1
|
Xin B, Chen H, Liu T, Wu Y, Hu Q, Dong X, Li Z. Novel compound heterozygous mutations of the FBP1 gene in a patient with hypoglycemia and lactic acidosis: A case report. Mol Genet Genomic Med 2024; 12:e2339. [PMID: 38111981 PMCID: PMC10767684 DOI: 10.1002/mgg3.2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Fructose-1,6-bisphosphatase (FBPase) deficiency, caused by an FBP1 mutation, is an autosomal recessively inherited metabolic disorder characterized by impaired gluconeogenesis. Due to the rarity of FBPase deficiency, the mechanism by which the mutations cause enzyme activity loss still remains unclear. METHODS We report a pediatric patient with typical FBPase deficiency who presented with hypoglycemia, hyperlactatemia, metabolic acidosis, and hyperuricemia. Whole-exome sequencing was used to search for pathogenic genes, Sanger sequencing was used for verification, and molecular dynamic simulation was used to evaluate how the novel mutation affects FBPase activity and structural stability. RESULTS Direct and allele-specific sequence analysis of the FBP1 gene (NM_000507) revealed that the proband had a compound heterozygote for the c. 490 (exon 4) G>A (p. G164S) and c. 861 (exon 7) C>A (p. Y287X, 52), which he inherited from his carrier parents. His father and mother had heterozygous G164S and Y287X mutations, respectively, without any symptoms of hypoglycemia. CONCLUSION Our results broaden the known mutational spectrum and possible clinical phenotype of FBP1.
Collapse
Affiliation(s)
- Bin Xin
- Department of PharmaceuticsDalian Women and Children's Medical GroupDalianLiaoningChina
- College of PharmacyDalian Medical UniversityDalianLiaoningChina
| | - Haiming Chen
- Department of Emergency MedicineDalian Women and Children's Medical GroupDalianLiaoningChina
| | - Tianyi Liu
- Department of PharmaceuticsDalian Women and Children's Medical GroupDalianLiaoningChina
| | - Yue Wu
- Department of PharmaceuticsDalian Women and Children's Medical GroupDalianLiaoningChina
- College of PharmacyDalian Medical UniversityDalianLiaoningChina
| | - Qingyang Hu
- Department of PharmaceuticsDalian Women and Children's Medical GroupDalianLiaoningChina
- College of PharmacyDalian Medical UniversityDalianLiaoningChina
| | - Xue Dong
- Department of PharmaceuticsDalian Women and Children's Medical GroupDalianLiaoningChina
- College of PharmacyDalian Medical UniversityDalianLiaoningChina
| | - Zhong Li
- Department of PharmaceuticsDalian Women and Children's Medical GroupDalianLiaoningChina
| |
Collapse
|
2
|
Bhai P, Bijarnia-Mahay S, Puri RD, Saxena R, Gupta D, Kotecha U, Sachdev A, Gupta D, Vyas V, Agarwal D, Jain V, Bansal RK, Kumar TG, Verma IC. Clinical and molecular characterization of Indian patients with fructose-1, 6-bisphosphatase deficiency: Identification of a frequent variant (E281K). Ann Hum Genet 2018; 82:309-317. [PMID: 29774539 DOI: 10.1111/ahg.12256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/03/2018] [Accepted: 04/12/2018] [Indexed: 12/01/2022]
Abstract
Fructose-1, 6-bisphosphatase deficiency is an autosomal recessive disorder of gluconeogenesis caused by genetic defect in the FBP1 gene. It is characterized by episodic, often life-threatening metabolic acidosis, liver dysfunction, and hyperlactatemia. Without a high index of suspicion, it may remain undiagnosed with devastating consequences. Accurate diagnosis can be achieved either by enzyme assay or gene studies. Enzyme assay requires a liver biopsy and is tedious, invasive, expensive, and not easily available. Therefore, genetic testing is the most appropriate method to confirm the diagnosis. Molecular studies were performed on 18 suspected cases presenting with episodic symptoms. Seven different pathogenic variants were identified. Two common variants were noted in two subpopulations from the Indian subcontinent; p.Glu281Lys (E281K) occurred most frequently (in 10 patients) followed by p.Arg158Trp (R158W, in 4 patients). Molecular analysis confirmed the diagnosis and helped in managing these patients by providing appropriate genetic counseling. In conclusion, genetic studies identified two common variants in the Indian subcontinent, thus simplifying the diagnostic algorithm in this treatable disorder.
