1
|
Igyártó BZ, Qin Z. The mRNA-LNP vaccines - the good, the bad and the ugly? Front Immunol 2024; 15:1336906. [PMID: 38390323 PMCID: PMC10883065 DOI: 10.3389/fimmu.2024.1336906] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The mRNA-LNP vaccine has received much attention during the COVID-19 pandemic since it served as the basis of the most widely used SARS-CoV-2 vaccines in Western countries. Based on early clinical trial data, these vaccines were deemed safe and effective for all demographics. However, the latest data raise serious concerns about the safety and effectiveness of these vaccines. Here, we review some of the safety and efficacy concerns identified to date. We also discuss the potential mechanism of observed adverse events related to the use of these vaccines and whether they can be mitigated by alterations of this vaccine mechanism approach.
Collapse
Affiliation(s)
- Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | | |
Collapse
|
2
|
Lyu K, Kwok CK. RNA G-quadruplex (rG4) structure detection using RTS and SHALiPE assays. Methods Enzymol 2023; 691:63-80. [PMID: 37914452 DOI: 10.1016/bs.mie.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
RNA G-quadruplexes (rG4s) are non-canonical RNA secondary structures that were first reported several decades ago. Latest studies have suggested that they are widespread in the transcriptomes of diverse species, and they have been demonstrated to have key roles in various fundamental cellular processes. Among the RNA secondary structure probing assays developed recently, Reverse transcriptase stalling (RTS) and selective 2'-hydroxyl acylation analyzed by lithium ion-based primer extension (SHALiPE) enabled the identification and characterization of distinct structural features of an rG4 structure of interest. Herein, we present an experimental protocol describing in detail the procedures involved in the preparation of in vitro transcribed RNAs, buffers, and reagents for RTS and SHALiPE assays, as well as performing RTS and SHALiPE assays, to examine the formation of rG4 and reveal the rG4 structural conformation at nucleotide resolution in vitro. RTS and SHALiPE assays can be performed by an experienced molecular biologist or chemical biologist with a basic understanding of nucleic acids. The duration for the preparation of in vitro transcription and RNA preparation is around 2 days, and the duration for RTS and SHALiPE assays is approximately 5 h.
Collapse
Affiliation(s)
- Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, P.R. China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, P.R. China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
3
|
Abstract
The fact that promoters are essential for the function of all genes presents the basis of the general idea that retrotranspositions give rise to processed pseudogenes. However, recent studies have demonstrated that some retrotransposed genes are transcriptionally active. Because promoters are not thought to be retrotransposed along with exonic sequences, these transcriptionally active genes must have acquired a functional promoter by mechanisms that are yet to be determined. Hence, comparison between a retrotransposed gene and its source gene appears to provide a unique opportunity to investigate the promoter creation for a new gene. Here, we identified 29 gene pairs in the human genome, consisting of a functional retrotransposed gene and its parental gene, and compared their respective promoters. In more than half of these cases, we unexpectedly found that a large part of the core promoter had been transcribed, reverse transcribed, and then integrated to be operative at the transposed locus. This observation can be ascribed to the recent discovery that transcription start sites tend to be interspersed rather than situated at 1 specific site. This propensity could confer retrotransposability to promoters per se. Accordingly, the retrotransposability can explain the genesis of some alternative promoters.
Collapse
Affiliation(s)
- Kohji Okamura
- Human Genome Centre, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
4
|
Gericke GS. Chromosomal fragility, structural rearrangements and mobile element activity may reflect dynamic epigenetic mechanisms of importance in neurobehavioural genetics. Med Hypotheses 2006; 66:276-85. [PMID: 16183210 DOI: 10.1016/j.mehy.2005.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 06/22/2005] [Accepted: 06/27/2005] [Indexed: 01/07/2023]
Abstract
Advances in human genome analyses have not yet allowed identification of specific genetic mechanisms underlying the expression of human neurobehavioural disorders. There is an increasing awareness that several genes may contribute to behavioural phenotypes and these genes appear to interact in as yet undetermined ways. It has been suggested that the problem needs elucidation from an epigenetic, gene expression perspective. Cytogenetic instability manifesting as chromosomal fragile sites, translocations, duplications, deletions and inversions, when co-occurring with neurobehavioural disorders, may offer a doorway to the investigation of such chromatin level, regulatory region, epigenetic processes. Due to earlier indications of non-specificity of chromosomal aberrations, poor phenotype:genotype correlations and a shift to analysing candidate coding regions on high resolution map level, the only utility of chromosomal breakpoints came to be seen as harbouring possible candidate genes of interest when segregating together with particular neurobehavioural disorders. More recent findings of the expression of highly specific subsets of fragile sites in association with Tourette and Rett syndromes need to be extended to other neurobehavioural disorders to ascertain whether observed patterns can be considered representative of 'chromatin endophenotypes' correlating with discrete sets of neurobehavioural symptoms. Environmental/epigenetic factors could affect the chromatin characteristics of the genome arising through DNA strand breakage, mobile element activity and retroinsertion, establishing new architectural features of regulatory control networks very rapidly in comparison to coding region evolution rates. Microarray-based techniques for the genome-wide mapping of in vivo protein-DNA interactions offer increasingly comprehensive views of genetic and epigenetic regulatory networks. It may be informative to include functionally significant chromatin structural variation analyses when considering candidate genes for neurobehavioural disorders.
