1
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
2
|
Mehkri Y, Hanna C, Sriram S, Lucke-Wold B, Johnson RD, Busl K. Calcitonin gene-related peptide and neurologic injury: An emerging target for headache management. Clin Neurol Neurosurg 2022; 220:107355. [PMID: 35785661 DOI: 10.1016/j.clineuro.2022.107355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/20/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide known to be involved in the trigeminovascular system and to function as a potent vasodilator. Although it has emerged as a viable target for headache management with targeted treatments developed for migraine, a highly disabling neurovascular disorder, less is known about CGRP's role in other neurologic conditions such as traumatic brain injury and subarachnoid hemorrhage. The literature has shown that during these injury cascades, CGRP receptors are modulated in varying ways. Therefore, CGRP or its receptors might be viable targets to manage secondary injuries following acute brain injury. In this review, we highlight the pathophysiology of the CGRP pathway and its relation to migraine pathogenesis. Using these same principles, we assess the existing preclinical data for CGRP and its role in acute brain injury. The findings are promising, and set the basis for further work, with specific focus on the therapeutic benefit of CGRP modulation following neurologic injury.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Chadwin Hanna
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Sai Sriram
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | | | - Richard D Johnson
- Department of Physiological Sciences, University of Florida, Gainesville, USA
| | - Katharina Busl
- Department of Neurology, University of Florida, Gainesville, USA
| |
Collapse
|
3
|
Oka F, Chung DY, Suzuki M, Ayata C. Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: Experimental-Clinical Disconnect and the Unmet Need. Neurocrit Care 2020; 32:238-251. [PMID: 30671784 PMCID: PMC7387950 DOI: 10.1007/s12028-018-0650-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Delayed cerebral ischemia (DCI) is among the most dreaded complications following aneurysmal subarachnoid hemorrhage (SAH). Despite advances in neurocritical care, DCI remains a significant cause of morbidity and mortality, prolonged intensive care unit and hospital stay, and high healthcare costs. Large artery vasospasm has classically been thought to lead to DCI. However, recent failure of clinical trials targeting vasospasm to improve outcomes has underscored the disconnect between large artery vasospasm and DCI. Therefore, interest has shifted onto other potential mechanisms such as microvascular dysfunction and spreading depolarizations. Animal models can be instrumental in dissecting pathophysiology, but clinical relevance can be difficult to establish. METHODS Here, we performed a systematic review of the literature on animal models of SAH, focusing specifically on DCI and neurological deficits. RESULTS We find that dog, rabbit and rodent models do not consistently lead to DCI, although some degree of delayed vascular dysfunction is common. Primate models reliably recapitulate delayed neurological deficits and ischemic brain injury; however, ethical issues and cost limit their translational utility. CONCLUSIONS To facilitate translation, clinically relevant animal models that reproduce the pathophysiology and cardinal features of DCI after SAH are urgently needed.