Collapse
Affiliation(s)
- Pratibha Bhai
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Ratna D Puri
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Renu Saxena
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Deepti Gupta
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Udhaya Kotecha
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Anil Sachdev
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Dhiren Gupta
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Vyomesh Vyas
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Divya Agarwal
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Vivek Jain
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Rajeev K Bansal
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Tapisha G Kumar
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Ishwar Chander Verma
- Institute of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| |
Collapse
|
3
|
International practices in the dietary management of fructose 1-6 biphosphatase deficiency. Orphanet J Rare Dis 2018; 13:21. [PMID: 29370874 PMCID: PMC5785792 DOI: 10.1186/s13023-018-0760-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In fructose 1,6 bisphosphatase (FBPase) deficiency, management aims to prevent hypoglycaemia and lactic acidosis by avoiding prolonged fasting, particularly during febrile illness. Although the need for an emergency regimen to avoid metabolic decompensation is well established at times of illness, there is uncertainty about the need for other dietary management strategies such as sucrose or fructose restriction. We assessed international differences in the dietary management of FBPase deficiency. METHODS A cross-sectional questionnaire (13 questions) was emailed to all members of the Society for the Study of Inborn Errors of Metabolism (SSIEM) and a wide database of inherited metabolic disorder dietitians. RESULTS Thirty-six centres reported the dietary prescriptions of 126 patients with FBPase deficiency. Patients' age at questionnaire completion was: 1-10y, 46% (n = 58), 11-16y, 21% (n = 27), and >16y, 33% (n = 41). Diagnostic age was: <1y, 36% (n = 46); 1-10y, 59% (n = 74); 11-16y, 3% (n = 4); and >16y, 2% (n = 2). Seventy-five per cent of centres advocated dietary restrictions. This included restriction of: high sucrose foods only (n = 7 centres, 19%); fruit and sugary foods (n = 4, 11%); fruit, vegetables and sugary foods (n = 13, 36%). Twenty-five per cent of centres (n = 9), advised no dietary restrictions when patients were well. A higher percentage of patients aged >16y rather than ≤16y were prescribed dietary restrictions: patients aged 1-10y, 67% (n = 39/58), 11-16y, 63% (n = 17/27) and >16y, 85% (n = 35/41). Patients classified as having a normal fasting tolerance increased with age from 30% in 1-10y, to 36% in 11-16y, and 58% in >16y, but it was unclear if fasting tolerance was biochemically proven. Twenty centres (56%) routinely prescribed uncooked cornstarch (UCCS) to limit overnight fasting in 47 patients regardless of their actual fasting tolerance (37%). All centres advocated an emergency regimen mainly based on glucose polymer for illness management. CONCLUSIONS Although all patients were prescribed an emergency regimen for illness, use of sucrose and fructose restricted diets with UCCS supplementation varied widely. Restrictions did not relax with age. International guidelines are necessary to help direct future dietary management of FBPase deficiency.
Collapse
|
4
|
Ijaz S, Zahoor MY, Imran M, Ramzan K, Bhinder MA, Shakeel H, Iqbal M, Aslam A, Shehzad W, Cheema HA, Rehman H. Genetic analysis of fructose-1,6-bisphosphatase (FBPase) deficiency in nine consanguineous Pakistani families. J Pediatr Endocrinol Metab 2017; 30:1203-1210. [PMID: 29016355 DOI: 10.1515/jpem-2017-0188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/14/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Fructose-1,6-bisphosphatase (FBPase) deficiency is a rare inherited metabolic disorder characterized by recurrent episodes of hypoglycemia, ketosis and lactic acidosis. FBPase is encoded by FBP1 gene and catalyzes the hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate in the last step of gluconeogenesis. We report here FBP1 mutations in nine consanguineous Pakistani families affected with FBPase deficiency. METHODS Nine families having one or two individuals affected with FBPase deficiency were enrolled over a period of 3 years. All FBP1 exonic regions including splicing sites were PCR-amplified and sequenced bidirectionally. Familial cosegregation of mutations with disease was confirmed by direct sequencing and PCR-RFLP analysis. RESULTS Three different FBP1 mutations were identified. Each of two previously reported mutations (c.472C>T (p.Arg158Trp) and c.841G>A (p.Glu281Lys)) was carried by four different families. The ninth family carried a novel 4-bp deletion (c.609_612delAAAA), which is predicted to result in frameshift (p.Lys204Argfs*72) and loss of FBPase function. The novel variant was not detected in any of 120 chromosomes from normal ethnically matched individuals. CONCLUSIONS FBPase deficiency is often fatal in the infancy and early childhood. Early diagnosis and prompt treatment is therefore crucial to preventing early mortality. We recommend the use of c.472C>T and c.841G>A mutations as first choice genetic markers for molecular diagnosis of FBPase deficiency in Pakistan.