Collapse
Affiliation(s)
- G S Gericke
- Genetics Division, Ampath National Pathology Laboratories, P.O. Box 2040, Brooklyn Square, 0075 Pretoria, Gauteng, South Africa.
| |
Collapse
|
5
|
Abstract
The small genomes of fungi are expected to have little repetitive content other than rDNA genes. Moreover, among asexual or highly selfing lineages, the diversity of repetitive elements is also expected to be very low. However, in the automictic fungus Microbotryum violaceum, a very large proportion of random DNA fragments from the autosomes and the fungal sex chromosomes are repetitive in nature, either as retrotransposon or helicase sequences. Among the retrotransposon sequences, examples were found from each major kind of elements, including copia, gypsy, and non-LTR sequences. The most numerous were copia-like elements, which are believed to be rare in fungi, particularly among basidiomycetes. The many helicase sequences appear to belong to the recently discovered Helitron type of transposable elements. Also, sequences that could not be identified as a known type of gene were also very repetitive within the database of random fragments from M. violaceum. The differentiated pair of fungal sex chromosomes and suppression of recombination may be the major forces determining the highly repetitive content in the small genome of M. violaceum.
Collapse
Affiliation(s)
- Michael E Hood
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
6
|
Lampson B, Inouye M, Inouye S. The msDNAs of bacteria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:65-91. [PMID: 11525386 DOI: 10.1016/s0079-6603(01)67025-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
msDNAs are small, structurally unique satellite DNAs found in a number of Gram-negative bacteria. Composed of hundreds of copies of single-stranded DNA--hence the name multicopy single-stranded DNA--msDNA is actually a complex of DNA, RNA, and probably protein. These peculiar molecules are synthesized by a reverse transcription mechanism catalyzed by a reverse transcriptase (RT) that is evolutionarily related to the polymerase found in the HIV virus. The genes, including the RT gene, responsible for the synthesis of msDNA are encoded in a retron, a genetic element that is carried on the bacterial chromosome. The retron is, in fact, the first such retroelement to be discovered in prokaryotic cells. This report is a comprehensive review of the many interesting questions raised by this unique DNA and the fascinating answers it has revealed. We have learned a great deal about the structure of msDNA: how it is synthesized, the structure and functions of the RT protein required to make it, its effects on the host cell, the retron element that encodes it, its possible origins and evolution, and even its potential usefulness as a practical genetic tool. Despite the impressive gains in our understanding of the msDNAs, however, the simple, fundamental question of its natural function remains an enduring mystery. Thus, we have much more to learn about the msDNAs of bacteria.
