytotoxic effects on large panel of glioma cell lines (adult, pediatric cancer cells, and primary cultures), as well as, effectively reduced colonies formation. Nevertheless, it was not been able to attenuate cell migration, invasion, and promote apoptotic effects when administered alone. IngC exposure promoted S-phase arrest associated with p21CIP/WAF1 overexpression and regulated a broad range of signaling effectors related to survival and cell cycle regulation. Moreover, IngC led glioma cells to autophagy by LC3B-II accumulation and exhibited increased cytotoxic sensitivity when combined to a specific autophagic inhibitor, bafilomycin A1. In comparison with temozolomide, IngC showed a mean increase of 106-fold in efficacy, with no synergistic effect when they were both combined. When compared with a known compound of the same class, namely ingenol-3-angelate (I3A, Picato®), IngC showed a mean 9.46-fold higher efficacy. Furthermore, IngC acted as a potent inhibitor of protein kinase C (PKC) activity, an emerging therapeutic target in glioma cells, showing differential actions against various PKC isotypes. These findings identify IngC as a promising lead compound for the development of new cancer therapy and they may guide the search for additional PKC inhibitors.
Collapse
Affiliation(s)
- Viviane Aline Oliveira Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
| | - Marcela Nunes Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
| | - Aline Tansini
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
| | - Olga Martinho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Amilcar Tanuri
- Laboratory of Molecular Virology, Departaments of genetics, IB, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Adriane Feijó Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
| | - Adriana Cruvinel Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
| | - João Paulo Lima
- Medical Oncology, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil;
- Medical Oncology Department, A C Camargo Cancer Center, São Paulo 01509-010, SP, Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; (V.A.O.S.); (M.N.R.); (A.T.); (O.M.); (A.F.E.); (A.C.C.)
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +55-1733216600 (ext. 7090)
| |
Collapse
|
4
|
Mahajan-Thakur S, Bien-Möller S, Marx S, Schroeder H, Rauch BH. Sphingosine 1-phosphate (S1P) signaling in glioblastoma multiforme-A systematic review. Int J Mol Sci 2017; 18:E2448. [PMID: 29149079 PMCID: PMC5713415 DOI: 10.3390/ijms18112448] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central regulator in the development of several cancer types. In recent years, intriguing information has become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM), the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5) and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq, and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its receptors in GBM. We further highlight the current insights into the signaling pathways considered fundamental for regulating the cellular processes in GMB and ultimately patient prognosis.
Collapse
Affiliation(s)
| | - Sandra Bien-Möller
- Department of Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany.
- Clinic of Neurosurgery, University Medicine Greifswald, 17487 Greifswald, Germany.
| | - Sascha Marx
- Clinic of Neurosurgery, University Medicine Greifswald, 17487 Greifswald, Germany.
| | - Henry Schroeder
- Clinic of Neurosurgery, University Medicine Greifswald, 17487 Greifswald, Germany.
| | - Bernhard H Rauch
- Department of Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
5
|
Ham SW, Jeon HY, Kim H. Verapamil augments carmustine- and irradiation-induced senescence in glioma cells by reducing intracellular reactive oxygen species and calcium ion levels. Tumour Biol 2017; 39:1010428317692244. [PMID: 28459217 DOI: 10.1177/1010428317692244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Resistance to conventional therapies and frequent recurrence are the major obstacles to the treatment of high-grade gliomas, including glioblastoma. Thus, the development of new therapeutic strategies to overcome these obstacles is necessary to improve the treatment outcomes. In this study, we found that verapamil, a pan-adenosine triphosphate-binding cassette transporter and L-type voltage-dependent calcium channel inhibitor, sensitized U87MG glioma cells to carmustine- and irradiation-induced senescence. Furthermore, our results indicated that verapamil treatment, in combination with carmustine and irradiation, rendered U87MG glioma cells and several patient-derived glioma stem cells more sensitive to therapy-induced senescence than individual or dual-combination treatments. When investigating the underlying mechanism, we found that verapamil treatment markedly decreased intracellular reactive oxygen species and calcium ion levels. Reactive oxygen species reduction with N-acetylcysteine, a reactive oxygen species scavenger, rendered U87MG glioma cells more sensitive to carmustine and irradiation whereas the protein kinase C agonist, phorbol 12-myristate 13-acetate, mitigated the effects of carmustine and irradiation. Taken together, our results indicate that verapamil may be a potent therapeutic sensitizer for increasing the effectiveness of glioblastoma treatment.
Collapse
Affiliation(s)
- Seok Won Ham
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hee-Young Jeon
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyunggee Kim
- 1 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,2 Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Therapeutic potential of cyclooxygenase-3 inhibitors in the management of glioblastoma. J Neurooncol 2015; 126:271-8. [PMID: 26508095 DOI: 10.1007/s11060-015-1976-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/25/2015] [Indexed: 12/26/2022]
Abstract
In this study we investigated the expression of COX-1, COX-2 and COX-3 mRNA in C6 glioblastoma and normal brain tissues and the effects of acetaminophen, indomethacin or metamizole treatments on the development of C6 glioblastoma in relation with COX inhibition. Glioblastoma cells were inoculated intracerebrally into frontal lobe of adult male Wistar albino rats. 10 days after inoculation, rats were treated with 150 mg/kg acetaminophen, 10 mg/kg indomethacin or 150 mg/kg metamizole. The tumor size was measured histologically and total RNA was isolated from tumor or normal brain tissue and mRNA levels of COX isoforms were determined by qRT-PCR. Our results showed the presence of COX-1, COX-2 and COX-3 expressions in both C6 glioblastoma and normal brain tissues. In tumor tissues COX-3 expression was significantly higher than normal brain tissue (p < 0.05) while there was no significant difference in COX-1 and COX-2 expressions. Acetaminophen and indomethacin decreased the tumor size by 71 and 43 % by inhibiting COX-3 mRNA expression around 87 and 91 % respectively. For the first time our study proposes a possible relationship between COX-3 mRNA expression and C6 glioblastoma development. We also suggested that the inhibition of COX-3 enzyme may be responsible for decrease in tumor size in part, the mechanism by which acetaminophen and indomethacin decreased rat C6 glioblastoma growth. However, the molecular events responsible for COX-3 effects on tumor development are still unresolved as these drugs exert their anti-cancer effect via both COX-3 dependent and independent mechanisms.
Collapse
|
7
|
The role of anti-apoptotic protein kinase Cα in response to hypericin photodynamic therapy in U-87 MG cells. Photodiagnosis Photodyn Ther 2014; 11:213-26. [DOI: 10.1016/j.pdpdt.2014.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/06/2023]
|
8
|
Hervouet E, Staehlin O, Pouliquen D, Debien E, Cartron PF, Menanteau J, Vallette FM, Olivier C. Antioxidants delay clinical signs and systemic effects of ENU induced brain tumors in rats. Nutr Cancer 2014; 65:686-94. [PMID: 23859036 DOI: 10.1080/01635581.2013.789541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
According to our previous study suggesting that antioxidant properties of phytochemicals in the diet decrease glioma aggressiveness, we used a SUVIMAX-like diet ("Supplementation en VItamines et Minéraux AntioXydants") (enriched with alpha-tocopherol, beta carotene, vitamin C, zinc, and sodium selenite), adapted to rats. The present results showed that each of the antioxidants inhibited growth of glioma cells in vitro. When used in combination for in vivo studies, we showed a highly significant delay in the clinical signs of the disease, but not a statistical significant difference in the incidence of glioma in an Ethyl-nitrosourea (ENU)-model. The SUVIMAX-like diet decreased candidate markers of tumoral aggressiveness and gliomagenesis progression. The mRNA expressions of 2 common markers in human glioma: Mn-SOD (Manganese Superoxide Dismutase) and IGFBP5 (insulin growth factor binding protein) were reduced in the tumors of rats fed the antioxidant diet. In addition, the transcripts of two markers linked to brain tumor proliferation, PDGFRb (platelet-derived growth factor receptor beta) and Ki-67, were also significantly decreased. On the whole, our results suggest a protective role for antioxidants to limit aggressiveness and to some extent, progression of gliomas, in a rat model.