Collapse
|
5
|
Ramakrishna SH, Patil SJ, Jagadish AA, Sapare AK, Sagar H, Kannan S. Fructose-1,6-bisphosphatase deficiency caused by a novel homozygous Alu element insertion in the FBP1 gene and delayed diagnosis. J Pediatr Endocrinol Metab 2017; 30:703-706. [PMID: 28599390 DOI: 10.1515/jpem-2017-0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/03/2017] [Indexed: 11/15/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase) enzyme deficiency is one of the treatable autosomal recessive inherited metabolic disorders. If diagnosed early, FBPase deficiency has a favorable prognosis. We report the clinical and biochemical findings of a 9.5-year-old female child with FBPase deficiency. FBPase deficiency is caused by a homozygous Arthrobacter luteus (Alu) insertion in the FBP1 gene, reported for the first time.
Collapse
Affiliation(s)
| | - Siddaramappa Jagdish Patil
- Medical Genetics, Mazumdar-Shaw Medical Center, Narayana Health City, No 258/A, Bommasandra Industrial Area, Anekal Taluk, Bangalore560099, Karnataka,India
| | | | - Anil Kumar Sapare
- Department of Pediatrics, Narayana Health City, Bangalore, Karnataka,India
| | - Hiremath Sagar
- Pediatrics Pulmonology and Intensivist, Narayana Health City, Bangalore, Karnataka,India
| | - Subramanian Kannan
- Department of Endocrinology, Narayana Health City, Bangalore, Karnataka,India
| |
Collapse
|
6
|
Chaturvedi S, Singh AK, Keshari AK, Maity S, Sarkar S, Saha S. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach. SCIENTIFICA 2016; 2016:9828672. [PMID: 27051561 PMCID: PMC4804091 DOI: 10.1155/2016/9828672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 05/30/2023]
Abstract
One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Ashok K. Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Amit K. Keshari
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Siddhartha Maity
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Srimanta Sarkar
- Dr. Reddy's Laboratories Limited, Bachupally, Hyderabad, Telangana 502325, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| |
Collapse
|
7
|
Kato S, Nakajima Y, Awaya R, Hata I, Shigematsu Y, Saitoh S, Ito T. Pitfall in the Diagnosis of Fructose-1,6-Bisphosphatase Deficiency: Difficulty in Detecting Glycerol-3-Phosphate with Solvent Extraction in Urinary GC/MS Analysis. TOHOKU J EXP MED 2015; 237:235-9. [DOI: 10.1620/tjem.237.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Sayaka Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences
| | - Yoko Nakajima
- Department of Pediatrics, Fujita Health University School of Medicine
| | - Risa Awaya
- Department of Pediatrics, Japanese Red Cross Nagoya Daini Hospital
| | - Ikue Hata
- Department of Pediatrics, University of Fukui Faculty of Medical Sciences
| | - Yosuke Shigematsu
- Department of Health Science, University of Fukui Faculty of Medical Sciences
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences
| | - Tetsuya Ito
- Department of Pediatrics, Fujita Health University School of Medicine
| |
Collapse
|
8
|
Kamate M, Jambagi M, Gowda P, Sonoli S. Fructose-1,6-diphosphatase deficiency: a treatable neurometabolic disorder. BMJ Case Rep 2014; 2014:bcr-2013-201553. [PMID: 25246452 DOI: 10.1136/bcr-2013-201553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fructose-1,6-diphosphatase (FDPase) deficiency is usually considered an inborn error of fructose metabolism, however, strictly speaking it is a defect of gluconeogenesis. The disorder is manifested by the appearance of hypoglycaemia, ketosis and lactic acidosis (neonatally or later during fasting or induced by fructose) and may also be life-threatening. FDPase deficiency can be suspected using simple bedside tests such as glucometer random blood sugar, Benedict's test, Rothera's test and Seliwanoff's test. We report our experience with two cases of FDPase deficiency and review the relevant literature. We also describe the fructosuria in these cases during the crises period, which has not been stressed in the literature.