Collapse
MESH Headings
- Bacteria/enzymology
- Bacteria/genetics
- Base Sequence
- DNA, Bacterial/biosynthesis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Single-Stranded/biosynthesis
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- Evolution, Molecular
- Molecular Sequence Data
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA-Directed DNA Polymerase/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- B Lampson
- Department of Health Sciences, East Tennessee State University, Johnson City 37614, USA
| | | | | |
Collapse
|
7
|
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, et alVenter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigó R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Deslattes Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X. The sequence of the human genome. Science 2001; 291:1304-51. [PMID: 11181995 DOI: 10.1126/science.1058040] [Show More Authors] [Citation(s) in RCA: 7838] [Impact Index Per Article: 326.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
Collapse
Affiliation(s)
- J C Venter
- Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hart MC, Korshunova YO, Cooper JA. Vertebrates have conserved capping protein alpha isoforms with specific expression patterns. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:120-32. [PMID: 9331217 DOI: 10.1002/(sici)1097-0169(1997)38:2<120::aid-cm2>3.0.co;2-b] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Capping protein (CP), a ubiquitous actin binding protein composed of an alpha and a beta subunit, is important for actin assembly and cell motility. Lower organisms have one gene and one isoform of each subunit. Chickens have two very similar alpha-subunit isoforms. To determine if vertebrates in general contain multiple alpha isoforms and if those alpha isoforms have conserved sequences, we isolated and analyzed alpha subunit cDNA's in mice and humans. Both mice and humans also have two alpha isoforms. Phylogenetic analysis of the alpha isoform sequences reveals that vertebrates have two highly conserved subfamilies, alpha1 and alpha2. The alpha1 and alpha2 subfamilies are very similar to each other but can be defined and distinguished from each other by a small number of key amino acid residues. In addition, 3' untranslated cDNA sequences are conserved within the isoform subfamilies. To investigate the function of the alpha isoforms, we examined their expression in mouse cells and tissues. Endothelial cells contain only the alpha2 isoform, and erythrocytes contain almost exclusively the alpha1 isoform. Most tissues have both alpha1 and alpha2 isoforms but the ratio of alpha1:alpha2 varies widely. Together, these findings support the hypothesis that the CP alpha isoforms have conserved, unique and essential roles in vertebrates.
Collapse
Affiliation(s)
- M C Hart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
9
|
Abstract
Since the Human Immunodeficiency Virus Type 1 (HIV-1) was identified as the etiologic agent of the Acquired Immune Deficiency Syndrome (AIDS), the HIV-1 reverse transcriptase (RT) has been the subject of intensive study. The reverse transcription entails the transition of the single-stranded viral RNA into double-stranded proviral DNA, which is then integrated into the host chromosome. Therefore, the HIV-1 reverse transcriptase plays a pivotal role in the life cycle of the virus and is consequently an interesting target for anti-HIV drug therapy. In the first section, we describe the complex process of reverse transcription and the different activities involved in this process. We then highlight the structure-function relationship of the HIV-1 reverse transcriptase, which is of great importance for a better understanding of resistance development, a major problem in anti-AIDS therapies. Finally, we summarize the mechanisms of HIV resistance toward various RT inhibitors and the implications thereof for the current anti-HIV drug therapies.
Collapse
Affiliation(s)
- H Jonckheere
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
10
|
Hutter H, Vogel BE, Plenefisch JD, Norris CR, Proenca RB, Spieth J, Guo C, Mastwal S, Zhu X, Scheel J, Hedgecock EM. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 2000; 287:989-94. [PMID: 10669422 DOI: 10.1126/science.287.5455.989] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
New proteins and modules have been invented throughout evolution. Gene "birth dates" in Caenorhabditis elegans range from the origins of cellular life through adaptation to a soil habitat. Possibly half are "metazoan" genes, having arisen sometime between the yeast-metazoan and nematode-chordate separations. These include basement membrane and cell adhesion molecules implicated in tissue organization. By contrast, epithelial surfaces facing the environment have specialized components invented within the nematode lineage. Moreover, interstitial matrices were likely elaborated within the vertebrate lineage. A strategy for concerted evolution of new gene families, as well as conservation of adaptive genes, may underlie the differences between heterochromatin and euchromatin.
Collapse
Affiliation(s)
- H Hutter
- Max-Planck-Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Brosius J. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 1999; 238:115-34. [PMID: 10570990 DOI: 10.1016/s0378-1119(99)00227-9] [Citation(s) in RCA: 275] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While the significance of middle repetitive elements had been neglected for a long time, there are again tendencies to ascribe most members of a given middle repetitive sequence family a functional role--as if the discussion of SINE (short interspersed repetitive elements) function only can occupy extreme positions. In this article, I argue that differences between the various classes of retrosequences concern mainly their copy numbers. Consequently, the function of SINEs should be viewed as pragmatic such as, for example, mRNA-derived retrosequences, without underestimating the impact of retroposition for generation of novel protein coding genes or parts thereof (exon shuffling by retroposition) and in particular of SINEs (and retroelements) in modulating genes and their expression. Rapid genomic change by accumulating retrosequences may even facilitate speciation [McDonald, J.F., 1995. Transposable elements: possible catalysts of organismic evolution. Trends Ecol. Evol. 10, 123-126.] In addition to providing mobile regulatory elements, small RNA-derived retrosequences including SINEs can, in analogy to mRNA-derived retrosequences, also give rise to novel small RNA genes. Perhaps not representative for all SINE/master gene relationships, we gained significant knowledge by studying the small neuronal non-messenger RNAs, namely BC1 RNA in rodents and BC200 RNA in primates. BC1 is the first identified master gene generating a subclass of ID repetitive elements, and BC200 is the only known Alu element (monomeric) that was exapted as a novel small RNA encoding gene.
