1
|
Zhang Y, Tao X, MacKinnon R. Correlation between structure and function in phosphatidylinositol lipid-dependent Kir2.2 gating. Proc Natl Acad Sci U S A 2022; 119:e2114046119. [PMID: 35286194 PMCID: PMC8944589 DOI: 10.1073/pnas.2114046119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/06/2022] [Indexed: 11/18/2022] Open
Abstract
SignificancePhosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) levels regulate cell membrane voltage by gluing two halves of a K+ channel together and opening the pore. PI(4)P competes with this process. Because both of these lipids are relatively abundant in the plasma membrane and are directly interconvertible through the action of specific enzymes, they may function together to regulate channel activity.
Collapse
Affiliation(s)
- Yuxi Zhang
- Laboratory of Molecular Neurobiology and Biophysics, HHMI, The Rockefeller University, New York, NY ,10065
| | - Xiao Tao
- Laboratory of Molecular Neurobiology and Biophysics, HHMI, The Rockefeller University, New York, NY ,10065
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, HHMI, The Rockefeller University, New York, NY ,10065
| |
Collapse
|
2
|
Abstract
Miller recounts the distinct influences that Gilbert Ling and Efraim Racker had on his early career.
Collapse
|
3
|
Gaburjakova J, Gaburjakova M. Reconstitution of Ion Channels in Planar Lipid Bilayers: New Approaches. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2018. [DOI: 10.1016/bs.abl.2017.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Wang Z, Ma Y, Khalil H, Wang R, Lu T, Zhao W, Zhang Y, Chen J, Chen T. Fusion between fluid liposomes and intact bacteria: study of driving parameters and in vitro bactericidal efficacy. Int J Nanomedicine 2016; 11:4025-36. [PMID: 27574430 PMCID: PMC4993285 DOI: 10.2147/ijn.s55807] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of bacteria to conventional antibiotics made it imperative to develop new liposome formulations for antibiotics, and investigate the fusion between liposome and bacterium. Methods In this study, the factors involved in fluid liposome interaction with bacteria have been investigated. We also demonstrated a mechanism of fusion between liposomes (1,2-dipa lmitoyl-sn-glycero-3-phosphocholine [DPPC]/dimyristoylphosphatidylglycerol [DMPG] 9:1, mol/mol) in a fluid state, and intact bacterial cells, by lipid mixing assay. Results The observed fusion process is shown to be mainly dependent on several key factors. Perturbation of liposome fluidity by addition of cholesterol dramatically decreased the degree of fusion with P. aeruginosa from 44% to 5%. It was observed that fusion between fluid liposomes and bacteria and also the bactericidal activities were strongly dependent upon the properties of the bacteria themselves. The level of fusion detected when fluid liposomes were mixed with Escherichia coli (66%) or P. aeruginosa (44%) seems to be correlated to their outer membrane phosphatidylethanolamine (PE) phospholipids composition (91% and 71%, respectively). Divalent cations increased the degree of fusion in the sequence Fe2+ > Mg2+ > Ca2+ > Ba2+ whereas temperatures lower than the phase transition temperature of DPPC/DMPG (9:1) vesicles decreased their fusion capacity. Acidic as well as basic pHs conferred higher degrees of fusion (54% and 45%, respectively) when compared to neutral pH (35%). Conclusion Based on the results of this study, a possible mechanism involving cationic bridging between bacterial negatively charged lipopolysaccharide and fluid liposomes DMPG phospholipids was outlined. Furthermore, the fluid liposomal-encapsulated tobramycin was prepared, and the in vitro bactericidal effects were also investigated.
Collapse
Affiliation(s)
- Zhao Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi; Shaanxi Liposome Research Center, Xi'an, Shaanxi
| | - Yufan Ma
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi; Xi'an Libang Pharmaceuticals Co, Ltd, Xi'an; School of Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hayssam Khalil
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi
| | - Rutao Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi; Shaanxi Liposome Research Center, Xi'an, Shaanxi; Xi'an Libang Pharmaceuticals Co, Ltd, Xi'an
| | - Tingli Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi
| | - Wen Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi
| | - Yang Zhang
- Xi'an Libang Pharmaceuticals Co, Ltd, Xi'an
| | - Jamin Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi; Shaanxi Liposome Research Center, Xi'an, Shaanxi
| | - Tao Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi; Shaanxi Liposome Research Center, Xi'an, Shaanxi; Xi'an Libang Pharmaceuticals Co, Ltd, Xi'an
| |
Collapse
|
5
|
Tomoike F, Tonooka T, Osaki T, Takeuchi S. Repetitive formation of optically-observable planar lipid bilayers by rotating chambers on a microaperture. LAB ON A CHIP 2016; 16:2423-2426. [PMID: 27256329 DOI: 10.1039/c6lc00363j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Optical observation of a planar lipid bilayer is an effective method of lipid bilayer characterization. However, previous methods for optically observable lipid bilayer formation are unsuitable for repetitive formation of lipid bilayers. In this paper, we propose a system that facilitates repetitive formation of horizontal lipid bilayers via mechanical rotation of the rotating part. We show that multiple bilayers can be observed within a short period, and that the electrical and optical characteristics of a bilayer can be analyzed simultaneously.