Collapse
Affiliation(s)
- E Hervouet
- UMR INSERM 892-CNRS 6299, Centre de Recherche en Cancérologie Nantes-Angers, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim MJ, Kim RK, Yoon CH, An S, Hwang SG, Suh Y, Park MJ, Chung HY, Kim IG, Lee SJ. Importance of PKCδ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment. J Cell Sci 2011; 124:3084-94. [DOI: 10.1242/jcs.080119] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Brain tumors frequently recur or progress as focal masses after treatment with ionizing radiation. However, the mechanisms underlying the repopulation of tumor cells after radiation have remained unclear. In this study, we show that cellular signaling from Abelson murine leukemia viral oncogene homolog (Abl) to protein kinase Cδ (PKCδ) is crucial for fractionated-radiation-induced expansion of glioma-initiating cell populations and acquisition of resistance to anticancer treatments. Treatment of human glioma cells with fractionated radiation increased Abl and PKCδ activity, expanded the CD133-positive (CD133+) cell population that possesses tumor-initiating potential and induced expression of glioma stem cell markers and self-renewal-related proteins. Moreover, cells treated with fractionated radiation were resistant to anticancer treatments. Small interfering RNA (siRNA)-mediated knockdown of PKCδ expression blocked fractionated-radiation-induced CD133+ cell expansion and suppressed expression of glioma stem cell markers and self-renewal-related proteins. It also suppressed resistance of glioma cells to anticancer treatments. Similarly, knockdown of Abl led to a decrease in CD133+ cell populations and restored chemotherapeutic sensitivity. It also attenuated fractionated-radiation-induced PKCδ activation, suggesting that Abl acts upstream of PKCδ. Collectively, these data indicate that fractionated radiation induces an increase in the glioma-initiating cell population, decreases cellular sensitivity to cancer treatment and implicates activation of Abl–PKCδ signaling in both events. These findings provide insights that might prove pivotal in the context of ionising-radiation-based therapeutic interventions for brain tumors.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 305-600, Republic of Korea
| | - Rae-Kwon Kim
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Chang-Hwan Yoon
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Sungkwan An
- Functional Genoproteome Research Centre, Konkuk University, Seoul 143-701, Korea
| | - Sang-Gu Hwang
- Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Yongjoon Suh
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Myung-Jin Park
- Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Hee Young Chung
- Department of Microbiology, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | - In Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon 305-600, Republic of Korea
| | - Su-Jae Lee
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
10
|
Ziv-Av A, Taller D, Attia M, Xiang C, Lee HK, Cazacu S, Finniss S, Kazimirsky G, Sarid R, Brodie C. RTVP-1 expression is regulated by SRF downstream of protein kinase C and contributes to the effect of SRF on glioma cell migration. Cell Signal 2011; 23:1936-43. [PMID: 21777672 DOI: 10.1016/j.cellsig.2011.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/04/2011] [Indexed: 01/13/2023]
Abstract
Gliomas are characterized by increased infiltration into the surrounding normal brain tissue. We recently reported that RTVP-1 is highly expressed in gliomas and plays a role in the migration of these cells, however the regulation of RTVP-1 expression in these cells is not yet described. In this study we examined the role of PKC in the regulation of RTVP-1 expression and found that PMA and overexpression of PKCα and PKCε increased the expression of RTVP-1, whereas PKCδ exerted an opposite effect. Using the MatInspector software, we identified a SRF binding site on the RTVP-1 promoter. Chromatin immunoprecipitation (ChIP) assay revealed that SRF binds to the RTVP-1 promoter in U87 cells, and that this binding was significantly increased in response to serum addition. Moreover, silencing of SRF blocked the induction of RTVP-1 expression in response to serum. We found that overexpression of PKCα and PKCε increased the activity of the RTVP-1 promoter and the binding of SRF to the promoter. In contrast, overexpression of PKCδ blocked the increase in RTVP-1 expression in response to serum and the inhibitory effect of PKCδ was abrogated in cells expressing a SRFT160A mutant. SRF regulated the migration of glioma cells and its effect was partially mediated by RTVP-1. We conclude that RTVP-1 is a PKC-regulated gene and that this regulation is at least partly mediated by SRF. Moreover, RTVP-1 plays a role in the effect of SRF on glioma cell migration.
Collapse
Affiliation(s)
- Amotz Ziv-Av
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Thuringer D, Hammann A, Benikhlef N, Fourmaux E, Bouchot A, Wettstein G, Solary E, Garrido C. Transactivation of the epidermal growth factor receptor by heat shock protein 90 via Toll-like receptor 4 contributes to the migration of glioblastoma cells. J Biol Chem 2010; 286:3418-28. [PMID: 21127066 DOI: 10.1074/jbc.m110.154823] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular heat shock protein HSP90α was reported to participate in tumor cell growth, invasion, and metastasis formation through poorly understood signaling pathways. Herein, we show that extracellular HSP90α favors cell migration of glioblastoma U87 cells. More specifically, externally applied HSP90α rapidly induced endocytosis of EGFR. This response was accompanied by a transient increase in cytosolic Ca(2+) appearing after 1-3 min of treatment. In the presence of EGF, U87 cells showed HSP90α-induced Ca(2+) oscillations, which were reduced by the ATP/ADPase, apyrase, and inhibited by the purinergic P(2) inhibitor, suramin, suggesting that ATP release is requested. Disruption of lipid rafts with methyl β-cyclodextrin impaired the Ca(2+) rise induced by extracellular HSP90α combined with EGF. Specific inhibition of TLR4 expression by blocking antibodies suppressed extracellular HSP90α-induced Ca(2+) signaling and the associated cell migration. HSPs are known to bind lipopolysaccharides (LPSs). Preincubating cells with Polymyxin B, a potent LPS inhibitor, partially abrogated the effects of HSP90α without affecting Ca(2+) oscillations observed with EGF. Extracellular HSP90α induced EGFR phosphorylation at Tyr-1068, and this event was prevented by both the protein kinase Cδ inhibitor, rottlerin, and the c-Src inhibitor, PP2. Altogether, our results suggest that extracellular HSP90α transactivates EGFR/ErbB1 through TLR4 and a PKCδ/c-Src pathway, which induces ATP release and cytosolic Ca(2+) increase and finally favors cell migration. This mechanism could account for the deleterious effects of HSPs on high grade glioma when released into the tumor cell microenvironment.
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM U866, Faculty of Medicine, 7 Boulevard Jeanne d'Arc, 21000 Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Arko L, Katsyv I, Park GE, Luan WP, Park JK. Experimental approaches for the treatment of malignant gliomas. Pharmacol Ther 2010; 128:1-36. [PMID: 20546782 PMCID: PMC2939300 DOI: 10.1016/j.pharmthera.2010.04.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 04/28/2010] [Indexed: 12/13/2022]
Abstract
Malignant gliomas, which include glioblastomas and anaplastic astrocytomas, are the most common primary tumors of the brain. Over the past 30 years, the standard treatment for these tumors has evolved to include maximal safe surgical resection, radiation therapy and temozolomide chemotherapy. While the median survival of patients with glioblastomas has improved from 6 months to 14.6 months, these tumors continue to be lethal for the vast majority of patients. There has, however, been recent substantial progress in our mechanistic understanding of tumor development and growth. The translation of these genetic, epigenetic and biochemical findings into therapies that have been tested in clinical trials is the subject of this review.