Collapse
Affiliation(s)
- Fumiaki Oka
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Department of Neurosurgery, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - David Y Chung
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Cenk Ayata
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
4
|
The Effect of Neuroscientists on the Studies of Autonomic Nervous System Dysfunction Following Experimental Subarachnoid Hemorrhage. J Craniofac Surg 2019; 30:2184-2188. [DOI: 10.1097/scs.0000000000005763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
5
|
Yuan Y, Yang S, Li C, Xu K, Yu J. Effect of recombinant adeno-associated virus expressing calcitonin gene-related peptide on chick embryo umbilical artery vasospasm model. Exp Ther Med 2018; 15:145-151. [PMID: 29387186 PMCID: PMC5769216 DOI: 10.3892/etm.2017.5423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/25/2016] [Indexed: 11/23/2022] Open
Abstract
In the present study, a recombinant adeno-associated virus vector containing the calcitonin gene related peptide gene (rAAV-CGRP) was constructed and the therapeutic effect of rAAV-CGRP on a chick umbilical artery vasospasm model induced by chick embryo allantoic cavity hemorrhage was investigated. Fresh specific pathogen-free fertilized chicken eggs were randomly divided into a rAAV-CGRP group, an empty vector virus (AAV) group, and a control group, with 24 eggs in each group. An umbilical arterial vasospasm model was established using a needle puncture method on a vein in the chorioallantoic membrane to induce a hemorrhage in the allantoic cavity of 11-day-old chicken embryonated eggs. A total of 24 h after model establishment, 1 ml of rAAV-CGRP and empty vector virus solution of rAAV-CGRP and empty vector virus solution was, respectively, injected into the allantoic cavity in the rAAV-CGRP and AAV groups. Experimental results showed that after 72 h of model establishment, the mortality rates of the 3-, 5- and 7-day subgroups in the rAAV-CGRP group were lower than in the subgroups of the AAV injection group. After 3, 5 and 7 days of model establishment in the rAAV-CGRP group, the cross-sectional area of the inner diameter of the umbilical arteries was larger than that of the AAV group; the vessel wall thicknesses of the rAAV-CGRP group were thinner than in the AAV group. In addition, the concentration of CGRP in chick embryo allantoic fluid significantly increased and was several times higher than in the AAV group (P<0.05). In conclusion, administration of rAAV-CGRP through the allantoic cavity may increase the viability of a vasospasm model induced by chick allantoic cavity hemorrhage, significantly improve umbilical artery vasospasm, and increase CGRP expression in the chick embryo allantoic cavity. This approach also provides a novel experimental model for identifying other target genes for the gene therapy of vasospasm.
Collapse
Affiliation(s)
- Yongjie Yuan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Si Yang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chao Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kan Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinlu Yu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
6
|
Flynn LMC, Begg CJ, Macleod MR, Andrews PJD. Alpha Calcitonin Gene-Related Peptide Increases Cerebral Vessel Diameter in Animal Models of Subarachnoid Hemorrhage: A Systematic Review and Meta-analysis. Front Neurol 2017; 8:357. [PMID: 28790969 PMCID: PMC5524781 DOI: 10.3389/fneur.2017.00357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/06/2017] [Indexed: 12/02/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is a life-threatening complication after subarachnoid hemorrhage. There is a strong association between cerebral vessel narrowing and DCI. Alpha calcitonin gene-related peptide (αCGRP) is a potent vasodilator, which may be effective at reducing cerebral vessel narrowing after subarachnoid hemorrhage (SAH). Here, we report a meta-analysis of data from nine in vivo animal studies identified in a systematic review in which αCGRP was administered in SAH models. Our primary outcome was change in cerebral vessel diameter and the secondary outcome was change in neurobehavioral scores. There was a 40.8 ± 8.2% increase in cerebral vessel diameter in those animals treated with αCGRP compared with controls (p < 0.0005, 95% CI 23.7–57.9). Neurobehavioral scores were reported in four publications and showed a standardized mean difference of 1.31 in favor of αCGRP (CI −0.49 to 3.12). We conclude that αCGRP reduces cerebral vessel narrowing seen after SAH in animal studies but note that there is insufficient evidence to determine its effect on functional outcomes.
Collapse
Affiliation(s)
- Liam M C Flynn
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Caroline J Begg
- Emergency Department, Edinburgh Royal Infirmary, Edinburgh, United Kingdom
| | - Malcolm R Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter J D Andrews
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Kikkawa Y, Kurogi R, Sasaki T. The single and double blood injection rabbit subarachnoid hemorrhage model. Transl Stroke Res 2014; 6:88-97. [PMID: 25381219 DOI: 10.1007/s12975-014-0375-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/25/2014] [Accepted: 10/22/2014] [Indexed: 12/27/2022]
Abstract
Over the past 30 years, the rabbit subarachnoid hemorrhage model (SAH) has been used for investigating the post-hemorrhage pathology, especially with respect to understanding of the mechanisms of cerebral vasospasm. However, the molecular mechanisms of cerebral vasospasm remain to be elucidated. Furthermore, it is not clear whether the rabbit SAH model is suitable for the investigation of pathological conditions other than cerebral vasospasm, such as early brain injury. Therefore, the properties of the rabbit SAH model need to be validated, and the reasons for using the rabbit should be clarified. This review explores the settings and technical issues of establishing a rabbit cisterna magna single and double blood injection SAH model and discusses the characteristics and feasibilities of the models.