Collapse
Affiliation(s)
- Fumiaki Tomoike
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan.
| | | | | | | |
Collapse
|
6
|
Wang W, Touhara KK, Weir K, Bean BP, MacKinnon R. Cooperative regulation by G proteins and Na(+) of neuronal GIRK2 K(+) channels. eLife 2016; 5. [PMID: 27074662 PMCID: PMC4866826 DOI: 10.7554/elife.15751] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/12/2016] [Indexed: 11/13/2022] Open
Abstract
G protein gated inward rectifier K(+) (GIRK) channels open and thereby silence cellular electrical activity when inhibitory G protein coupled receptors (GPCRs) are stimulated. Here we describe an assay to measure neuronal GIRK2 activity as a function of membrane-anchored G protein concentration. Using this assay we show that four Gβγ subunits bind cooperatively to open GIRK2, and that intracellular Na(+) - which enters neurons during action potentials - further amplifies opening mostly by increasing Gβγ affinity. A Na(+) amplification function is characterized and used to estimate the concentration of Gβγ subunits that appear in the membrane of mouse dopamine neurons when GABAB receptors are stimulated. We conclude that GIRK2, through its dual responsiveness to Gβγ and Na(+), mediates a form of neuronal inhibition that is amplifiable in the setting of excess electrical activity.
Collapse
Affiliation(s)
- Weiwei Wang
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Kouki K Touhara
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Keiko Weir
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| |
Collapse
|
7
|
Yarotskyy V, Dirksen RT. Monovalent cationic channel activity in the inner membrane of nuclei from skeletal muscle fibers. Biophys J 2015; 107:2027-36. [PMID: 25418088 DOI: 10.1016/j.bpj.2014.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 12/28/2022] Open
Abstract
Nuclear ion channels remain among the least studied and biophysically characterized channels. Although considerable progress has been made in characterizing calcium release channels in the nuclear membrane, very little is known regarding the properties of nuclear monovalent cationic channels. Here, we describe a method to isolate nuclei from adult skeletal muscle fibers that are suitable for electrophysiological experiments. Using this approach, we show for the first time, to our knowledge, that a nuclear monovalent cationic channel (NMCC) is prominently expressed in the inner membrane of nuclei isolated from flexor digitorum brevis skeletal muscle fibers of adult mice. In isotonic 140 mM KCl, the skeletal muscle NMCC exhibits a unitary conductance of ?160 pS and high, voltage-independent open probability. Based on single-channel reversal potential measurements, NMCCs are slightly more permeable to potassium ions over sodium (PK/PNa = 2.68 ± 0.21) and cesium (PK/PCs = 1.39 ± 0.03) ions. In addition, NMCCs do not permeate divalent cations, are inhibited by calcium ions, and demonstrate weak rectification in asymmetric Ca(2+)-containing solutions. Together, these studies characterize a voltage-independent NMCC in skeletal muscle, the properties of which are ideally suited to serve as a countercurrent mechanism during calcium release from the nuclear envelope.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York.
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
8
|
Wang W, Whorton MR, MacKinnon R. Quantitative analysis of mammalian GIRK2 channel regulation by G proteins, the signaling lipid PIP2 and Na+ in a reconstituted system. eLife 2014; 3:e03671. [PMID: 25049222 PMCID: PMC4135351 DOI: 10.7554/elife.03671] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
GIRK channels control spike frequency in atrial pacemaker cells and inhibitory potentials in neurons. By directly responding to G proteins, PIP2 and Na+, GIRK is under the control of multiple signaling pathways. In this study, the mammalian GIRK2 channel has been purified and reconstituted in planar lipid membranes and effects of Gα, Gβγ, PIP2 and Na+ analyzed. Gβγ and PIP2 must be present simultaneously to activate GIRK2. Na+ is not essential but modulates the effect of Gβγ and PIP2 over physiological concentrations. Gαi1(GTPγS) has no effect, whereas Gαi1(GDP) closes the channel through removal of Gβγ. In the presence of Gβγ, GIRK2 opens as a function of PIP2 mole fraction with Hill coefficient 2.5 and an affinity that poises GIRK2 to respond to natural variations of PIP2 concentration. The dual requirement for Gβγ and PIP2 can help to explain why GIRK2 is activated by Gi/o, but not Gq coupled GPCRs. DOI:http://dx.doi.org/10.7554/eLife.03671.001 Though every cell in the body is surrounded by a membrane, there are a number of ways that molecules can pass through this membrane to either enter or leave the cell. Proteins from the GIRK family form channels in the membranes of mammalian cells, and when open these channels allow potassium ions to flow through the membrane to control the membrane's voltage. GIRK channels are found in the heart and in the central nervous system, and can be activated in a variety of ways. Sodium ions and molecules called ‘signaling lipids’ can regulate the activation of GIRK channels. These channels can also be caused to open by G proteins: proteins that are found inside cells and that help to transmit signals from the outside of a cell to the inside. Three G proteins—called Gα, Gβ, and Gγ—work together in a complex that functions a bit like a switch. When switched on, the Gα subunit is separated from the other two subunits (called Gβγ); and both parts can then activate different signaling pathways inside the cell. The Gβγ subunits and a signaling lipid have been known to regulate the opening of GIRK channels for a number of years, but these events have only been studied in the context of living cells. The specific role of each molecule, and whether the Gα subunit can also regulate the GIRK channels, remains unknown. Now Wang et al. have produced one type of mouse GIRK channel, called GIRK2, in yeast cells, purified this protein, and added it into an artificial membrane. This ‘reconstituted system’ allowed the regulation of a GIRK channel to be investigated under more controlled conditions than in previous experiments. Wang et al. found that the Gβγ subunits and the signaling lipid both need to be present to activate the GIRK2 channel. Sodium ions were not essential, but promoted further opening when Gβγ and the signaling lipid were already present. When locked in its ‘on’ state, the Gα subunit had no effect on GIRK2, but adding Gα locked in the ‘off’ state closed these channels by removing the Gβγ proteins. The findings of Wang et al. suggest that it should be possible to use a similar reconstituted system to investigate what allows different G proteins to activate specific signaling pathways. DOI:http://dx.doi.org/10.7554/eLife.03671.002