Collapse
Affiliation(s)
- J Brosius
- Institute of Experimental Pathology/Molecular Neurobiology, ZMBE, University of Münster, Germany.
| |
Collapse
|
12
|
Chan AW, Homan EJ, Ballou LU, Burns JC, Bremel RD. Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proc Natl Acad Sci U S A 1998; 95:14028-33. [PMID: 9826647 PMCID: PMC24320 DOI: 10.1073/pnas.95.24.14028] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A critical requirement for integration of retroviruses, other than HIV and possibly related lentiviruses, is the breakdown of the nuclear envelope during mitosis. Nuclear envelope breakdown occurs during mitotic M-phase, the envelope reforming immediately after cell division, thereby permitting the translocation of the retroviral preintegration complex into the nucleus and enabling integration to proceed. In the oocyte, during metaphase II (MII) of the second meiosis, the nuclear envelope is also absent and the oocyte remains in MII arrest for a much longer period of time compared with M-phase in a somatic cell. Pseudotyped replication-defective retroviral vector was injected into the perivitelline space of bovine oocytes during MII. We show that reverse-transcribed gene transfer can take place in an oocyte in MII arrest of meiosis, leading to production of offspring, the majority of which are transgenic. We discuss the implications of this mechanism both as a means of production of transgenic livestock and as a model for naturally occurring recursive transgenesis.
Collapse
Affiliation(s)
- A W Chan
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, 1675 Observatory Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
13
|
Soret J, Gattoni R, Guyon C, Sureau A, Popielarz M, Le Rouzic E, Dumon S, Apiou F, Dutrillaux B, Voss H, Ansorge W, Stévenin J, Perbal B. Characterization of SRp46, a novel human SR splicing factor encoded by a PR264/SC35 retropseudogene. Mol Cell Biol 1998; 18:4924-34. [PMID: 9671500 PMCID: PMC109076 DOI: 10.1128/mcb.18.8.4924] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The highly conserved SR family contains a growing number of phosphoproteins acting as both essential and alternative splicing factors. In this study, we have cloned human genomic and cDNA sequences encoding a novel SR protein designated SRp46. Nucleotide sequence analyses have revealed that the SRp46 gene corresponds to an expressed PR264/SC35 retropseudogene. As a result of mutations and amplifications, the SRp46 protein significantly differs from the PR264/SC35 factor, mainly at the level of its RS domain. Northern and Western blot analyses have established that SRp46 sequences are expressed at different levels in several human cell lines and normal tissues, as well as in simian cells. In contrast, sequences homologous to SRp46 are not present in mice. In vitro splicing studies indicate that the human SRp46 recombinant protein functions as an essential splicing factor in complementing a HeLa cell S100 extract deficient in SR proteins. In addition, complementation analyses performed with beta-globin or adenovirus E1A transcripts and different splicing-deficient extracts have revealed that SRp46 does not display the same activity as PR264/SC35. These results demonstrate, for the first time, that an SR splicing factor, which represents a novel member of the SR family, is encoded by a functional retropseudogene.