Collapse
Affiliation(s)
- Yuichiro Kikkawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan,
| | | | | |
Collapse
|
8
|
Biomarkers of vasospasm development and outcome in aneurysmal subarachnoid hemorrhage. J Neurol Sci 2014; 341:119-27. [DOI: 10.1016/j.jns.2014.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/20/2014] [Accepted: 04/14/2014] [Indexed: 12/30/2022]
|
9
|
Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J, Zhang JH. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 2014; 115:64-91. [PMID: 24076160 PMCID: PMC3961493 DOI: 10.1016/j.pneurobio.2013.09.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022]
Abstract
Despite decades of study, subarachnoid hemorrhage (SAH) continues to be a serious and significant health problem in the United States and worldwide. The mechanisms contributing to brain injury after SAH remain unclear. Traditionally, most in vivo research has heavily emphasized the basic mechanisms of SAH over the pathophysiological or morphological changes of delayed cerebral vasospasm after SAH. Unfortunately, the results of clinical trials based on this premise have mostly been disappointing, implicating some other pathophysiological factors, independent of vasospasm, as contributors to poor clinical outcomes. Delayed cerebral vasospasm is no longer the only culprit. In this review, we summarize recent data from both experimental and clinical studies of SAH and discuss the vast array of physiological dysfunctions following SAH that ultimately lead to cell death. Based on the progress in neurobiological understanding of SAH, the terms "early brain injury" and "delayed brain injury" are used according to the temporal progression of SAH-induced brain injury. Additionally, a new concept of the vasculo-neuronal-glia triad model for SAH study is highlighted and presents the challenges and opportunities of this model for future SAH applications.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Damon Klebe
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Xiaochuan Sun
- Department of Neurosurgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
10
|
Kamp MA, Dibué M, Schneider T, Steiger HJ, Hänggi D. Calcium and potassium channels in experimental subarachnoid hemorrhage and transient global ischemia. Stroke Res Treat 2012; 2012:382146. [PMID: 23251831 PMCID: PMC3518967 DOI: 10.1155/2012/382146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/27/2012] [Indexed: 11/23/2022] Open
Abstract
Healthy cerebrovascular myocytes express members of several different ion channel families which regulate resting membrane potential, vascular diameter, and vascular tone and are involved in cerebral autoregulation. In animal models, in response to subarachnoid blood, a dynamic transition of ion channel expression and function is initiated, with acute and long-term effects differing from each other. Initial hypoperfusion after exposure of cerebral vessels to oxyhemoglobin correlates with a suppression of voltage-gated potassium channel activity, whereas delayed cerebral vasospasm involves changes in other potassium channel and voltage-gated calcium channels expression and function. Furthermore, expression patterns and function of ion channels appear to differ between main and small peripheral vessels, which may be key in understanding mechanisms behind subarachnoid hemorrhage-induced vasospasm. Here, changes in calcium and potassium channel expression and function in animal models of subarachnoid hemorrhage and transient global ischemia are systematically reviewed and their clinical significance discussed.