Collapse
Affiliation(s)
- Weiwei Wang
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Matthew R Whorton
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
9
|
Stockbridge RB, Robertson JL, Kolmakova-Partensky L, Miller C. A family of fluoride-specific ion channels with dual-topology architecture. eLife 2013; 2:e01084. [PMID: 23991286 PMCID: PMC3755343 DOI: 10.7554/elife.01084] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/23/2013] [Indexed: 11/13/2022] Open
Abstract
Fluoride ion, ubiquitous in soil, water, and marine environments, is a chronic threat to microorganisms. Many prokaryotes, archea, unicellular eukaryotes, and plants use a recently discovered family of F− exporter proteins to lower cytoplasmic F− levels to counteract the anion’s toxicity. We show here that these ‘Fluc’ proteins, purified and reconstituted in liposomes and planar phospholipid bilayers, form constitutively open anion channels with extreme selectivity for F− over Cl−. The active channel is a dimer of identical or homologous subunits arranged in antiparallel transmembrane orientation. This dual-topology assembly has not previously been seen in ion channels but is known in multidrug transporters of the SMR family, and is suggestive of an evolutionary antecedent of the inverted repeats found within the subunits of many membrane transport proteins. DOI:http://dx.doi.org/10.7554/eLife.01084.001 Fluorine is the thirteenth-most abundant element in the Earth’s crust, and fluoride ions are found in both soil and water, where they accumulate through the weathering of rocks or from industrial pollution. However, high levels of fluoride ions can inhibit two processes essential to life: the production of energy by glycolysis and the synthesis of DNA and RNA bases. In polluted areas, organisms such as bacteria, algae and plants must remove fluoride ions from their cells in order to survive. Since ions cannot freely cross lipid membranes, organisms use proteins called channels or carriers to move ions into and out of their cells. Channel proteins form a pore, or channel, in the cell membrane, through which ions can quickly move from areas of high concentration to areas of low concentration. In contrast, carrier proteins can transport ions in both directions—that is, to and from areas of high concentration—but they are slower than channel proteins. A family of proteins that export fluoride from microbe and plant cells, thus allowing them to grow in the presence of this toxic ion, was discovered recently, but it was not clear if these proteins function as channels or as carrier proteins. Now, Stockbridge et al. find that these proteins, called Fluc proteins, are fluoride channels with an unusual architecture. Fluc proteins are found in many species of bacteria, and Stockbridge et al. show that a number of these, when purified and inserted into a lipid membrane, are channel proteins. Additionally, they do not transport related ions such as chloride, which means that they are unusually selective for ion channels. Two Fluc polypeptides associate to form a channel in the cell membrane, and Stockbridge et al. show that these two subunits are arranged in an antiparallel formation. Although this architecture is unprecedented among ion channels, it has been observed in carrier proteins in a range of organisms, and may indicate that Fluc proteins offer an evolutionary model for many carrier proteins. DOI:http://dx.doi.org/10.7554/eLife.01084.002
Collapse
Affiliation(s)
- Randy B Stockbridge
- Department of Biochemistry , Howard Hughes Medical Institute, Brandeis University , Waltham , United States
| | | | | | | |
Collapse
|
10
|
Steller L, Kreir M, Salzer R. Natural and artificial ion channels for biosensing platforms. Anal Bioanal Chem 2011; 402:209-30. [PMID: 22080413 DOI: 10.1007/s00216-011-5517-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
Abstract
The single-molecule selectivity and specificity of the binding process together with the expected intrinsic gain factor obtained when utilizing flow through a channel have attracted the attention of analytical chemists for two decades. Sensitive and selective ion channel biosensors for high-throughput screening are having an increasing impact on modern medical care, drug screening, environmental monitoring, food safety, and biowarefare control. Even virus antigens can be detected by ion channel biosensors. The study of ion channels and other transmembrane proteins is expected to lead to the development of new medications and therapies for a wide range of illnesses. From the first attempts to use membrane proteins as the receptive part of a sensor, ion channels have been engineered as chemical sensors. Several other types of peptidic or nonpeptidic channels have been investigated. Various gating mechanisms have been implemented in their pores. Three technical problems had to be solved to achieve practical biosensors based on ion channels: the fabrication of stable lipid bilayer membranes, the incorporation of a receptor into such a structure, and the marriage of the modified membrane to a transducer. The current status of these three areas of research, together with typical applications of ion-channel biosensors, are discussed in this review.