Collapse
Affiliation(s)
- J Soret
- Laboratoire d'Oncologie Virale et Moléculaire, INSERM U142, Bâtiment Kourilsky, Hôpital Saint-Antoine, Paris 75571 Cedex 12, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Conte D, Barber E, Banerjee M, Garfinkel DJ, Curcio MJ. Posttranslational regulation of Ty1 retrotransposition by mitogen-activated protein kinase Fus3. Mol Cell Biol 1998; 18:2502-13. [PMID: 9566871 PMCID: PMC110630 DOI: 10.1128/mcb.18.5.2502] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/1997] [Accepted: 01/27/1998] [Indexed: 02/07/2023] Open
Abstract
Ty1 retrotransposons in Saccharomyces cerevisiae are maintained in a state of transpositional dormancy. We isolated a mutation, rtt100-1, that increases the transposition of genomic Ty1 elements 18- to 56-fold but has little effect on the transposition of related Ty2 elements. rtt100-1 was shown to be a null allele of the FUS3 gene, which encodes a haploid-specific mitogen-activated protein kinase. In fus3 mutants, the levels of Ty1 RNA, protein synthesis, and proteolytic processing were not altered relative to those in FUS3 strains but steady-state levels of TyA, integrase, and reverse transcriptase proteins and Ty1 cDNA were all increased. These findings suggest that Fus3 suppresses Ty1 transposition by destabilizing viruslike particle-associated proteins. The Fus3 kinase is activated through the mating-pheromone response pathway by phosphorylation at basal levels in naive cells and at enhanced levels in pheromone-treated cells. We demonstrate that suppression of Ty1 transposition in naive cells requires basal levels of Fus3 activation. Substitution of conserved amino acids required for activation of Fus3 derepressed Ty1 transposition. Moreover, epistasis analyses revealed that components of the pheromone response pathway that act upstream of Fus3, including Ste4, Ste5, Ste7, and Ste11, are required for the posttranslational suppression of Ty1 transposition by Fus3. The regulation of Ty1 transposition by Fus3 provides a haploid-specific mechanism through which environmental signals can modulate the levels of retrotransposition.
Collapse
Affiliation(s)
- D Conte
- Molecular Genetics Program, Wadsworth Center & School of Public Health, State University of New York at Albany, 12201-2002, USA
| | | | | | | | | |
Collapse
|
15
|
Reinton N, Haugen TB, Orstavik S, Skålhegg BS, Hansson V, Jahnsen T, Taskén K. The gene encoding the C gamma catalytic subunit of cAMP-dependent protein kinase is a transcribed retroposon. Genomics 1998; 49:290-7. [PMID: 9598317 DOI: 10.1006/geno.1998.5240] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three different catalytic isoforms of cAMP-dependent protein kinase have been identified (C alpha, C beta, and C gamma). We report the cloning and characterization of the human and rhesus monkey genes encoding the testis-specific C gamma subunit. The human C gamma gene is intronless with an open reading frame similar to the previously published cDNA sequence. The 3' and 5' flanking regions share high similarity with the C alpha nontranslated regions (82%) also outside the regions corresponding to the C gamma cDNA. The human gene is flanked by an Alu-related sequence in the 5'-end and there are insertions of two Alu-related sequences in the 3' nontranslated region. The observation that the C gamma gene is intronless and colinear with C alpha mRNA, together with the presence of remnants of a poly(A) tail and flanking direct repeats, indicates that the C gamma gene is a C alpha-derived retroposon. The 5' flanking region of this gene has a high G/C content and a putative TATA box situated at -138 compared to the translation initiation codon. Cloning and sequencing of a partial C gamma rhesus monkey gene demonstrate conservation of the sequence in primates. Northern analysis on isolated and fractionated human germ cells of testes from normal and estrogen-treated individuals demonstrates that the C gamma gene is expressed only in germ cells in the human testis. Our results indicate that the C gamma gene is a retroposon specifically transcribed in primate testicular germ cells.
Collapse
Affiliation(s)
- N Reinton
- Institute of Medical Biochemistry, University of Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hendriksen PJ, Hoogerbrugge JW, Baarends WM, de Boer P, Vreeburg JT, Vos EA, van der Lende T, Grootegoed JA. Testis-specific expression of a functional retroposon encoding glucose-6-phosphate dehydrogenase in the mouse. Genomics 1997; 41:350-9. [PMID: 9169132 DOI: 10.1006/geno.1997.4673] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The X-chromosomal gene glucose-6-phosphate dehydrogenase (G6pd) is known to be expressed in most cell types of mammalian species. In the mouse, we have detected a novel gene, designated G6pd-2, encoding a G6PD isoenzyme. G6pd-2 does not contain introns and appears to represent a retroposed gene. This gene is uniquely transcribed in postmeiotic spermatogenic cells in which the X-encoded G6pd gene is not transcribed. Expression of the G6pd-2 sequence in a bacterial system showed that the encoded product is an active enzyme. Zymogramic analysis demonstrated that recombinant G6PD-2, but not recombinant G6PD-1 (the X-chromosome-encoded G6PD), formed tetramers under reducing conditions. Under the same conditions, G6PD tetramers were also found in extracts of spermatids and spermatozoa, indicating the presence of G6pd-2-encoded isoenzyme in these cell types. G6pd-2 is one of the very few known expressed retroposons encoding a functional protein, and the presence of this gene is probably related to X chromosome inactivation during spermatogenesis.