Collapse
Affiliation(s)
- Leopold Arko
- Surgical and Molecular Neuro-oncology Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
13
|
Singh S, Okamura T, Ali-Osman F. Serine phosphorylation of glutathione S-transferase P1 (GSTP1) by PKCα enhances GSTP1-dependent cisplatin metabolism and resistance in human glioma cells. Biochem Pharmacol 2010; 80:1343-55. [PMID: 20654585 DOI: 10.1016/j.bcp.2010.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 01/20/2023]
Abstract
Recently, we reported that the human GSTP1 is phosphorylated and functionally activated by the PKC class of serine/threonine kinases. In this study, we investigated the contribution of this post-translational modification of GSTP1 to tumor cisplatin resistance. Using two malignant glioma cell lines, MGR1 and MGR3, the ability of PKCα-phosphorylated GSTP1 to catalyze the conjugation of cisplatin to glutathione was assessed and correlated with cisplatin sensitivity and cisplatin-induced DNA interstrand cross-links and apoptosis of the cells. The results showed PKCα activation and associated phosphorylation of GSTP1 to correlate significantly with increased glutathionylplatinum formation, decreased DNA interstrand cross-link formation and increased cisplatin resistance. Following PKC activation, the IC(50) of cisplatin increased from 13.63μM to 36.49μM in MGR1 and from 20.75μM to 38.45μM in MGR3. In both cell lines, siRNA-mediated GSTP1 or PKCα transcriptional suppression similarly decreased cisplatin IC(50) and was associated with decreased intracellular levels of glutathionylplatinum metabolite. Combined inhibition/transcriptional suppression of both PKCα and GSTP1 was synergistic in enhancing cisplatin sensitivity. Although, cisplatin-induced apoptosis was associated with the translocation of Bax to mitochondria, release of cytochrome c and caspase-3/7 activation, the levels of relocalized Bax and cytochrome c were significantly greater following GSTP1 knockdown. These results support a mechanism of cisplatin resistance mediated by the PKCα-dependent serine phosphorylation of GSTP1 and its associated increased cisplatin metabolism, and suggest the potential of simultaneous targeting of GSTP1 and PKCα to improve the efficacy of cisplatin therapy.
Collapse
Affiliation(s)
- Simendra Singh
- Department of Surgery, The Preston Robert Tisch Brain Tumor Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
14
|
Jane EP, Pollack IF. Enzastaurin induces H2AX phosphorylation to regulate apoptosis via MAPK signalling in malignant glioma cells. Eur J Cancer 2009; 46:412-9. [PMID: 19913408 DOI: 10.1016/j.ejca.2009.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/29/2009] [Accepted: 10/09/2009] [Indexed: 12/29/2022]
Abstract
Enzastaurin is an acyclic bisindolylmaleimide derived from staurosporine that acts as an ATP competitor, and interferes with the activity of protein kinase C (PKC) isoforms. Our previous studies have shown that clinically achievable concentrations of this agent induce apoptosis in many glioma cell lines. Our goal in this study was to expand on the previous results and to determine the signalling mechanisms responsible for enzastaurin-induced inhibition of cell growth and induction of apoptosis. To address these issues, cell cycle progression following enzastaurin treatment was analysed by fluorescence-activated cell sorting (FACS) in parallel with analyses of growth and apoptosis signalling pathways. Enzastaurin treatment activated H2AX and Chk2 phosphorylation, and enhanced phosphorylation of mitogen-activated protein kinase (MAPK) family kinases. Inhibition of MAP kinases by chemical inhibitors reduced H2AX and Chk2 phosphorylation and decreased apoptosis induced by enzastaurin. These data call attention to a novel signalling pathway (MAPK/H2AX) to regulate apoptosis in malignant glioma cells.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurosurgery, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
15
|
Xia S, Chen Z, Forman LW, Faller DV. PKCdelta survival signaling in cells containing an activated p21Ras protein requires PDK1. Cell Signal 2009; 21:502-8. [PMID: 19146951 PMCID: PMC2644428 DOI: 10.1016/j.cellsig.2008.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 01/02/2023]
Abstract
Protein kinase C delta (PKCdelta) modulates cell survival and apoptosis in diverse cellular systems. We recently reported that PKCdelta functions as a critical anti-apoptotic signal transducer in cells containing activated p21(Ras) and results in the activation of AKT, thereby promoting cell survival. How PKCdelta is regulated by p21(Ras), however, remains incompletely understood. In this study, we show that PKCdelta, as a transducer of anti-apoptotic signals, is activated by phosphotidylinositol 3' kinase/phosphoinositide-dependent kinase 1 (PI(3)K-PDK1) to deliver the survival signal to Akt in the environment of activated p21(Ras). PDK1 is upregulated in cells containing an activated p21Ras. Knock-down of PDK1, PKCdelta, or AKT forces cells containing activated p21(Ras) to undergo apoptosis. PDK1 regulates PKCdelta activity, and constitutive expression of PDK1 increases PKCdelta activity in different cell types. Conversely, expression of a kinase-dead (dominant-negative) PDK1 significantly suppresses PKCdelta activity. p21(Ras)-mediated survival signaling is therefore regulated by via a PI(3)K-AKT pathway, which is dependent upon both PDK1 and PKCdelta, and PDK1 activates and regulates PKCdelta to determine the fate of cells containing a mutated, activated p21(Ras).
Collapse
Affiliation(s)
- Shuhua Xia
- Cancer Research Canter, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Zhihong Chen
- Cancer Research Canter, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Lora W. Forman
- Cancer Research Canter, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Douglas V. Faller
- Cancer Research Canter, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
16
|
Epidermal growth factor-dependent cyclooxygenase-2 induction in gliomas requires protein kinase C-δ. Oncogene 2009; 28:1410-20. [DOI: 10.1038/onc.2008.500] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Lin TH, Kuo HC, Chou FP, Lu FJ. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer 2008; 8:58. [PMID: 18294404 PMCID: PMC2275285 DOI: 10.1186/1471-2407-8-58] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Accepted: 02/25/2008] [Indexed: 02/07/2023] Open
Abstract
Background Arsenic trioxide (As2O3) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells in vitro. Here, we investigated the effect of the natural alkaloid berberine on As2O3-mediated inhibition of cancer cell migration using rat and human glioma cell lines. Methods The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As2O3 or berberine, and after co-treatment with As2O3 and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As2O3 and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As2O3 and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA. Results The cell viability studies demonstrated that berberine enhances As2O3-mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As2O3. The latter effect was even more pronounced in the presence of 10 μM berberine. The As2O3-mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As2O3 and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also significantly reduced. Conclusion Upon co-treatment of glioma cells with As2O3 and berberine, cancer cell metastasis can be significantly inhibited, most likely by blocking the PKC-mediated signaling pathway involved in cancer cell migration. This study is potentially interesting for the development of novel chemotherapeutic approaches in the treatment of malignant gliomas and cancer development in general.
Collapse
Affiliation(s)
- Tseng-Hsi Lin
- 1Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan.
| | | | | | | |
Collapse
|
18
|
Martín V, Herrera F, García-Santos G, Antolín I, Rodriguez-Blanco J, Medina M, Rodriguez C. Involvement of protein kinase C in melatonin's oncostatic effect in C6 glioma cells. J Pineal Res 2007; 43:239-44. [PMID: 17803520 DOI: 10.1111/j.1600-079x.2007.00468.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Classical anticancer therapies often are ineffective in patients with malignant glioma who have a survival of <1 year. Our previous studies showed a potent inhibitory effect of melatonin on glioma cell proliferation. This effect seems to be mediated by the well-known antioxidant properties of this molecule and the negative regulation of some intracellular effectors, such as the kinase Akt or the transcription factor nuclear factor (NF)-kappaB. Finally, protein kinase C (PKC) also seems to be implicated in this effect although the intracellular pathways involved have not been elucidated. In this study, we analyzed the role of PKC in the regulation by melatonin of intracellular effectors leading to inhibition of cell proliferation. Activation of PKC by incubation with triphorbol ester acetate (TPA) blocks the inhibitory effect of melatonin on Akt and NF-kappaB activity. Moreover, incubation with melatonin induces a decrease in p21 expression in these cells that is partially blocked by co-incubation with TPA. Taken together, these results suggest that melatonin's oncostatic effect on glioma cells is mediated, at least in part, by the inhibition of PKC activity which, in turn, results in Akt and NF-kappaB activity inhibition and modulation of cell cycle-related gene expression.