Collapse
Affiliation(s)
- Marcel A. Kamp
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
| | - Maxine Dibué
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
- Center of Molecular Medicine, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
- Center of Molecular Medicine, Cologne, Germany
| | - Hans-Jakob Steiger
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Macdonald RL. Site-Specific, Sustained-Release Drug Delivery for Subarachnoid Hemorrhage. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Kokkoris S, Andrews P, Webb DJ. Role of calcitonin gene-related peptide in cerebral vasospasm, and as a therapeutic approach to subarachnoid hemorrhage. Front Endocrinol (Lausanne) 2012; 3:135. [PMID: 23162536 PMCID: PMC3498620 DOI: 10.3389/fendo.2012.00135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/24/2012] [Indexed: 12/22/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is one of the most potent microvascular vasodilators identified to date. Vascular relaxation and vasodilation is mediated via activation of the CGRP receptor. This atypical receptor is made up of a G protein-coupled receptor called calcitonin receptor-like receptor (CLR), a single transmembrane protein called receptor activity-modifying protein (RAMP), and an additional protein that is required for Ga(s) coupling, known as receptor component protein (RCP). Several mechanisms involved in CGRP-mediated relaxation have been identified. These include nitric oxide (NO)-dependent endothelium-dependent mechanisms or cAMP-mediated endothelium-independent pathways; the latter being more common. Subarachnoid hemorrhage (SAH) is associated with cerebral vasoconstriction that occurs several days after the hemorrhage and is often fatal. The vasospasm occurs in 30-40% of patients and is the major cause of death from this condition. The vasoconstriction is associated with a decrease in CGRP levels in nerves and an increase in CGRP levels in draining blood, suggesting that CGRP is released from nerves to oppose the vasoconstriction. This evidence has led to the concept that exogenous CGRP may be beneficial in a condition that has proven hard to treat. The present article reviews: (a) the pathophysiology of delayed ischemic neurologic deficit after SAH (b) the basics of the CGRP receptor structure, signal transduction, and vasodilatation mechanisms and (c) the studies that have been conducted so far using CGRP in both animals and humans with SAH.
Collapse
Affiliation(s)
| | - Peter Andrews
- Centre for Clinical Brain Sciences, University of EdinburghEdinburgh, UK
- *Correspondence: Peter Andrews, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. e-mail:
| | - David J. Webb
- Clinical Pharmacology Unit, British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of EdinburghEdinburgh, UK
| |
Collapse
|
13
|
Institoris A, Snipes JA, Katakam PV, Domoki F, Boda K, Bari F, Busija DW. Impaired vascular responses of insulin-resistant rats after mild subarachnoid hemorrhage. Am J Physiol Heart Circ Physiol 2011; 300:H2080-7. [PMID: 21421821 DOI: 10.1152/ajpheart.01169.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance (IR) impairs cerebrovascular responses to several stimuli in Zucker obese (ZO) rats. However, cerebral artery responses after subarachnoid hemorrhage (SAH) have not been described in IR. We hypothesized that IR worsens vascular reactions after a mild SAH. Hemolyzed blood (300 μl) or saline was infused (10 μl/min) into the cisterna magna of 11-13-wk-old ZO (n = 25) and Zucker lean (ZL) rats (n = 25). One day later, dilator responses of the basilar artery (BA) and its side branch (BA-Br) to acetylcholine (ACh, 10(-6) M), cromakalim (10(-7) M, 10(-6) M), and sodium nitroprusside (10(-7) M) were recorded with intravital videomicroscopy. The baseline diameter of the BA was increased both in the ZO and ZL rats 24 h after the hemolysate injection. Saline-injected ZO animals showed reduced dilation to ACh (BA = 9 ± 3 vs. 22 ± 4%; and BA-Br = 23 ± 5 vs. 37 ± 7%) compared with ZL rats. Hemolysate injection blunted the response to ACh in both the ZO (BA = 4 ± 2%; and BA-Br = 12 ± 3%) and ZL (BA = 7 ± 2%; and BA-Br = 11 ± 3%) rats. Cromakalim (10(-6) M)-induced dilation was significantly reduced in the hemolysate-injected ZO animals compared with the saline control (BA = 13 ± 3 vs. 26 ± 5%; and BA-Br = 28 ± 8 vs. 44 ± 9%) and in the hemolysate-injected ZL rats compared with their saline control (BA = 24 ± 4 vs. 32 ± 4%; but not BA-Br = 39 ± 6 vs. 59 ± 9%). No significant difference in sodium nitroprusside reactivity was observed. Western blot analysis of the BA showed a lower baseline level of neuronal nitric oxide synthase expression and an enhanced cyclooxygenase-2 level in the hemolysate-injected ZO animals. In summary, cerebrovascular reactivity to both endothelium-dependent and -independent stimuli is severely compromised by SAH in IR animals.