Collapse
|
9
|
Afroze B, Yunus Z, Steinmann B, Santer R. Transient pseudo-hypertriglyceridemia: a useful biochemical marker of fructose-1,6-bisphosphatase deficiency. Eur J Pediatr 2013; 172:1249-53. [PMID: 23881342 DOI: 10.1007/s00431-013-2084-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/20/2013] [Indexed: 11/28/2022]
Abstract
UNLABELLED Fructose-1,6-bisphosphatase (FBP) deficiency is an autosomal-recessive disorder of gluconeogenesis resulting from mutations within the FBP1 gene. During periods of trivial illness, individuals with FBP deficiency may develop ketotic hypoglycemia, metabolic acidosis, lactic acidemia, and an increased anion gap. Although detection of urinary excretion of glycerol by urine organic acid analysis has been previously described, the presence of transient pseudo-hypertriglyceridemia in serum during metabolic decompensation has not been reported before. This study describes four consanguineous Pakistani families, in which four patients were diagnosed with FBP deficiency. All showed transient pseudo-hypertriglyceridemia during the acute phase of metabolic decompensation, which resolved in a metabolically stable phase. Mutations in the FBP1 gene have been described from various ethnicities, but there is very limited literature available for the Pakistani population. This study also describes one novel mutation in the FBP1 gene which seems to be prevalent in Pakistani-Indian patients. CONCLUSION As a result of this study, transient pseudo-hypertriglyceridemia should be added to glyceroluria, ketotic hypoglycemia, metabolic acidosis, and lactic acidosis as a useful biochemical marker of FBP deficiency.
Collapse
Affiliation(s)
- Bushra Afroze
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan.
| | | | | | | |
Collapse
|
10
|
|
11
|
Gluconeogenesis defect presenting with resistant hyperglycemia and acidosis mimicking diabetic ketoacidosis. Pediatr Emerg Care 2011; 27:1180-1. [PMID: 22158280 DOI: 10.1097/pec.0b013e31823b412d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fructose-1,6-diphosphatase (FDPase) enzyme deficiency is a rare inherited metabolic disease. Affected patients usually present with metabolic crisis including hypoglycemia, acidosis, ketonuria, and hyperuricemia. A previously healthy 8-month-old male infant presented with fever, vomiting, and hypoactivity. He had tachycardia, tachypnea, and a tendency to sleep. The patient had signs of severe dehydration and shock. Laboratory findings revealed significant lactic acidosis, hyperuricemia, hyperglycemia, elevated liver enzyme level, and hyperlipidemia. The urine analysis had evidence of glycosuria and ketonuria. Hyperuricemia, lactic acidemia, and hyperglycemia persisted despite insulin infusion, adequate hydration, and perfusion. Consequently, peritoneal dialysis was started. About 12 hours after dialysis, his metabolic derangements were normalized, and clinical status was improved dramatically. His metabolic disease workup was compatible with FDPase deficiency. Here, we described a metabolic attack of FDPase deficiency presented with hyperglycemia mimicking diabetic ketoacidosis.
Collapse
|
12
|
Åsberg C, Hjalmarson O, Alm J, Martinsson T, Waldenström J, Hellerud C. Fructose 1,6-bisphosphatase deficiency: enzyme and mutation analysis performed on calcitriol-stimulated monocytes with a note on long-term prognosis. J Inherit Metab Dis 2010; 33 Suppl 3:S113-21. [PMID: 20151204 DOI: 10.1007/s10545-009-9034-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 10/24/2009] [Accepted: 12/11/2009] [Indexed: 10/19/2022]
Abstract
Fructose 1,6-bisphosphatase (FBPase) deficiency is an inborn error of metabolism in the gluconeogenetic pathway. During periods of low food intake or infections, a defect in FBPase can result in hypoglycemia, ketonuria and metabolic acidosis. We established a diagnostic system for FBPase deficiency consisting of enzyme activity measurement and mutation detection in calcitriol-stimulated monocytes. In healthy individuals, we showed that FBPase activity is present in monocytes but not in other leukocytes. We describe the clinical course of four individuals from two Swedish families with FBPase deficiency. Family 1: patient 1 died at the age of 6 months after a severe episode with hypoglycemia and acidosis; patients 2 and 3 were followed for >30 years and were found to have a very favorable long-term prognosis. Their FBPase activity from jejunum (residual activity 15-25% of healthy controls), mixed leukocytes (low or normal levels), and calcitriol-stimulated monocytes (no detectable activity) was compared. Mutation analysis showed they were heterozygous for two genetic alterations (c.778G>A; c.881G>A), predicting amino acid exchanges at position p.G260R and p.G294E, originating from their parents. Family 2: patient 4 had no detectable levels of FBPase in stimulated monocytes. A mutation (c.648C>G) predicting a premature stop codon at position p.Y216X was found in one allele and a large deletion of about 300 kb, where the genes FBP2, FBP1 and a part of ONPEP are located, in the other. In conclusion, we present a reliable diagnostic system to verify an FBPase deficiency and find the genetic aberration.