Collapse
Affiliation(s)
- Vanesa Martín
- Departamento de Morfología y Biología Celular, Facultad de Medicina de la Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Nomura N, Nomura M, Sugiyama K, Hamada JI. Phorbol 12-myristate 13-acetate (PMA)-induced migration of glioblastoma cells is mediated via p38MAPK/Hsp27 pathway. Biochem Pharmacol 2007; 74:690-701. [PMID: 17640620 DOI: 10.1016/j.bcp.2007.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 06/03/2007] [Accepted: 06/05/2007] [Indexed: 01/15/2023]
Abstract
We investigated the mechanism of phorbol 12-myristate 13-acetate (PMA)-induced migration of glioblastoma cells focusing on the p38 mitogen-activated protein kinase (MAPK)/heat shock protein 27 (Hsp27) pathway. PMA-induced cell migration and activation of p38MAPK in A172 glioblastoma cells. PMA-induced formation of lamellipodia and focal complexes was blocked by inhibiting p38MAPK with SB203580 or small interfering RNA (siRNA). Furthermore, activation of p38MAPK resulted in phosphorylation of an F-actin polymerization regulator, Hsp27. Immunohistochemical analysis showed that upon PMA stimulation, both unphosphorylated and phosphorylated Hsp27 were translocated to the lamellipodia. SB203580 or p38MAPK siRNA blocked these phenomena, indicating that Hsp27 phosphorylation and translocation from cytosol to membrane were mediated by p38MAPK. To address the question of whether endogenous Hsp27 participates in PMA-induced migration, we inhibited the expression of Hsp27 using Hsp27 siRNA. Although knockdown of Hsp27 by siRNA had little effect on p38MAPK activation, lamellipodia and focal complex formation was markedly inhibited. Migration was also abolished in Hsp27 siRNA-transfected cells. In conclusion, p38MAPK activation followed by Hsp27 phosphorylation was required for PMA-induced migration. Furthermore, Hsp27 itself played critical roles in PMA-induced migration. Our data provide substantial evidence for a model elucidating the molecular mechanisms of regulation of actin dynamics and migration by PMA-activated protein kinase C in glioblastoma cells.
Collapse
Affiliation(s)
- Naoko Nomura
- Department of Ophthalmology and Visual Science, Kanazawa University Graduate School of Medical Science, Kanazawa 920-0935, Japan
| | | | | | | |
Collapse
|
20
|
Jane EP, Premkumar DR, Pollack IF. Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther 2006; 319:1070-80. [PMID: 16959960 DOI: 10.1124/jpet.106.108621] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) are activated in the majority of gliomas and contribute to tumor cell growth and survival. Sorafenib (Bay43-9006; Nexavar) is a dual-action Raf and vascular endothelial growth factor receptor inhibitor that blocks receptor phosphorylation and MAPK-mediated signaling and inhibits growth in a number of tumor types. Because our initial studies of this agent in a series of glioma cell lines showed only partial growth inhibition at clinically achievable concentrations, we questioned whether inhibition of PKC signaling using the PKC-delta inhibitor rottlerin might potentiate therapeutic efficacy. Proliferation assays, apoptosis induction studies, and Western immunoblot analysis were conducted in cells treated with sorafenib and rottlerin as single agents or in combination. Sorafenib and rottlerin reduced proliferation in all cell lines when used as single agents, and the combination produced marked potentiation of growth inhibition. Flow-cytometric measurements of cells stained with Annexin V-propidium iodide and immunocytochemical assessment of cytochrome c and apoptosis-inducing factor release demonstrated that addition of rottlerin resulted in significantly higher levels of apoptosis than sorafenib alone. In addition, the combination of sorafenib and rottlerin reduced or completely inhibited the phosphorylation of extracellular signal-regulated kinase and Akt and down-regulated cell cycle regulatory proteins such as cyclin-D1, cyclin-D3, cyclin-dependent kinase (cdk)4, and cdk6 in a dose- and time-dependent manner. Our results clearly indicate that inhibition of PKC-delta signaling enhances the antiproliferative effect of sorafenib in malignant human glioma cell lines and support the examination of combinations of signaling inhibitors in these tumors.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurosurgery, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute Brain Tumor Center, Pennsylvania, USA
| | | | | |
Collapse
|
21
|
Liu G, Black KL, Yu JS. Sensitization of malignant glioma to chemotherapy through dendritic cell vaccination. Expert Rev Vaccines 2006; 5:233-47. [PMID: 16608423 DOI: 10.1586/14760584.5.2.233] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Drug resistance represents a major cause of chemotherapy failure in patients with cancer. The characterization of the molecular pathways involved in drug resistance has provided new targets to circumvent or reverse chemotherapy resistance. Many of these target proteins are often overexpressed in human glioma and have been identified as tumor antigens, which implicate the development of immunotherapy as a therapeutic strategy. Dendritic cells (DCs) are the most potent antigen-presenting cells of the immune system and have been demonstrated to stimulate antibody and cell-mediated immune responses against tumor-associated antigens. Ex vivo-generated and tumor antigen-loaded DCs have been successfully introduced to clinical vaccination protocols, which have proven to be feasible and effective in some glioma patients. Most importantly, immunotherapy followed by chemotherapy could significantly increase 2-year survival in malignant glioma patients, which obviously demonstrates that DC vaccination could increase the sensitivity of tumor cells to chemotherapy. This review focuses on recent advances in the identification of tumor-associated antigen in glioma, as well as novel insights into their biological function related to drug resistance. These insights may provide the rationale for a novel strategy of a DC cancer vaccine that sensitizes tumor cells to chemotherapy. In addition, the current research status and the future direction of a DC-based vaccine to treat glioma in animal models and clinical trials will also be discussed.
Collapse
Affiliation(s)
- Gentao Liu
- Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, and Division of Hematology/Oncology, Cedars-Sinai Medical Center/David Geffen Schol of Medicine at UCLA, 8700 Beverly Blvd, Los Angeles, CA 90048, USA.
| | | | | |
Collapse
|
22
|
Kocanova S, Hornakova T, Hritz J, Jancura D, Chorvat D, Mateasik A, Ulicny J, Refregiers M, Maurizot JC, Miskovsky P. Characterization of the interaction of hypericin with protein kinase C in U-87 MG human glioma cells. Photochem Photobiol 2006; 82:720-8. [PMID: 16396605 DOI: 10.1562/2005-09-26-ra-696] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A fluorescence imaging technique was used to monitor intracellular localization of protein kinase C (PKC) in U-87 MG human glioma cells in the presence of hypericin (Hyp) and phorbol 12-myristate-13-acetate (PMA). It is shown that PKC localization, which reflects its activity, is influenced by Hyp and this influence is different from that observed for PMA which acts as PKC activator. Fluorescence binding experiments were used to determine the binding constants of Hyp to several isoforms of PKC. The obtained values of K(d)s (approximately 100 nM) suggest that Hyp binds with high affinity to PKC. Finally, molecular modeling was used to compare structural models of the interaction of C1B domain of PKC (PKC isoforms alpha, delta, gamma) with Hyp and our previously published model of the (C1B domain PKCgamma)/PMA complex. The influence of Hyp on PKC translocation in U-87 MG cells in comparison with PMA, colocalization fluorescence pattern of Hyp and PKC, the higher binding affinity of Hyp to PKC in comparison with known binding constants of phorbol esters, as well as the binding mode of Hyp and PMA to the C1B domain of PKC suggested by molecular modeling, support the idea that Hyp and PMA might competitively bind to the regulatory domain of PKC.