Collapse
Affiliation(s)
- Adam Institoris
- Dept. of Pharmacology, Tulane Univ., 1430 Tulane Ave., SL 83, New Orleans, LA, 70112-2632, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Marbacher S, Fandino J, Kitchen N. Characteristics of in vivo animal models of delayed cerebral vasospasm. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:173-175. [PMID: 21116935 DOI: 10.1007/978-3-7091-0353-1_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Animal models provide a basis for clarifying the complex pathogenesis of delayed cerebral vasospasm (DVCS) and for screening of potential therapeutic approaches. The aim of this work was to identify and analyze the most consistent and feasible models and their characteristics for each animal. An online search of the MEDLINE PubMed and EMBASE medical databases (1969 to week 21 of 2007) was performed using the key words "mice", "rat", "rabbit", "canine", and "primate" in combination with "subarachnoid hemorrhage", "model", and "vasospasm". Seven techniques were mainly used to induce experimental subarachnoid hemorrhage in closed and open cranium approaches. Among the great number of experimental SAH methods and associated parameters only a fistful reliable models can be identified and recommended for experimental work in mice, rats, rabbits, dogs and nonhuman primates.
Collapse
Affiliation(s)
- Serge Marbacher
- Department of Neurosurgery, Cantonal Hospital Aarau, 5000, Aarau, Switzerland.
| | | | | |
Collapse
|
15
|
Marbacher S, Fandino J, Kitchen ND. Standard intracranialin vivoanimal models of delayed cerebral vasospasm. Br J Neurosurg 2010; 24:415-34. [DOI: 10.3109/02688691003746274] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Calcitonin gene-related peptide enhances CREB phosphorylation and attenuates tau protein phosphorylation in rat brain during focal cerebral ischemia/reperfusion. Biomed Pharmacother 2009; 64:430-6. [PMID: 20537498 DOI: 10.1016/j.biopha.2009.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 06/07/2009] [Indexed: 01/09/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a potent vasodilator and immune cell modulator. Exogenous CGRP could increase the cerebral blood flow significantly and protect the ischemic neurons, but its mechanism is not entirely clear. The effect of CGRP on the expressions of CREB and tau in the ipsilateral parietal cortex were detected in focal cerebral ischemia/reperfusion model. The expression of CREB mRNA decreased in ischemia/reperfusion group (I/R group) compared with that of the sham operation group, and it got highest in CGRP group. CREB expression was lesser in I/R group than sham group, but it became more in CGRP group than I/R group. Phospho-CREB became more in I/R group, and it got most in CGRP group in the cortex. No significant difference was observed on Tau mRNA expression in all the groups. The level of tau hyperphosphorylation at Ser199/202 site and total tau in rat parietal cortex were significantly higher in I/R group than sham group. CGRP significantly inhibited tau hyperphosphorylation and the level of total tau also significantly reduced in CGRP group than that in I/R group. CGRP can upregulate the expression of CREB and phospho-CREB and attenuate the level of tau hyperphosphorylation in the ischemic neurons of the parietal cortex during focal cerebral ischemia/reperfusion. Phosphorylating CREB and inhibiting tau phosphorylation are probably involved in the mechanism of protective effect of CGRP to ischemic neurons.