Collapse
Affiliation(s)
- L Steller
- Department of Magnetic and Acoustic Resonances, Leibniz Institute for Solid State and Materials Research, Dresden, Germany.
| | | | | |
Collapse
|
11
|
Both basic and acidic amino acid residues of IpTx(a) are involved in triggering substate of RyR1. J Biomed Biotechnol 2011; 2011:386384. [PMID: 22007141 PMCID: PMC3192407 DOI: 10.1155/2011/386384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/05/2011] [Accepted: 08/10/2011] [Indexed: 12/02/2022] Open
Abstract
Imperatoxin A (IpTxa) is known to modify the gating of skeletal ryanodine receptor (RyR1). In this paper, the ability of charged aa residues of IpTxa to induce substate of native RyR1 in HSR was examined. Our results show that the basic residues (e.g., Lys19, Lys20, Lys22, Arg23, and Arg24) are important for producing substate of RyR1. In addition, other basic residues (e.g., Lys30, Arg31, and Arg33) near the C-terminus and some acidic residues (e.g., Glu29, Asp13, and Asp2) are also involved in the generation of substate. Residues such as Lys8 and Thr26 may be involved in the self-regulation of substate of RyR1, since alanine substitution of the aa residues led to a drastic conversion to the substate. The modifications of the channel gating by the wild-type and mutant toxins were similar in purified RyR1. Taken together, the specific charge distributions on the surface of IpTxa are essential for regulation of the channel gating of RyR1.
Collapse
|
12
|
|
13
|
Laver DR, Honen BN. Luminal Mg2+, a key factor controlling RYR2-mediated Ca2+ release: cytoplasmic and luminal regulation modeled in a tetrameric channel. ACTA ACUST UNITED AC 2008; 132:429-46. [PMID: 18824590 PMCID: PMC2553390 DOI: 10.1085/jgp.200810001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In cardiac muscle, intracellular Ca(2+) and Mg(2+) are potent regulators of calcium release from the sarcoplasmic reticulum (SR). It is well known that the free [Ca(2+)] in the SR ([Ca(2+)](L)) stimulates the Ca(2+) release channels (ryanodine receptor [RYR]2). However, little is known about the action of luminal Mg(2+), which has not been regarded as an important regulator of Ca(2+) release. The effects of luminal Ca(2+) and Mg(2+) on sheep RYR2 were measured in lipid bilayers. Cytoplasmic and luminal Ca(2+) produced a synergistic increase in the opening rate of RYRs. A novel, high affinity inhibition of RYR2 by luminal Mg(2+) was observed, pointing to an important physiological role for luminal Mg(2+) in cardiac muscle. At diastolic [Ca(2+)](C), luminal Mg(2+) inhibition was voltage independent, with K(i) = 45 microM at luminal [Ca(2+)] ([Ca(2+)](L)) = 100 microM. Luminal and cytoplasmic Mg(2+) inhibition was alleviated by increasing [Ca(2+)](L) or [Ca(2+)](C). Ca(2+) and Mg(2+) on opposite sides of the bilayer exhibited competitive effects on RYRs, indicating that they can compete via the pore for common sites. The data were accurately fitted by a model based on a tetrameric RYR structure with four Ca(2+)-sensing mechanisms on each subunit: activating luminal L-site (40-microM affinity for Mg(2+) and Ca(2+)), cytoplasmic A-site (1.2 microM for Ca(2+) and 60 microM for Mg(2+)), inactivating cytoplasmic I(1)-site (approximately 10 mM for Ca(2+) and Mg(2+)), and I(2)-site (1.2 microM for Ca(2+)). Activation of three or more subunits will cause channel opening. Mg(2+) inhibition occurs primarily by Mg(2+) displacing Ca(2+) from the L- and A-sites, and Mg(2+) fails to open the channel. The model predicts that under physiological conditions, SR load-dependent Ca(2+) release (1) is mainly determined by Ca(2+) displacement of Mg(2+) from the L-site as SR loading increases, and (2) depends on the properties of both luminal and cytoplasmic activation mechanisms.