Collapse
Affiliation(s)
- Cristine Åsberg
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Tavil B, Sipahi T. Fructose 1,6 diphosphatase deficiency in a Turkish infant. Eur J Pediatr 2003; 162:719-20. [PMID: 12898237 DOI: 10.1007/s00431-003-1234-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Accepted: 03/26/2003] [Indexed: 11/30/2022]
|
14
|
Hellerud C, Adamowicz M, Jurkiewicz D, Taybert J, Kubalska J, Ciara E, Popowska E, Ellis JR, Lindstedt S, Pronicka E. Clinical heterogeneity and molecular findings in five Polish patients with glycerol kinase deficiency: investigation of two splice site mutations with computerized splice junction analysis and Xp21 gene-specific mRNA analysis. Mol Genet Metab 2003; 79:149-59. [PMID: 12855219 DOI: 10.1016/s1096-7192(03)00094-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Five cases of glycerol kinase deficiency are presented with clinical, biochemical, and genetic results. Two had the glycerol kinase deficiency as part of an Xp21 contiguous gene deletion syndrome-complex form-and three had an isolated form of the enzyme deficiency. In these we found two splice site mutations (IVS1+4A>G, IVS9-1G>T) and one insertion (1393_1394insG). In patients with the complex form, a deletion of the DAX1, GK genes and the distal part of the DMD gene was found. A computerized study was performed to predict the effects of the splice site mutations. It showed that the IVS9-1G>T mutation substantially altered and removed the wild-type site and enhanced a cryptic site seven nucleotides downstream, and that the IVS1+4A>G diminished the strength of the wild-type donor site from strong to leaky. To verify these predictions, we developed an RT-PCR system with gene-specific primers that exclusively amplifies the Xp21 glycerol kinase gene transcript. Identification of individuals at risk is motivated by a need to avoid delay in a correct diagnosis. For reliable identification of heterozygotes for isolated glycerol kinase deficiency, knowledge of the specific mutation in the proband is required. This is easily obtained with the RT-PCR analyses developed in this study.
Collapse
MESH Headings
- Adrenal Insufficiency/genetics
- Chromosomes, Human, X
- DAX-1 Orphan Nuclear Receptor
- DNA Mutational Analysis
- DNA Primers/chemistry
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Gene Deletion
- Glycerol/blood
- Glycerol/urine
- Glycerol Kinase/chemistry
- Glycerol Kinase/deficiency
- Glycerol Kinase/genetics
- Humans
- Infant, Newborn
- Male
- Molecular Sequence Data
- Muscular Dystrophy, Duchenne/genetics
- Mutation
- Poland
- Polymorphism, Single-Stranded Conformational
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/deficiency
- Receptors, Retinoic Acid/genetics
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Christina Hellerud
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Göteborg University, Bruna Stråket 16, S 413 415 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hellerud C, Burlina A, Gabelli C, Ellis JR, Nyholm PG, Lindstedt S. Glycerol metabolism and the determination of triglycerides--clinical, biochemical and molecular findings in six subjects. Clin Chem Lab Med 2003; 41:46-55. [PMID: 12636049 DOI: 10.1515/cclm.2003.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent recommendations in the National Cholesterol Education Program Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (ATPIII) are expected to increase the number of triglyceride (TG) determinations and consequently the risk of misinterpretation of "non-blanked" results with co-determination of free glycerol. Glycerol-kinase deficiency (GKD) is one cause of falsely elevated TG results. The natural history of isolated GKD with symptom-free cases and cases with e.g. severe episodes of hypoglycemia and/or ketoacidosis challenges the laboratories to identify cases of GKD and family members at risk. "Blanked" methods reporting both glycerol and TG concentration are therefore desirable. Molecular studies of the glycerol kinase (GK) and DAX1 genes were performed on four cases of "persistent hypertriglyceridemia" found in an Italian population and on two pediatric cases with high serum glycerol concentration. Two new missense mutations were found (C358Y, T961). Molecular modeling on GK from E. coli, indicate that these mutations are located in parts of the enzyme important for enzyme formation or activity. One splice-site mutation, (IVS9A-1G>A), was found in two brothers. Splice-junction analysis indicates that it destroys the splice site and results in a mixture of mRNA. Deletion of the GK and DAX1 genes was found in one child with symptoms of adrenal failure. A female with glycerolemia and glyceroluria had normal GK activity but possibly slightly decreased ability to oxidize glycerol.