Collapse
|
17
|
Omeis I, Neil JA, Jayson NA, Murali R, Abrahams JM. Treatment of cerebral vasospasm with biocompatible controlled-release systems for intracranial drug delivery. Neurosurgery 2009; 63:1011-9; discussion 1019-21. [PMID: 19057314 DOI: 10.1227/01.neu.0000327574.32000.9a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The pharmacological treatment of cerebral vasospasm (CVS) now includes the experimental use of controlled-release biocompatible compounds that deliver a desired drug locally into the subarachnoid space. A controlled-release system consists of an active material that is incorporated into a carrier, usually in the form of a pellet or a gel. With such systems, the desired agent is delivered slowly and continuously, for long periods of time, directly to the desired site. This technology makes it possible to achieve high local concentrations of therapeutic agents while minimizing systemic toxicity and circumventing the need to cross the blood-brain barrier. This review describes controlled-release systems developed to date for local drug delivery in the treatment of CVS in both animal models and humans. METHODS A MEDLINE PubMed database search was performed for articles published from 1975 to 2007 with the following search topics: "controlled-release system/polymer," "controlled-release implants," "cerebral vasospasm," "subarachnoid hemorrhage," "subarachnoid space," and "intracranial drug delivery." RESULTS Over the past several decades, several controlled-release systems (lactic/ glycolic acid pellets, ethylene vinyl acetate copolymer, liposomes, silicone elastomers) have been developed to deliver various pharmacological agents (papaverine, nicardipine, ibuprofen, nitric oxide donor, calcitonin gene-related peptide, fasudil, recombinant tissue plasminogen activator) intracranially to treat subarachnoid hemorrhage in animal models (rats, rabbits, dogs, and primates). Animal studies have shown promising results, and the few human studies that have been published using controlled-release systems with papaverine or nicardipine report similarly encouraging outcomes. CONCLUSION Controlled-release systems have evolved over the past few years and have been shown experimentally to be an effective strategy for the local delivery of drugs to treat CVS.
Collapse
Affiliation(s)
- Ibrahim Omeis
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
18
|
Wang T, Luo F, Shan R, Zhen Y, Zhao J, Zhang S. Changes of endothelin and calcitonin gene-related peptide during desflurane anesthesia in patients undergoing intracranial aneurysm clipping. J Neurosurg Anesthesiol 2004; 16:236-9. [PMID: 15211162 DOI: 10.1097/00008506-200407000-00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to explore whether the changes of plasma concentrations of endothelin (ET) and calcitonin gene-related peptide (CGRP) were possibly involved during desflurane anesthesia in patients undergoing intracranial aneurysm clipping. Forty-five consecutive patients scheduled for selective craniotomy and aneurysm clipping were anesthetized with desflurane in oxygen. Radial arterial catheter was inserted for blood sampling before anesthesia. Serial plasma concentrations of ET and CGRP were measured with radioimmunoassay prior to induction, after dura incision, after clipping of the aneurysm, and 30 minutes after clipping the aneurysm, respectively. Plasma concentrations of ET decreased significantly during the anesthesia and surgery compared with the baseline. An observed decrease in mean CGRP during anesthesia and surgery was not statistically significant. Considering the well-recognized vasoconstrictive effect of ET, it is possible that a decrease in its plasma concentration plays a role in the prevention of the acute cerebral vasospasm during desflurane anesthesia in patients undergoing intracranial aneurysm clipping.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital University of Medical Sciences, Beijing, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
19
|
Satoh M, Perkins E, Kimura H, Tang J, Chun Y, Heistad DD, Zhang JH. Posttreatment with adenovirus-mediated gene transfer of calcitonin gene-related peptide to reverse cerebral vasospasm in dogs. J Neurosurg 2002; 97:136-42. [PMID: 12134904 DOI: 10.3171/jns.2002.97.1.0136] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Gene transfer to cerebral vessels is a promising new therapeutic approach for cerebral vasospasm after subarachnoid hemorrhage (SAH). This study was undertaken to explore whether a delayed treatment with adenovirus encoding the prepro-calcitonin gene-related peptide (CGRP), 2 days after initial blood injection, reduces cerebral vasospasm in a double-hemorrhage model of severe vasospasm