Collapse
Affiliation(s)
- Silvia Kocanova
- Department of Biophysics, University of PJ Safarik, Kosice, Slovak Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Au CM, Luk SK, Jackson CJ, Ng HK, Yow CMN, To SST. Differential effects of photofrin, 5-aminolevulinic acid and calphostin C on glioma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 85:92-101. [PMID: 16829117 DOI: 10.1016/j.jphotobiol.2006.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/02/2006] [Accepted: 06/02/2006] [Indexed: 11/16/2022]
Abstract
The invasive nature of malignant gliomas makes treatment by surgery alone extremely difficult. However, the preferential accumulation of photosensitisers in neoplastic tissues suggests photodynamic therapy (PDT) may be useful as an adjuvant therapy following tumour resection. In this study, the potential use of three different photosensitisers, namely Photofrin, 5-aminolevulinic acid (5-ALA) and calphostin C in the treatment of glioma was investigated. The uptake, cytotoxicity on U87 and GBM6840 glioma cell lines were determined by flow cytometry and MTT assay respectively. Their effect on glioma cell invasiveness was evaluated by (1) measuring the levels of matrix degradation enzymes matrix metalloproteinase (MMP)-2 and -9 using gelatin zymography, and (2) Matrigel invasion assay. The results showed that uptake of calphostin C reached saturation within 2 h, while Photofrin and 5-ALA induced protoporphyrin IX (PpIX) levels elevated steadily up to 24 h. Photocytotoxic effect on the two glioma cell lines was similar with LD50 at optimal uptake: 1 microg/mL Photofrin at 1.5 J/cm(2); 1 mM 5-ALA at 2 J/cm(2) and 100 nM calphostin C at 2 J/cm(2). The inhibition in cell proliferation after Photofrin treatment was similar for both cell lines, which correlated to more cells being arrested in the G0/G1 phase of the cell cycle (P<0.01). By contrast, U87 was more sensitive to calphostin C whereas GBM6840 was more susceptible to 5-ALA treatment. The ability of both cell lines to migrate through the Matrigel artificial basement membrane was significantly reduced after PDT (P<0.001). This might be due to a decreased production in MMP-2 and MMP-9, together with the reduction of adhesion molecule expression. Photofrin was most superior in inhibiting cell invasion and calphostin C was least effective in reducing adhesion molecule expression. Taken together, PDT could be useful in the treatment of gliomas but the choice of photosensitisers must be taken into consideration.
Collapse
Affiliation(s)
- Cheuk Man Au
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Yuk Choi Road, Hung Hom, Kowloon, Hong Kong S.A.R., People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Gliomas are the most common major subgroup of primary CNS tumours. Approximately 17,000 new cases are reported each year and, of these, 11,500 patients die. Glioblastoma multiforme (GBM) is highly proliferative and typically invades distal portions of the brain, thereby making complete surgical resection of these tumours nearly impossible. Moreover, GBMs are often resistant to current chemotherapy and radiation regimens. Therefore, there is a need for better therapeutic interventions. One class of proteins that is involved in the formation of malignant brain tumours is protein kinase C (PKC) and these kinases have not been thoroughly explored for their chemotherapeutic value in GBMs. The PKC isozyme, PKCeta (PKC-eta) increases cell proliferation and resistance to radiation of GBM cell lines. These properties make PKCeta an attractive target for chemotherapeutic intervention in the management of GBMs.
Collapse
Affiliation(s)
- Patrick M Martin
- Department of Pathology, University of Virginia, Charlottesville, VA, USA.
| | | |
Collapse
|
25
|
Harmalkar MN, Shirsat NV. Staurosporine-induced growth inhibition of glioma cells is accompanied by altered expression of cyclins, CDKs and CDK inhibitors. Neurochem Res 2006; 31:685-92. [PMID: 16770740 DOI: 10.1007/s11064-006-9068-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
Staurosporine was found to bring about complete growth inhibition of human glioma cell lines. U87 MG cells were arrested in S phase while U373 MG cells in G2/M phase on staurosporine treatment. Consistent with this observation, no change in G1 phase regulators viz., Cyclin D1, D3 and CDK4 was seen on staurosporine treatment. The levels of CDK2, CDC2, Cyclin A and Cyclin B proteins decreased, while the levels of CDK inhibitors viz., p21 and p27 were found to increase on staurosporine treatment. The mRNA levels of CDK2 and CDC2 genes were also found to decrease on staurosporine treatment. Thus apart from staurosporine's known direct inhibitory effect on CDK2 and CDC2 activities, staurosporine was found to down-regulate activities of these two kinases by modulating the expression of the kinases themselves as well that of their activating partners (Cyclins) and their inhibitors.
Collapse
Affiliation(s)
- Mugdha N Harmalkar
- Neurooncology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410208, India
| | | |
Collapse
|
26
|
Bernardi A, Jacques-Silva MC, Delgado-Cañedo A, Lenz G, Battastini AMO. Nonsteroidal anti-inflammatory drugs inhibit the growth of C6 and U138-MG glioma cell lines. Eur J Pharmacol 2006; 532:214-22. [PMID: 16487511 DOI: 10.1016/j.ejphar.2006.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 12/23/2005] [Accepted: 01/10/2006] [Indexed: 11/23/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used drugs for the treatment of inflammatory disease and have a chemopreventive effect in a variety of tumors. Several studies have demonstrated unequivocally that certain NSAIDs cause antiproliferative effects independent of cyclooxygenase (COX) activity. In this study, we investigated the effect of chemically unrelated NSAIDs in the proliferation of glioma cell lines and the possible mechanisms involved in indomethacin-mediated inhibition of proliferation in glioma cells lines. The glioma cell lines were treated with NSAIDs and proliferation was measured by cell counting. Indomethacin, acetaminophen, sulindac sulfide and NS-398 (N-[2-cyclohexyloxy)-4-nitrophenyl]methane-sulfonamide) induced a time- and concentration-dependent inhibition of C6 rat glioma cell proliferation. The inhibition of COX by chemically unrelated NSAIDs leads to inhibition of rat and human glioma cell proliferation. The tetrazolium reduction assay (MTT) indicated a reduction in cell viability induced by indomethacin. None of the NSAIDs tested induced caspase-3/7 activation, assayed with a fluorigenic substrate. The indomethacin-induced inhibition of C6 cells proliferation was abrogated by the use of the c-Src inhibitor, PP2 and the MEK inhibitor, PD 098059, suggesting COX-independent mechanisms. Indomethacin decreased the percentage of cells in the S phase, with relative increases in the G0/G1 and/or the G2/M phase. NSAIDs may be clinically important for pharmacological intervention in gliomas.