Collapse
Affiliation(s)
- Christina Hellerud
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Göteborg University, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
16
|
Kuhara T. Diagnosis of inborn errors of metabolism using filter paper urine, urease treatment, isotope dilution and gas chromatography-mass spectrometry. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 758:3-25. [PMID: 11482733 DOI: 10.1016/s0378-4347(01)00138-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review will be concerned primarily with a practical yet comprehensive diagnostic procedure for the diagnosis or even mass screening of a variety of metabolic disorders. This rapid, highly sensitive procedure offers possibilities for clinical chemistry laboratories to extend their diagnostic capacity to new areas of metabolic disorders. The diagnostic procedure consists of the use of urine or filter paper urine, preincubation of urine with urease, stable isotope dilution, and gas chromatography-mass spectrometry. Sample preparation from urine or filter paper urine, creatinine determination, stable isotope-labeled compounds used, and GC-MS measurement conditions are described. Not only organic acids or polar ones but also amino acids, sugars, polyols, purines, pyrimidines and other compounds are simultaneously analyzed and quantified. In this review, a pilot study for screening of 22 target diseases in newborns we are conducting in Japan is described. A neonate with presymptomatic propionic acidemia was detected among 10,000 neonates in the pilot study. The metabolic profiles of patients with ornithine carbamoyl transferase deficiency, fructose-1,6-bisphosphatase deficiency or succinic semialdehyde dehydrogenase deficiency obtained by this method are presented as examples. They were compared to those obtained by the conventional solvent extraction methods or by the tandem mass spectrometric method currently done with dried filter blood spots. The highly sensitive, specific and comprehensive features of our procedure are also demonstrated by its use in establishing the chemical diagnosis of pyrimidine degradation defects in order to prevent side effects of pyrimidine analogs such as 5-flurouracil, and the differential diagnosis of three types of homocystinuria, orotic aciduria, uraciluria and other urea cycle disorders. Evaluation of the effects of liver transplantation or nutritional conditions such as folate deficiency in patients with inborn errors of metabolism is also described.
Collapse
Affiliation(s)
- T Kuhara
- Division of Human Genetics, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan.
| |
Collapse
|
17
|
Iga M, Kimura M, Ohura T, Kikawa Y, Yamaguchi S. Rapid, simplified and sensitive method for screening fructose-1,6-diphosphatase deficiency by analyzing urinary metabolites in urease/direct preparations and gas chromatography-mass spectrometry in the selected-ion monitoring mode. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 746:75-82. [PMID: 11048742 DOI: 10.1016/s0378-4347(00)00123-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Children with fructose-1,6-diphosphatase (FDPase) deficiency often experience life threatening episodes such as ketotic hypoglycemia. We report here a rapid, simplified and sensitive method to analyze glycerol-3-phosphate (G3P) and glycerol in urine, that can be used to detect FDPase deficiency. We used the urease/direct preparation and gas chromatography-mass spectrometry in the selected-ion monitoring mode, enabling detection of G3P and glycerol level in normal controls. Using this approach, FDPase deficiency can be more easily diagnosed and differentiated from glycerol kinase deficiency or glycerol infusion patients. To date, diagnosis has been essentially based on the assay of enzymes in the liver. The proposed non-invasive method provides a clinically significant diagnostic tool that may help prevent episodic attacks.