Collapse
Affiliation(s)
- Derek R Laver
- School of Biomedical Sciences, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.
| | | |
Collapse
|
14
|
Suzuki H, Takeuchi S. Microtechnologies for membrane protein studies. Anal Bioanal Chem 2008; 391:2695-702. [PMID: 18335213 PMCID: PMC2516541 DOI: 10.1007/s00216-008-1916-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 11/29/2022]
Abstract
Despite the rapid and enormous progress in biotechnologies, the biochemical analysis of membrane proteins is still a difficult task. The presence of the large hydrophobic region buried in the lipid bilayer membrane (transmembrane domain) makes it difficult to analyze membrane proteins in standard assays developed for water-soluble proteins. To handle membrane proteins, the lipid bilayer membrane may be used as a platform to sustain their functionalities. Relatively slow progress in developing micro total analysis systems (microTAS) for membrane protein analysis directly reflects the difficulty of handling lipid membranes, which is a common problem in bulk measurement technologies. Nonetheless, researchers are continuing to develop efficient and sensitive analytical microsystems for the study of membrane proteins. Here, we review the latest developments, which enable detection of events caused by membrane proteins, such as ion channel current, membrane transport, and receptor/ligand interaction, by utilizing microfabricated structures. High-throughput and highly sensitive detection systems for membrane proteins are now becoming a realistic goal. Although most of these systems are still in the early stages of development, we believe this field will become one of the most important applications of microTAS for pharmaceutical and clinical screenings as well as for basic biochemical research.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8505 Japan
- Graduate School of Information Science and Technology, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871 Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo, 153-8505 Japan
| |
Collapse
|
15
|
Beca S, Pavlov E, Kargacin ME, Aschar-Sobbi R, French RJ, Kargacin GJ. Inhibition of a cardiac sarcoplasmic reticulum chloride channel by tamoxifen. Pflugers Arch 2008; 457:121-35. [PMID: 18458943 DOI: 10.1007/s00424-008-0510-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/25/2022]
Abstract
Anion and cation channels present in the sarcoplasmic reticulum (SR) are believed to be necessary to maintain the electroneutrality of SR membrane during Ca(2+) uptake by the SR Ca(2+) pump (SERCA). Here we incorporated canine cardiac SR ion channels into lipid bilayers and studied the effects of tamoxifen and other antiestrogens on these channels. A Cl(-) channel was identified exhibiting multiple subconductance levels which could be divided into two primary conductance bands. Tamoxifen decreases the time the channel spends in its higher, voltage-sensitive band and the mean channel current. The lower, voltage-insensitive, conductance band is not affected by tamoxifen, nor is a K(+) channel present in the cardiac SR preparation. By examining SR Ca(2+) uptake, SERCA ATPase activity, and SR ion channels in the same preparation, we also estimated SERCA transport current, SR Cl(-) and K(+) currents, and the density of SERCA, Cl(-), and K(+) channels in cardiac SR membranes.
Collapse
Affiliation(s)
- Sanja Beca
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Profile of Christopher Miller. Proc Natl Acad Sci U S A 2007; 104:20656-8. [DOI: 10.1073/pnas.0710738105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Seo IR, Moh S, Lee E, Meissner G, Kim D. Aldolase potentiates DIDS activation of the ryanodine receptor in rabbit skeletal sarcoplasmic reticulum. Biochem J 2006; 399:325-33. [PMID: 16817780 PMCID: PMC1609923 DOI: 10.1042/bj20060701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate), an anion channel blocker, triggers Ca2+ release from skeletal muscle SR (sarcoplasmic reticulum). The present study characterized the effects of DIDS on rabbit skeletal single Ca2+-release channel/RyR1 (ryanodine receptor type 1) incorporated into a planar lipid bilayer. When junctional SR vesicles were used for channel incorporation (native RyR1), DIDS increased the mean P(o) (open probability) of RyR1 without affecting unitary conductance when Cs+ was used as the charge carrier. Lifetime analysis of single RyR1 activities showed that 10 microM DIDS induced reversible long-lived open events (P(o)=0.451+/-0.038) in the presence of 10 microM Ca2+, due mainly to a new third component for both open and closed time constants. However, when purified RyR1 was examined in the same condition, 10 microM DIDS became considerably less potent (P(o)=0.206+/-0.025), although the caffeine response was similar between native and purified RyR1. Hence we postulated that a DIDS-binding protein, essential for the DIDS sensitivity of RyR1, was lost during RyR1 purification. DIDS-affinity column chromatography of solubilized junctional SR, and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analysis of the affinity-column-associated proteins, identified four major DIDS-binding proteins in the SR fraction. Among them, aldolase was the only protein that greatly potentiated DIDS sensitivity. The association between RyR1 and aldolase was further confirmed by co-immunoprecipitation and aldolase-affinity batch-column chromatography. Taken together, we conclude that aldolase is physically associated with RyR1 and could confer a considerable potentiation of the DIDS effect on RyR1.
Collapse
Affiliation(s)
- In-Ra Seo
- *Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sang Hyun Moh
- *Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Eun Hui Lee
- †Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gerhard Meissner
- ‡Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, U.S.A
| | - Do Han Kim
- *Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Abstract
Fifty years ago, ion channels were but a reasonable hypothesis. I outline some major steps in transforming this idea from a plausible description of the biological assemblies responsible for controlling passive ion transport across membranes to established fact. Important electrophysiological, biochemical, molecular biological, structural, and theoretical tools are discussed in the context of the transition from studying whole cell preparations, containing many channels, to investigating single channel behavior. Six channel families are exemplified: the model peptide, gramicidin, the acetylcholine receptor, and the sodium, potassium, calcium, and chloride channels. Some questions of current interest are posed.