Collapse
Affiliation(s)
- Andressa Bernardi
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
27
|
Amos S, Martin PM, Polar GA, Parsons SJ, Hussaini IM. Phorbol 12-myristate 13-acetate induces epidermal growth factor receptor transactivation via protein kinase Cdelta/c-Src pathways in glioblastoma cells. J Biol Chem 2005; 280:7729-38. [PMID: 15618223 PMCID: PMC1351089 DOI: 10.1074/jbc.m409056200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Both the epidermal growth factor receptor (EGFR) and protein kinase C (PKC) play important roles in glioblastoma invasive growth; however, the interaction between the EGFR and PKC is not well characterized in glioblastomas. Treatment with EGF stimulated global phosphorylation of the EGFR at Tyr(845), Tyr(992), Tyr(1068), and Tyr(1045) in glioblastoma cell lines (U-1242 MG and U-87 MG). Interestingly, phorbol 12-myristate 13-acetate (PMA) stimulated phosphorylation of the EGFR only at Tyr(1068) in the two glioblastoma cell lines. Phosphorylation of the EGFR at Tyr(1068) was not detected in normal human astrocytes treated with the phorbol ester. PMA-induced phosphorylation of the EGFR at Tyr(1068) was blocked by bisindolylmaleimide (BIM), a PKC inhibitor, and rottlerin, a PKCdelta-specific inhibitor. In contrast, Go 6976, an inhibitor of classical PKC isozymes, had no effect on PMA-induced EGFR phosphorylation. Furthermore, gene silencing with PKCdelta small interfering RNA (siRNA), siRNA against c-Src, and mutant c-Src(S12C/S48A) and treatment with a c-Src inhibitor (4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine) abrogated PMA-induced EGFR phosphorylation at Tyr(1068). PMA induced serine/threonine phosphorylation of Src, which was blocked by both BIM and rottlerin. Inhibition of the EGFR with AG 1478 did not significantly alter PMA-induced EGFR Tyr(1068) phosphorylation, but completely blocked EGF-induced phosphorylation of the EGFR. The effects of PMA on MAPK phosphorylation and glioblastoma cell proliferation were reduced by BIM, rottlerin, the MEK inhibitor U0126, and PKCdelta and c-Src siRNAs. Taken together, our data demonstrate that PMA transactivates the EGFR and increases cell proliferation by activating the PKCdelta/c-Src pathway in glioblastomas.
Collapse
Key Words
- pma, phorbol myristate acetate
- pkc, protein kinase c
- egf, epidermal growth factor
- egfr, epidermal growth factor receptor
- bim, bisindolylmaleimide
- erk, extracellular signal-regulated kinase
- mek, mitogen-activated kinase effector kinase
- α-mem, minimal essential medium- α
- sirna, small interfering ribonucleic acid
- page, polyacrylamide gel electrophoresis
- gbm, glioblastoma multiforme
Collapse
Affiliation(s)
- Samson Amos
- Department of Pathology, University of Virginia Health System, Charlottesville 22908, USA.
| | | | | | | | | |
Collapse
|
28
|
Jacques-Silva MC, Bernardi A, Rodnight R, Lenz G. ERK, PKC and PI3K/Akt pathways mediate extracellular ATP and adenosine-induced proliferation of U138-MG human glioma cell line. Oncology 2005; 67:450-9. [PMID: 15714002 DOI: 10.1159/000082930] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 05/15/2004] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Extracellular nucleotides and nucleosides induce proliferation in a set of human glioma cell lines. In this study we investigate the signal transduction pathways involved in ATP and adenosine-mediated proliferation in U138-MG human glioma cells. METHODS Cell proliferation was accessed through [(3)H]thymidine incorporation, cell counting and flow cytometry. Protein phosphorylation was detected through Western blotting. RESULTS ATP or adenosine (100 microM) induced extracellular signal-regulated protein kinase (ERK), Akt and GSK3beta phosphorylation. The increase in [(3)H]thymidine incorporation induced by ATP or adenosine was decreased when cells were incubated with LY 294002 (by +/-90%), GF 109203X (by +/-76%) or PD 098059 (by +/-63%). The increase in cell numbers with ATP or adenosine was less after a 48-hour treatment of cells with ATP or adenosine plus GF 109203X (by +/-66%) or LY 294002 (by +/-83%). Percentage of cells in S phase was decreased in cells treated with LY 294002 plus ATP when compared to ATP- treated cells. CONCLUSION Stimulation of purinergic receptors in U138-MG cells leads to cell proliferation mediated by PI3K/Akt, ERK and PKC signaling. It may be clinically important for pharmacological intervention in gliomas to associate purinergic receptor antagonists and signal transduction pathways blockers.
Collapse
Affiliation(s)
- Maria C Jacques-Silva
- Departamentos de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
29
|
Ye CP, Yano S, Tfelt-Hansen J, MacLeod RJ, Ren X, Terwilliger E, Brown EM, Chattopadhyay N. Regulation of a Ca2+-activated K+ channel by calcium-sensing receptor involves p38 MAP kinase. J Neurosci Res 2004; 75:491-8. [PMID: 14743432 DOI: 10.1002/jnr.10875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
By using pharmacological and molecular approaches, we previously showed that the G-protein-coupled, extracellular calcium (Ca2+(o))-sensing receptor (CaR) regulates a large-conductance (approximately 140 pS), Ca(2+)-activated K+ channel [IK(Ca); CAKC] in U87 astrocytoma cells. Here we show that elevated Ca2+(o) stimulates extracellular-signal-regulated kinase (ERK1/2) and p38 MAP kinase (MAPK). The effect of high Ca2+(o) on p38 MAPK but not ERK1/2 is CaR mediated, insofar as transduction with a dominant-negative CaR (R185Q) using recombinant adeno-associated virus (rAAV) attenuated the activation of p38 MAPK but not of ERK1/2. p38 MAPK activation by the CaR is likely to be protein kinase C (PKC) independent, in that the pan-PKC inhibitor GF109203X failed to abolish the high-Ca2+(o)-induced phosphorylation of p38 MAPK. Consistently with our data on the activation of this kinase, we observed that inhibiting p38 MAPK blocked the activation of the CAKC induced by the specific pharmacological CaR activator NPS R-467. In contrast, inhibiting MEK1 only transiently inhibited the activation of this K+ channel by NPS R-467, despite the continued presence of the antagonist. Similarly to the lack of any effect of the PKC inhibitor on the activation of ERK1/2 and p38 MAPK, inhibiting PKC had no effect on NPS R-467-induced activation of this channel. Therefore, our data show that the CaR, acting via p38 MAPK, regulates a large-conductance CAKC in U87 cells, a process that is PKC independent. Large-conductance CAKCs play an important role in the regulation of cellular volume, so our results have important implications for glioma cell volume regulation.
Collapse
Affiliation(s)
- Chian Ping Ye
- Division of Endocrinology, Hypertension and Diabetes and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Katsetos CD, Legido A, Perentes E, Mörk SJ. Class III beta-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. J Child Neurol 2003; 18:851-66; discussion 867. [PMID: 14736079 DOI: 10.1177/088307380301801205] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The expression of the cytoskeletal protein class III beta-tubulin isotype is reviewed in the context of human central nervous system development and neoplasia. Compared to systemic organs and tissues, class III beta-tubulin is abundant in the brain, where it is prominently expressed during fetal and postnatal development. As exemplified in cerebellar neurogenesis, the distribution of class III beta-tubulin is neuron associated, exhibiting different temporospatial gradients in the neuronal progeny of the external granule layer versus the neuroepithelial germinal matrix of the velum medullare. However, transient expression of this protein is also present in the telencephalic subventricular zones comprising putative neuronal and/or glial precursor cells. This temporospatially restricted, potentially non-neuronal expression of class III beta-tubulin may have implications in the accurate identification of presumptive neurons derived from transplanted embryonic stem cells. In the adult central nervous system, the distribution of class III beta-tubulin is almost exclusively neuron specific. Altered patterns of expression are noted in brain tumors. In "embryonal"-type neuronal/neuroblastic tumors of the central nervous system, such as the medulloblastomas, class III beta-tubulin expression is associated with neuronal differentiation and decreased cell proliferation. In contrast, the expression of class III beta-tubulin in gliomas is associated with an ascending grade of histologic malignancy and with correspondingly high proliferative indices. Thus, class III beta-tubulin expression in neuronal or neuroblastic tumors is differentiation dependent, whereas in glial tumors, it is aberrant and/or represents "dedifferentiation" associated with the acquisition of glial progenitor-like phenotype(s). From a diagnostic perspective, the detection of class III beta-tubulin immunostaining in neoplastic cells should not be construed as categorical evidence of divergent neuronal differentiation in tumors, which are otherwise phenotypically glial. Because class III beta-tubulin is present in neoplastic but not in normal differentiated glial cells, the elucidation of molecular mechanisms responsible for the altered expression of this isotype may provide critical insights into the dynamics of the microtubule cytoskeleton in the growth and progression of gliomas.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
31
|
Riboni L, Campanella R, Bassi R, Villani R, Gaini SM, Martinelli-Boneschi F, Viani P, Tettamanti G. Ceramide levels are inversely associated with malignant progression of human glial tumors. Glia 2002; 39:105-13. [PMID: 12112362 DOI: 10.1002/glia.10087] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ceramide represents an important sphingoid mediator involved in the signaling pathways that control cell proliferation, differentiation, and death. To determine whether ceramide levels correlate with the malignant progression of human astrocytomas, we investigated these levels in surgical specimens of glial tumors of low-grade and high-grade malignancy. Tumor samples obtained from 52 patients who underwent therapeutic removal of primary brain tumors were used. The tumors were classified according to standard morphologic criteria and were grouped into tumors of low-grade and high-grade malignancy. Sections of normal brain tissue adjacent to the tumor were also analyzed in 11 of the 52 patients. After extraction and partial purification, ceramide was measured by quantitative derivatization to ceramide-1-phosphate using diacylglycerol kinase and [gamma-(32)P]ATP. Ceramide levels were significantly lower in the combined high-grade tumors compared with low-grade tumors and in both tumor groups compared with peritumoral tissue. The results indicate an inverse correlation between the amount of ceramide and tumor malignancy as assessed by both the histological grading and ganglioside pattern. Moreover, overall survival analysis of 38 patients indicates that ceramide levels are significantly associated with patient survival. The present findings indicate that ceramide is inversely associated with malignant progression of human astrocytomas and poor prognosis. The downregulation of ceramide levels in human astrocytomas emerges as a novel alteration that may contribute to glial neoplastic transformation. The low ceramide levels in high-grade tumors may provide an advantage for their rapid growth and apoptotic resistant features. This study appears to support the rationale for the potential benefits of a ceramide-based chemotherapy.