Collapse
Affiliation(s)
- M Iga
- Department of Pediatrics, Shimane Medical University, Izumo, Japan.
| | | | | | | | | |
Collapse
|
18
|
Beatty ME, Zhang YH, McCabe ER, Steiner RD. Fructose-1,6-diphosphatase deficiency and glyceroluria: one possible etiology for GIS. Mol Genet Metab 2000; 69:338-40. [PMID: 10870852 DOI: 10.1006/mgme.2000.2983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fructose-1,6-diphosphatase (FDPase) deficiency is characterized by episodes of lactic acidemia, hypoglycemia, and ketonuria. Liver biopsy and subsequent enzyme analysis most reliably make the diagnosis. Review of the literature reveals 85 cases. Glycerol intolerance syndrome (GIS) is less well defined. There are only a handful of cases reported. We describe a patient with FDPase deficiency and significant glyceroluria and propose that GIS may be caused by partial deficiency of FDPase.
Collapse
Affiliation(s)
- M E Beatty
- Department of Pediatrics, Doernbecher Children's Hospital, Oregon Health Sciences University, Portland 97201, USA.
| | | | | | | |
Collapse
|
19
|
Kikawa Y, Inuzuka M, Jin BY, Kaji S, Koga J, Yamamoto Y, Fujisawa K, Hata I, Nakai A, Shigematsu Y, Mizunuma H, Taketo A, Mayumi M, Sudo M. Identification of genetic mutations in Japanese patients with fructose-1,6-bisphosphatase deficiency. Am J Hum Genet 1997; 61:852-61. [PMID: 9382095 PMCID: PMC1715983 DOI: 10.1086/514875] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fructose-1,6-bisphosphatase (FBPase) deficiency is an autosomal recessive inherited disorder and may cause sudden unexpected infant death. We reported the first case of molecular diagnosis of FBPase deficiency, using cultured monocytes as a source for FBPase mRNA. In the present study, we confirmed the presence of the same genetic mutation in this patient by amplifying genomic DNA. Molecular analysis was also performed to diagnose another 12 Japanese patients with FBPase deficiency. Four mutations responsible for FBPase deficiency were identified in 10 patients from 8 unrelated families among a total of 13 patients from 11 unrelated families; no mutation was found in the remaining 3 patients from 3 unrelated families. The identified mutations included the mutation reported earlier, with an insertion of one G residue at base 961 in exon 7 (960/961insG) (10 alleles, including 2 alleles in the Japanese family from our previous report [46% of the 22 mutant alleles]), and three novel mutations--a G-->A transition at base 490 in exon 4 (G164S) (3 alleles [14%]), a C-->A transversion at base 530 in exon 4 (A177D) (1 allele [4%]), and a G-->T transversion at base 88 in exon 1 (E30X) (2 alleles [9%]). FBPase proteins with G164S or A177D mutations were enzymatically inactive when purified from E. coli. Another new mutation, a T-->C transition at base 974 in exon 7 (V325A), was found in the same allele with the G164S mutation in one family (one allele) but was not responsible for FBPase deficiency. Our results indicate that the insertion of one G residue at base 961 was associated with a preferential disease-causing alternation in 13 Japanese patients. Our results also indicate accurate carrier detection in eight families (73%) of 11 Japanese patients with FBPase deficiency, in whom mutations in both alleles were identified.
Collapse
Affiliation(s)
- Y Kikawa
- Department of Pediatrics, Fukui Medical School, Matsuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
el-Maghrabi M, Gidh-Jain M, Austin L, Pilkis S. Isolation of a human liver fructose-1,6-bisphosphatase cDNA and expression of the protein in Escherichia coli. Role of ASP-118 and ASP-121 in catalysis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98373-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Merinero B, Pérez-Cerda C, Ugarte M. Investigation of enzyme defects in children with lactic acidosis. J Inherit Metab Dis 1992; 15:696-706. [PMID: 1331606 DOI: 10.1007/bf01800009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Screening for enzyme deficiencies was carried out in cultured skin fibroblasts and leukocytes of 19 patients with lactic acidosis and neurological problems. Pyruvate carboxylase deficiency was demonstrated in three cases. Reduced pyruvate oxidation was found in seven cultures; six showed no significant stimulation of the oxidation rate by methylene blue and in three a decreased pyruvate dehydrogenase complex activity was confirmed. Methylene blue restored a near normal oxidation rate in the seventh culture which had decreased cytochrome c oxidase activity.
Collapse
Affiliation(s)
- B Merinero
- Department of Molecular Biology, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|