Collapse
Affiliation(s)
- Peter C Jordan
- Department of Chemistry, Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
19
|
Zoghbi ME, Copello JA, Villalba-Galea CA, Vélez P, Diaz Sylvester PL, Bolaños P, Marcano A, Fill M, Escobar AL. Differential Ca2+ and Sr2+ regulation of intracellular divalent cations release in ventricular myocytes. Cell Calcium 2005; 36:119-34. [PMID: 15193860 DOI: 10.1016/j.ceca.2004.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 01/21/2004] [Accepted: 01/21/2004] [Indexed: 11/22/2022]
Abstract
The regulation of the Ca2+ -induced Ca2+ release (CICR) from intracellular stores is a critical step in the cardiac cycle. The inherent positive feedback of CICR should make it a self-regenerating process. It is accepted that CICR must be governed by some negative control, but its nature is still debated. We explore here the importance of the Ca2+ released from sarcoplasmic reticulum (SR) on the mechanisms that may control CICR. Specifically, we compared the effect of replacing Ca2+ with Sr2+ on intracellular Ca2+ signaling in intact cardiac myocytes as well as on the function of single ryanodine receptor (RyR) Ca2+ release channels in panar bilayers. In cells, both CICR and Sr2+ -induced Sr2+ release (SISR) were observed. Action potential induced Ca2+ -transients and spontaneous Ca2+ waves were considerably faster than their Sr2+ -mediated counterparts. However, the kinetics of Ca2+ and Sr2+ sparks was similar. At the single RyR channel level, the affinities of Ca2+ and Sr2+ activation were different but the affinities of Ca2+ and Sr2+ inactivation were similar. Fast Ca2+ and Sr2+ stimuli activated RyR channels equally fast but adaptation (a spontaneous slow transition back to steady-state activity levels) was not observed in the Sr2+ case. Together, these results suggest that regulation of the RyR channel by cytosolic Ca2+ is not involved in turning off the Ca2+ spark. In contrast, cytosolic Ca2+ is important in the propagation global Ca2+ release events and in this regard single RyR channel sensitivity to cytosolic Ca2+ activation, not low-affinity cytosolic Ca2+ inactivation, is a key factor. This suggests that the kinetics of local and global RyR-mediated Ca2+ release signals are affected in a distinct way by different divalent cations in cardiac muscle cells.
Collapse
Affiliation(s)
- M E Zoghbi
- Centro de Biofisica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rosales RA, Fill M, Escobar AL. Calcium regulation of single ryanodine receptor channel gating analyzed using HMM/MCMC statistical methods. ACTA ACUST UNITED AC 2004; 123:533-53. [PMID: 15111644 PMCID: PMC2234502 DOI: 10.1085/jgp.200308868] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type-II ryanodine receptor channels (RYRs) play a fundamental role in intracellular Ca2+ dynamics in heart. The processes of activation, inactivation, and regulation of these channels have been the subject of intensive research and the focus of recent debates. Typically, approaches to understand these processes involve statistical analysis of single RYRs, involving signal restoration, model estimation, and selection. These tasks are usually performed by following rather phenomenological criteria that turn models into self-fulfilling prophecies. Here, a thorough statistical treatment is applied by modeling single RYRs using aggregated hidden Markov models. Inferences are made using Bayesian statistics and stochastic search methods known as Markov chain Monte Carlo. These methods allow extension of the temporal resolution of the analysis far beyond the limits of previous approaches and provide a direct measure of the uncertainties associated with every estimation step, together with a direct assessment of why and where a particular model fails. Analyses of single RYRs at several Ca2+ concentrations are made by considering 16 models, some of them previously reported in the literature. Results clearly show that single RYRs have Ca2+-dependent gating modes. Moreover, our results demonstrate that single RYRs responding to a sudden change in Ca2+ display adaptation kinetics. Interestingly, best ranked models predict microscopic reversibility when monovalent cations are used as the main permeating species. Finally, the extended bandwidth revealed the existence of novel fast buzz-mode at low Ca2+ concentrations.