Collapse
Affiliation(s)
- Laura Riboni
- Department of Medical Chemistry and Biochemistry, Study Center for the Functional Biochemistry of Brain Lipids, University of Milan, LITA-Segrate, Segrate, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Chemotherapy lacks efficacy in most histological types of primary human brain tumours and has, for most types, failed to improve outcome for patients. The unsatisfactory results with chemotherapeutic intervention in these cancers have been chiefly attributed to tumour-cell resistance. This review summarises some of the major molecular markers that, although neither exclusive for nor specific to brain tumours, have been associated with the formation of a chemoresistant phenotype. Elucidation of the cellular mechanisms involved in resistance regulation is needed for future progress in efficient approaches to selective modulation of drug resistance in these lesions.
Collapse
Affiliation(s)
- Markus Bredel
- Department of General Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
33
|
Chattopadhyay N, Tfelt-Hansen J, Brown EM. PKC, p42/44 MAPK and p38 MAPK regulate hepatocyte growth factor secretion from human astrocytoma cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 102:73-82. [PMID: 12191496 DOI: 10.1016/s0169-328x(02)00215-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hepatocyte growth factor (HGF) and its receptor c-Met are expressed in inappropriately high abundance in gliomas and are further upregulated during the transition from low- to high-grade malignancy. In these cells HGF induces expression of c-Met via PKC, Ras and mitogen activated protein kinase (MAPK) pathway. Here we report that secretion and expression of HGF in U87 astrocytoma is increased by a PKC activator, PMA, an effect which is abolished by a PKC inhibitor, Go6976, specific for PKCalpha and PKCbeta1. Activating PKA by forskolin, on the other hand, had no effect. Furthermore, messenger molecule downstream of PKC, i.e. MEK mediates such effect of PKC as specific MEK inhibitors (PD98059 and U0126) abolished PMA induced HGF secretion by U87 cells. Accordingly, PMA induced rapid phosphorylation of MEK substrate, i.e. Erk1/2 (p42/44 MAPK). In addition, such effect of PKC is Ras-dependent as specific Ras inhibitor L-744,832 attenuated both PMA mediated induction of Erk 1/2 phosphorylation as well as HGF secretion. Moreover, a specific p38 MAPK inhibitor (SB203580) almost completely inhibited basal HGF secretion to an undetectable level. Increased secretion of HGF is most likely exerted at the transcriptional level since inhibitor of transcription, actinomycin D abolished such increase. Furthermore, when assessed by Northern blot analysis, PMA increased HGF transcripts while U0127 and SB203580 inhibited. Therefore, our data reveal that HGF secretion in U87 cells is regulated by Ras-dependent PKC, MEK cascade and in parallel by p38 MAPK pathway. Since the Raf-PKC-MEK cascade is used for HGF's signaling via its receptor in astrocytoma cells, our data revealing similar regulatory mechanism for HGF secretion in these cells would help to explain the feed forward nature of HGF action in glioma cells that would further accentuate its basal secretion, exacerbating its effects on the progression of gliomas in an autocrine fashion.
Collapse
Affiliation(s)
- Naibedya Chattopadhyay
- Endocrine-Hypertension Division and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave., Boston, MA 02115, USA.
| | | | | |
Collapse
|
34
|
da Rocha AB, Mans DRA, Regner A, Schwartsmann G. Targeting protein kinase C: new therapeutic opportunities against high-grade malignant gliomas? Oncologist 2002; 7:17-33. [PMID: 11854544 DOI: 10.1634/theoncologist.7-1-17] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A large body of evidence suggests that the abnormal phenotype of neoplastic astrocytes, including their excessive proliferation rate and high propensity to invade surrounding tissues, results from mutations in critical genes involved in key cellular events. These genetic alterations can affect cell-surface-associated receptors, elements of signaling pathways, or components of the cell cycle clock, conferring a gain or a loss of relevant metabolic functions of the cells. The understanding of such phenomena may allow the development of more efficacious forms of cancer treatment. Examples are therapies specifically directed against overexpressed epidermal growth factor receptor, hyperactive Ras, excessively stimulated Raf-1, overproduced ornithine decarboxylase, or aberrantly activated cyclin-dependent kinases. The applicability of some of these approaches is now being assessed in patients suffering from primary malignant central nervous system tumors that are not amenable to current therapeutic modalities. Another potentially useful therapeutic strategy against such tumors involves the inhibition of hyperactive or overexpressed protein kinase C (PKC). This strategy is justified by the decrease in cell proliferation and invasion following inhibition of the activity of this enzyme observed in preclinical glioma models. Thus, interference with PKC activity may represent a novel form of experimental cancer treatment that may simultaneously restrain the hyperproliferative state and the invasive capacity of high-grade malignant gliomas without inducing the expected toxicity of classical cytotoxic agents. Of note, the experimental use of PKC-inhibiting agents in patients with refractory high-grade malignant gliomas has indeed led to some clinical responses. The present paper reviews the current status of the biochemistry and molecular biology of PKC, as well as the possibilities for developing novel anti-PKC-based therapies for central nervous system malignancies.
Collapse
Affiliation(s)
- A B da Rocha
- South-American Office for Anticancer Drug Development (SOAD), Comprehensive Cancer Center, Lutheran University of Brazil, Canoas, RS, Brazil.
| | | | | | | |
Collapse
|
35
|
Shinohara H, Kayagaki N, Yagita H, Oyaizu N, Ohba M, Kuroki T, Ikawa Y. A protective role of PKCepsilon against TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in glioma cells. Biochem Biophys Res Commun 2001; 284:1162-7. [PMID: 11414705 DOI: 10.1006/bbrc.2001.5104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To elucidate the molecular mechanism(s) involved in the TRAIL-induced apoptosis sensitivity, we conducted the following experiments utilizing TRAIL-sensitive and -resistant glioma cells. We examined the expression of TRAIL receptors mRNA, but no significant differences were detected in those cells. TRAIL-resistant cells were sensitized to TRAIL-induced apoptosis by staurosporine pretreatment and preferentially expressed PKCepsilon. Since several lines of evidence suggest that PKC may play a protective role for apoptosis, we analyzed the involvement of PKCepsilon in TRAIL-induced apoptosis by an adenovirus vector expression system. We found that TRAIL susceptibility was augmented by the expression of a dominant negative PKCepsilon in TRAIL-resistant cells. Conversely, PKCepsilon introduction in TRAIL-sensitive cells resulted in the reduction of TRAIL-induced apoptosis. Taken together, these data suggest that PKCepsilon may be a regulator of susceptibility to TRAIL-induced apoptosis in gliomas and probably other malignancies.