in dogs. METHODS In 20 dogs, arterial blood was injected into the cisterna magna on Days 0 and 2. Thirty minutes after the second blood injection, the animals received either adenovirus encoding the prepro-CGRP gene (AdCMVCGRP-treated group, eight dogs) or adenovirus encoding the beta-galactosidase gene (AdCMVbeta gal-treated group, six dogs) under the cytomegalovirus (CMV) promoter. One group of dogs did not receive treatment and served as controls (control SAH group, six dogs). Angiography was performed on Days 0 and 7 to assess cerebral vasospasm. On Day 7 following angiography, the animals were killed and their brains were stained with X-gal to detect the distribution of gene expression. Cerebrospinal fluid (CSF) was also tested for CGRP immunoreactivity. Severe vasospasm was observed in control SAH dogs on Day 7, and the mean basilar artery (BA) diameter was 53.4 +/- 5.5% of the value measured on Day 0. Treatment with AdCMVbeta gal did not alter vasospasm (the BA diameter was 55 +/- 3.9% of that measured on Day 0). The leptomeninges and adventitia of the BAs of dogs treated using AdCMVbeta gal demonstrated positive staining with X-gal. High levels of CGRP were measured in CSF from dogs that received AdCMVCGRP. In the group treated with AdCMVCGRP, vasospasm was significantly reduced (the BA diameter was 78.2 +/- 5.3% of that measured on Day 0, p < 0.05 compared with the control SAH group and the AdCMVbeta gal group). CONCLUSIONS In a model of severe vasospasm in dogs, gene transfer of CGRP after injection of blood attenuated cerebral vasospasm after SAH.
Collapse
Affiliation(s)
- Motoyoshi Satoh
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Familial dysautonomia (FD) patients have diminished sensory C-fibers. Calcitonin gene related peptide (CGRP) is a widely distributed neuropeptide and prominent neurotransmitter in C-fibers. We show that plasma CGRP levels measured by radioimmunoassay is significantly lower in 51 FD patients compared to controls (P<0.001). In 11/51 FD patients with FD crisis and in 19/51 FD patients with pneumonia, the mean CGRP levels rose significantly as compared to their baseline (P<0.003, P<0.001, respectively). The deficiency of CGRP in FD patients is consistent with their depletion of C-fibers, and may explain some of their symptoms, either directly or via modulation of sympathetic activity.
Collapse
Affiliation(s)
- C Maayan
- Department of Pediatrics, Hadassah University Hospital, Mt. Scopus, Jerusalem, Israel
| | | | | | | |
Collapse
|
21
|
Sams A, Knyihár-Csillik E, Engberg J, Szok D, Tajti J, Bodi I, Edvinsson L, Vécsei L, Jansen-Olesen I. CGRP and adrenomedullin receptor populations in human cerebral arteries: in vitro pharmacological and molecular investigations in different artery sizes. Eur J Pharmacol 2000; 408:183-93. [PMID: 11080525 DOI: 10.1016/s0014-2999(00)00781-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to determine functional and molecular characteristics of receptors for calcitonin gene-related peptide (CGRP) and adrenomedullin in three different diameter groups of lenticulostriate arteries. Furthermore, the presence of perivascular neuronal sources of CGRP was evaluated in these arteries. In the functional studies, in vitro pharmacological experiments demonstrated that both CGRP and adrenomedullin induce alpha-CGRP-(8-37) sensitive vasodilation in artery segments of various diameters. The maximal amounts of vasodilation induced by CGRP and adrenomedullin were not different, whereas the potency of CGRP exceeded that of adrenomedullin by 2 orders of magnitude. Significant negative correlations between artery diameters and maximal responses were demonstrated for CGRP and adrenomedullin. In addition, the potency of both peptides tended to increase in decreasing artery diameter. In the molecular experiments, levels of mRNAs encoding CGRP receptors and receptor subunits were compared using reverse transcriptase polymerase chain reactions (RT-PCR). The larger the artery, the more mRNA encoding receptor activity-modifying proteins 1 and 2 (RAMP1 and RAMP2) was detected relative to the amount of mRNA encoding the calcitonin receptor-like receptor. By immunohistochemistry, perivascular CGRP containing nerve fibres were demonstrated in all the investigated artery sizes. In conclusion, both CGRP and adrenomedullin induced vasodilation via CGRP receptors in human lenticulostriate artery of various diameter. The artery responsiveness to the CGRP receptor agonists increased with smaller artery diameter, whereas the receptor-phenotype determining mRNA ratios tended to decrease. No evidence for CGRP and adrenomedullin receptor heterogeneity was present in lenticulostriate arteries of different diameters.