Collapse
Affiliation(s)
- Rafael A Rosales
- Department of Mathematics, Universidad Simón Bolívar and Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | |
Collapse
|
21
|
Laver DR, O'Neill ER, Lamb GD. Luminal Ca2+-regulated Mg2+ inhibition of skeletal RyRs reconstituted as isolated channels or coupled clusters. ACTA ACUST UNITED AC 2004; 124:741-58. [PMID: 15545399 PMCID: PMC2234024 DOI: 10.1085/jgp.200409092] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In resting muscle, cytoplasmic Mg(2+) is a potent inhibitor of Ca(2+) release from the sarcoplasmic reticulum (SR). It is thought to inhibit calcium release channels (RyRs) by binding both to low affinity, low specificity sites (I-sites) and to high affinity Ca(2+) sites (A-sites) thus preventing Ca(2+) activation. We investigate the effects of luminal and cytoplasmic Ca(2+) on Mg(2+) inhibition at the A-sites of skeletal RyRs (RyR1) in lipid bilayers, in the presence of ATP or modified by ryanodine or DIDS. Mg(2+) inhibits RyRs at the A-site in the absence of Ca(2+), indicating that Mg(2+) is an antagonist and does not simply prevent Ca(2+) activation. Cytoplasmic Ca(2+) and Cs(+) decreased Mg(2+) affinity by a competitive mechanism. We describe a novel mechanism for luminal Ca(2+) regulation of Ca(2+) release whereby increasing luminal [Ca(2+)] decreases the A-site affinity for cytoplasmic Mg(2+) by a noncompetitive, allosteric mechanism that is independent of Ca(2+) flow. Ryanodine increases the Ca(2+) sensitivity of the A-sites by 10-fold, which is insufficient to explain the level of activation seen in ryanodine-modified RyRs at nM Ca(2+), indicating that ryanodine activates independently of Ca(2+). We describe a model for ion binding at the A-sites that predicts that modulation of Mg(2+) inhibition by luminal Ca(2+) is a significant regulator of Ca(2+) release from the SR. We detected coupled gating of RyRs due to luminal Ca(2+) permeating one channel and activating neighboring channels. This indicated that the RyRs existed in stable close-packed rafts within the bilayer. We found that luminal Ca(2+) and cytoplasmic Mg(2+) did not compete at the A-sites of single open RyRs but did compete during multiple channel openings in rafts. Also, luminal Ca(2+) was a stronger activator of multiple openings than single openings. Thus it appears that RyRs are effectively "immune" to Ca(2+) emanating from their own pore but sensitive to Ca(2+) from neighboring channels.
Collapse
Affiliation(s)
- Derek R Laver
- School of Biomedical Sciences, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.
| | | | | |
Collapse
|
22
|
Farrelly PV, Kenna BL, Laohachai KL, Bahadi R, Salmona M, Forloni G, Kourie JI. Quinacrine blocks PrP (106-126)-formed channels. J Neurosci Res 2004; 74:934-41. [PMID: 14648599 DOI: 10.1002/jnr.10849] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated the action of the acridine derivative, quinacrine (QC), which has been shown to act as a noncompetitive channel inhibitor. The main effects of QC are voltage- and concentration-dependent changes in the kinetics of the prion protein fragment (PrP[106-126])-formed cation channels. The current-voltage relationships show that the maximal current (I) was not affected whereas the physiologically important mean current (I') was reduced as a result of changes in channel kinetics. These findings suggest that QC acts on the open state of the channels. The half-inhibitory concentration (IC50) for the dose-dependent effects of [QC]cis on the kinetic parameters of the PrP(106-126)-formed cation channel shows a reduction in the ratios Po(QC)/Po, Fo(QC)/Fo, and To(QC)/To, whereas Tc(QC)/Tc increases. Of these ratios, Po(QC)/Po was more sensitive than the others. The corresponding IC50 for these ratios were 51, 94, 86, and 250 microM QC, respectively. The QC-induced changes in the kinetic parameters were more apparent at positive voltages. IC50 values for Po were 95, 75, and 51 microM at +20, +80, and +140 mV, respectively. The fact that QC induced changes in the kinetics of this channel, although the conductance of the channel remained unchanged, indicates that QC may bind at the mouth of the channel via a mechanism known as fast channel block. The QC-induced changes in the kinetic parameters of this channel suggest that they are pathophysiologically significant because these channels could be the mechanisms by which amyloids induce membrane damage in vivo.
Collapse
Affiliation(s)
- Peter V Farrelly
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra City, Australian Capital Territory, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Darszon A, Wood CD, Beltrán C, Sánchez D, Rodríguez E, Gorelik J, Korchev YE, Nishigaki T. Measuring Ion Fluxes in Sperm. Methods Cell Biol 2004; 74:545-76. [PMID: 15575621 DOI: 10.1016/s0091-679x(04)74022-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Alberto Darszon
- Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bahadi R, Farrelly PV, Kenna BL, Kourie JI, Tagliavini F, Forloni G, Salmona M. Channels formed with a mutant prion protein PrP(82-146) homologous to a 7-kDa fragment in diseased brain of GSS patients. Am J Physiol Cell Physiol 2003; 285:C862-72. [PMID: 12814912 DOI: 10.1152/ajpcell.00077.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major prion protein (PrP) mutant that forms amyloid fibrils in the diseased brain of patients with Gerstmann-Sträussler-Scheinker syndrome (GSS) is a fragment of 7 kDa spanning from residues 81-82 to 144-153 of PrP. Analysis of ionic membrane currents, recorded with a lipid bilayer technique, revealed that the wild-type fragment PrP(82-146) WT and the partially scrambled PrP(82-146) (127-146) SC are capable of forming heterogeneous ion channels that are similar to those channels formed with PrP(106-126). In contrast, PrP(82-146) peptides in which the region from residue 106 to 126 had been scrambled (SC) showed a reduction in interaction with lipid membranes and did not form channels. The PrP(82-146) WT- and PrP(82-146) (127-146) SC-formed cation channels with fast kinetics are Cu2+ sensitive and rifampicin (RIF) insensitive, whereas the time-dependent inactivating channels formed by these same peptides are both Cu2+ and RIF insensitive. The presence of RIF in the solution before the addition of PrP(82-146) WT or PrP(82-146) (127-146) SC affected their incorporation into the lipid bilayers. PrP(82-146) WT and PrP(82-146) (127-146) SC fast cation channels formed in the presence of RIF appeared in an electrically semisilent state or an inactivated state. Increasing [Cd2+]cis enhanced the incorporation of PrP(82-146) WT and PrP(82-146) (127-146) SC channels formed in the presence of RIF. We conclude that the major PrP mutant fragment in the diseased brain of GSS patients is prone to form channels in neuronal membranes, causing their dysfunction. We propose that Cd2+ may accentuate the neurotoxicity of this channel-forming PrP fragment by enhancing its incorporation into the membrane.