Collapse
Affiliation(s)
- P J Hendriksen
- Department of Endocrinology and Reproduction, Faculty of Medicine and Health Sciences, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ramakrishnan C, Robins DM. Steroid hormone responsiveness of a family of closely related mouse proviral elements. Mamm Genome 1997; 8:811-7. [PMID: 9337392 DOI: 10.1007/s003359900584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Regulation of the mouse sex-limited protein (Slp) gene in unusual in that hormone response is conferred by the 5' LTR of an upstream inserted provirus, dubbed the imposon (imp1). In a search for additional genes whose regulation has been affected by retrotransposition events, we isolated two partial proviral elements by stringent screening of a mouse genomic library. One clone (imp2) contained a portion of the envelope gene and a 3' LTR that was nearly identical to the 3' LTR of imp1; this similarity extended to insertion into a B1 repetitive element. The second proviral clone (imp3) contained a 5' LTR and associated coding sequences, but lacked its 3' LTR; the LTR of imp3 differed by 12% from the imp1 sequence. To assess potential hormone response, proviral enhancer regions cloned into reporter vectors were tested in transfection. The imp2 enhancer was similar in behavior to imp1, conferring both androgen and glucocorticoid induction in one fragment context and an androgen-specific response in another. In contrast, the imp3 enhancer allowed high expression in the absence of hormone and was less responsive to steroids in general and androgen in particular. These three proviral elements define a small family of steroid responsive proviruses in the mouse genome, and at least one member has had a lasting impact on an endogenous gene's regulation.
Collapse
Affiliation(s)
- C Ramakrishnan
- Department of Human Genetics, University of Michigan, Ann Arbor 48109-0618, USA
| | | |
Collapse
|
18
|
Abstract
Reverse transcription has been an important mediator of genomic change. This influence dates back more than three billion years, when the RNA genome was converted into the DNA genome. While the current cellular role(s) of reverse transcriptase are not yet completely understood, it has become clear over the last few years that this enzyme is still responsible for generating significant genomic change and that its activities are one of the driving forces of evolution. Reverse transcriptase generates, for example, extra gene copies (retrogenes), using as a template mature messenger RNAs. Such retrogenes do not always end up as nonfunctional pseudogenes but form, after reinsertion into the genome, new unions with resident promoter elements that may alter the gene's temporal and/or spatial expression levels. More frequently, reverse transcriptase produces copies of nonmessenger RNAs, such as small nuclear or cytoplasmic RNAs. Extremely high copy numbers can be generated by this process. The resulting reinserted DNA copies are therefore referred to as short interspersed repetitive elements (SINEs). SINEs have long been considered selfish DNA, littering the genome via exponential propagation but not contributing to the host's fitness. Many SINEs, however, can give rise to novel genes encoding small RNAs, and are the migrant carriers of numerous control elements and sequence motifs that can equip resident genes with novel regulatory elements [Brosius J. and Gould S.J., Proc Natl Acad Sci USA 89, 10706-10710, 1992]. Retrosequences, such as SINEs and portions of retroelements (e.g., long terminal repeats, LTRs), are capable of donating sequence motifs for nucleosome positioning, DNA methylation, transcriptional enhancers and silencers, poly(A) addition sequences, determinants of RNA stability or transport, splice sites, and even amino acid codons for incorporation into open reading frames as novel protein domains. Retroposition can therefore be considered as a major pacemaker for evolution (including speciation). Retroposons, with their unique properties and actions, form the molecular basis of important evolutionary concepts, such as exaptation [Gould S.J. and Vrba E., Paleobiology 8, 4-15, 1982] and punctuated equilibrium [Elredge N. and Gould S.J. in Schopf T.J.M. (ed). Models in Paleobiology. Freeman, Cooper, San Francisco, 1972, pp. 82-115].
Collapse
Affiliation(s)
- J Brosius
- Institute for Experimental Pathology, ZMBE University of Münster, Germany.
| | | |
Collapse
|