Collapse
Affiliation(s)
- A Sams
- Department of Pharmacology, The Royal Danish School of Pharmacy, Universitetsparken 2, 2100 O, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- F M Faraci
- Department of Internal Medicine, Cardiovascular Center, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
23
|
Kaminuma T, Shimizu H, Ahmad I, Ochiai N, Ehama R, Ohnuma M, Banba T, Watabe K, Lerner EA, Imaizumi S, Tajima M, Yoshimoto T. Prevention of cerebral vasospasm by vasodilatory peptide maxadilan following subarachnoid hemorrhage in rabbits. J Control Release 1998; 52:71-80. [PMID: 9685937 DOI: 10.1016/s0168-3659(97)00178-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Maxadilan is a vasodilatory peptide isolated from the blood-feeding sand fly Lutzomyia longipalpis. Its vasodilatory activity, estimated by the formation of erythema on rabbit skin, is greater than those of calcitonin gene-related peptide, vasoactive intestinal polypeptide and pituitary adenylyl cyclase activating polypeptide (PACAP). We have recently demonstrated that maxadilan is a specific agonist for the PACAP type I receptor, which is widely distributed in brain. Therefore, we were interested in the vasodilatory effect of maxadilan on cerebral arteries and the possibility of its clinical use for the delayed cerebral vasospasm following subarachnoid (SAH). In the first experiment, 10(-10) mol/kg of maxadilan (in sterile water) was injected into the cisterna magna three days after the induction of experimental SAH in rabbits (n = 6). Maxadilan dilated spastic basilar arteries within 30 min of the injection, but not at 6 h. In the second experiment, to prolong the vasodilatory effect of maxadilan, tablets containing stearic acid, hydrogenated oil, lactose, hydroxypropylcellulose and 15 mg of maxadilan were prepared. In vitro testing showed that 60% of maxadilan could be released slowly within the initial five days. In vivo experiments were performed to implant the maxadilan tablet (n = 7) and the placebo tablet (n = 6) into the cisterna magna after the induction of experimental SAH in rabbits. The spastic response of the basilar artery was maximum on day three in the placebo-treated groups. In contrast, we observed no significant change in the arterial diameter until day five in the rabbits treated with maxadilan tablet. These data suggest that maxadilan may have therapeutic potency in treating cerebral vasospasm.
Collapse
Affiliation(s)
- T Kaminuma
- Shiseido Research Center, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 1998; 78:53-97. [PMID: 9457169 DOI: 10.1152/physrev.1998.78.1.53] [Citation(s) in RCA: 608] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several new concepts have emerged in relation to mechanisms that contribute to regulation of the cerebral circulation. This review focuses on some physiological mechanisms of cerebral vasodilatation and alteration of these mechanisms by disease states. One mechanism involves release of vasoactive factors by the endothelium that affect underlying vascular muscle. These factors include endothelium-derived relaxing factor (nitric oxide), prostacyclin, and endothelium-derived hyperpolarizing factor(s). The normal vasodilator influence of endothelium is impaired by some disease states. Under pathophysiological conditions, endothelium may produce potent contracting factors such as endothelin. Another major mechanism of regulation of cerebral vascular tone relates to potassium channels. Activation of potassium channels appears to mediate relaxation of cerebral vessels to diverse stimuli including receptor-mediated agonists, intracellular second messenger, and hypoxia. Endothelial- and potassium channel-based mechanisms are related because several endothelium-derived factors produce relaxation by activation of potassium channels. The influence of potassium channels may be altered by disease states including chronic hypertension, subarachnoid hemorrhage, and diabetes.
Collapse
Affiliation(s)
- F M Faraci
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, USA
| | | |
Collapse
|