Collapse
Affiliation(s)
- H Shinohara
- Department of Retroviral Regulation, Medical Research Division, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Bredel M. Anticancer drug resistance in primary human brain tumors. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 35:161-204. [PMID: 11336781 DOI: 10.1016/s0165-0173(01)00045-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The difficult clinical situation still associated with most types of primary human brain tumors has fostered significant interest in defining novel therapeutic modalities for this heterogeneous group of neoplasms. Beginning in the 1980s chemotherapy has been incorporated into the treatment protocol of a number of intractable brain tumors. However, it has predominantly failed to improve patient outcome. The unsatisfactory results with chemotherapeutic intervention have chiefly been attributed to tumor cell resistance. In recent years, there has been a literal explosion in our understanding about the mechanisms by which cancer cells become chemoresistant. During the course of their evolution (intrinsic resistance) or in response to chemotherapy (acquired resistance) these cells may follow a number of pathways of genetic alterations to possess a common (multidrug) or drug-specific (individual drug) resistant phenotype. Genomic aberrations, deregulation of membrane transporting proteins and cellular enzymes, and an altered susceptibility to commit to apoptosis are among the steps on the way that contribute to the genesis of chemotherapeutic treatment failure. Although, through the years we have come to yield information and inferences as to the roles that different molecular events may have in the resistance phenotype of cancer cells, the actual involvement of single genetic alterations in conferring drug resistance in primary brain tumors remains debatable. This uncertainty and, besides, the lack of proper drug resistance diagnostics, in a vicious circle, hinder the development of effective resistance-modulation strategies. Clinical non-responsiveness to chemotherapy remains a formidable obstacle to the successful treatment of brain tumors and one of the most serious problems to be solved in the therapy of these lesions. Future advances in the chemotherapeutic management of these neoplasms will come with an improved understanding of the significance and interrelationship of the multiple biological systems operative in promoting resistance to this treatment modality. The focus of this review is to summarize current knowledge concerning major drug resistance-related markers, to describe their functional interaction en route to chemoresistance, and to discuss their implication in rendering human brain tumor cells resistant to chemotherapy.
Collapse
Affiliation(s)
- M Bredel
- Department of General Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Besson A, Yong VW. Mitogenic signaling and the relationship to cell cycle regulation in astrocytomas. J Neurooncol 2001; 51:245-64. [PMID: 11407596 DOI: 10.1023/a:1010657030494] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The activity and regulation of a number of mitogenic signaling pathways is aberrant in astrocytomas, and this is thought to play a crucial role in the development of these tumors. The cascade of events leading to the formation and the progression from low-grade to high-grade astrocytomas is well characterized. These events include activating mutations, amplification, and overexpression of various growth factor receptors (e.g. epidermal growth factor receptor (EGFR), platelet derived growth factor receptor (PDGFR), c-Met), signaling intermediates (e.g. Ras and Protein kinase C (PKC)), and cell cycle regulatory molecules (e.g. mouse double minute-2 (Mdm2), cyclin-dependent kinase-4 (CDK4), and CDK6), that positively regulate proliferation and cell cycle progression. Inactivating mutations and deletions of signaling and cell cycle regulatory molecules that negatively regulate proliferation and cell cycle progression (e.g. p53, p16/INK4a, p14/ARF, p15/INK4b, retinoblastoma protein (Rb), and Phosphatase and tensin homologue deleted from chromosome 10 (PTEN)) also participate actively in the development of the transformed phenotype. Several mitogenic pathways are also stimulated via an autocrine loop, with astrocytoma cells expressing both the receptors and the respective cognate ligand. Due to the multitude of factors involved in astrocytoma pathogenesis, attempts to target a single pathway have not given satisfactory results. The simultaneous targeting of several pathways or the targeting of signaling intermediates, such as Ras or PKC, situated downstream of many growth factor receptor signaling pathways may show more efficacy in astrocytoma therapy. We will give an overview of how the combination of these aberrations drive astrocytoma cells into a relentless proliferation and how these signaling molecules may constitute relevant therapeutic targets.
Collapse
Affiliation(s)
- A Besson
- Department of Oncology, University of Calgary, Alberta, Canada
| | | |
Collapse
|
38
|
Bohn LM, Belcheva MM, Coscia CJ. Mitogenic signaling via endogenous kappa-opioid receptors in C6 glioma cells: evidence for the involvement of protein kinase C and the mitogen-activated protein kinase signaling cascade. J Neurochem 2000; 74:564-73. [PMID: 10646507 PMCID: PMC2504523 DOI: 10.1046/j.1471-4159.2000.740564.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As reports on G protein-coupled receptor signal transduction mechanisms continue to emphasize potential differences in signaling due to relative receptor levels and cell type specificities, the need to study endogenously expressed receptors in appropriate model systems becomes increasingly important. Here we examine signal transduction mechanisms mediated by endogenous kappa-opioid receptors in C6 glioma cells, an astrocytic model system. We find that the kappa-opioid receptor-selective agonist U69,593 stimulates phospholipase C activity, extracellular signal-regulated kinase 1/2 phosphorylation, PYK2 phosphorylation, and DNA synthesis. U69,593-stimulated extracellular signal-regulated kinase 1/2 phosphorylation is shown to be upstream of DNA synthesis as inhibition of signaling components such as pertussis toxin-sensitive G proteins, L-type Ca2+ channels, phospholipase C, intracellular Ca2+ release, protein kinase C, and mitogen-activated protein or extracellular signal-regulated kinase kinase blocks both of these downstream events. In addition, by overexpressing dominant-negative or sequestering mutants, we provide evidence that extracellular signal-regulated kinase 1/2 phosphorylation is Ras-dependent and transduced by Gbetagamma subunits. In summary, we have delineated major features of the mechanism of the mitogenic action of an agonist of the endogenous kappa-opioid receptor in C6 glioma cells.
Collapse
Affiliation(s)
- L M Bohn
- E.A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, Missouri 63104, USA
| | | | | |
Collapse
|
39
|
Goekjian PG, Wu GZ, Chen S, Zhou L, Jirousek MR, Gillig JR, Ballas LM, Dixon JT. Synthesis of Fluorinated Macrocyclic Bis(indolyl)maleimides as Potential 19F NMR Probes for Protein Kinase C. J Org Chem 1999. [DOI: 10.1021/jo9808876] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Bredel M, Pollack IF. The p21-Ras signal transduction pathway and growth regulation in human high-grade gliomas. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:232-49. [PMID: 10209234 DOI: 10.1016/s0165-0173(98)00057-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Deregulated p21-Ras function, as a result of mutation, overexpression or growth factor-induced overactivation, contributes to at least 30% of human cancer. This article reviews the potential role of the p21-Ras family of GTPases in the regulation of growth of high-grade gliomas and describes how targeting this oncoprotein clinically may provide a novel strategy to counteract glioma proliferation. The application of strategies directed at selectively opposing the deregulated signal transduction pathway of high-grade gliomas may be of potential therapeutic benefit and may offer a whole new arsenal of antineoplastic agents to be included in the multimodal treatment of these challenging neoplasms.
Collapse
Affiliation(s)
- M Bredel
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|