Collapse
Affiliation(s)
- Randa Bahadi
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Bahadi R, Farrelly PV, Kenna BL, Curtain CC, Masters CL, Cappai R, Barnham KJ, Kourie JI. Cu2+-induced modification of the kinetics of A beta(1-42) channels. Am J Physiol Cell Physiol 2003; 285:C873-80. [PMID: 12814914 DOI: 10.1152/ajpcell.00147.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We found that the amyloid beta peptide A beta(1-42) is capable of interacting with membrane and forming heterogeneous ion channels in the absence of any added Cu2+ or biological redox agents that have been reported to mediate A beta(1-42) toxicity. The A beta(1-42)-formed cation channel was inhibited by Cu2+ in cis solution ([Cu2+]cis) in a voltage- and concentration-dependent manner between 0 and 250 microM. The [Cu2+]cis-induced channel inhibition is fully reversible at low concentrations between 50 and 100 microM [Cu2+]cis and partially reversible at 250 microM [Cu2+]cis. The inhibitory effects of [Cu2+]cis between 50 and 250 microM on the channel could not be reversed with addition of Cu2+-chelating agent clioquinol (CQ) at concentrations between 64 and 384 microM applied to the cis chamber. The effects of 200-250 microM [Cu2+]cis on the burst and intraburst kinetic parameters were not fully reversible with either wash or 128 microM [CQ]cis. The kinetic analysis of the data indicate that Cu2+-induced inhibition was mediated via both desensitization and an open channel block mechanism and that Cu2+ binds to the histidine residues located at the mouth of the channel. It is proposed that the Cu2+-binding site of the A beta(1-42)-formed channels is modulated with Cu2+ in a similar way to those of channels formed with the prion protein fragment PrP(106-126), suggesting a possible common mechanism for Cu2+ modulation of A beta and PrP channel proteins linked to neurodegenerative diseases.
Collapse
Affiliation(s)
- Randa Bahadi
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kourie JI, Kenna BL, Tew D, Jobling MF, Curtain CC, Masters CL, Barnham KJ, Cappai R. Copper modulation of ion channels of PrP[106-126] mutant prion peptide fragments. J Membr Biol 2003; 193:35-45. [PMID: 12879164 DOI: 10.1007/s00232-002-2005-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Indexed: 12/24/2022]
Abstract
We have shown previously that the protease-resistant and neurotoxic prion peptide fragment PrP[106-126] of human PrP incorporates into lipid bilayer membranes to form heterogeneous ion channels, one of which is a Cu(2+)-sensitive fast cation channel. To investigate the role of PrP[106-126]'s hydrophobic core, AGAAAAGA, on its ability to form ion channels and their regulation with Cu(2+), we used the lipid-bilayer technique to examine membrane currents induced as a result of PrP[106-126] (AA/SS) and PrP[106-126] (VVAA/SSSS) interaction with lipid membranes and channel formation. Channel analysis of the mutant (VVAAA/SSS), which has a reduced hydrophobicity due to substitution of hydrophobic residues with the hydrophilic serine residue, showed a significant change in channel activity, which reflects a decrease in the beta-sheet structure, as shown by CD spectroscopy. One of the channels formed by the PrP[106-126] mutant has fast kinetics with three modes: burst, open and spike. The biophysical properties of this channel are similar to those of channels formed with other aggregation-prone amyloids, indicating their ability to form the common beta sheet-based channel structure. The current-voltage (I-V) relationship of the fast cation channel, which had a reversal potential, E(rev), between -40 and -10 mV, close to the equilibrium potential for K(+) ( E(K) = -35 mV), exhibited a sigmoidal shape. The value of the maximal slope conductance (g(max)) was 58 pS at positive potentials between 0 and 140 mV. Cu(2+) shifted the kinetics of the channel from being in the open and "burst" states to the spike mode. Cu(2+) reduced the probability of the channel being open (P(o)) and the mean open time (T(o)) and increased the channel's opening frequency (F(o)) and the mean closed time (T(c)) at a membrane potential ( V(m)) between +20 and + 140 mV. The fact that Cu(2+) induced changes in the kinetics of this channel with no changes in its conductance, indicates that Cu(2+) binds at the mouth of the channel via a fast channel block mechanism. The Cu(2+)-induced changes in the kinetic parameters of this channel suggest that the hydrophobic core is not a ligand Cu(2+) site, and they are in agreement with the suggestion that the Cu(2+)-binding site is located at M(109) and H(111) of this prion fragment. Although the data indicate that the hydrophobic core sequence plays a role in PrP[106-126] channel formation, it is not a binding site for Cu(2+). We suggest that the role of the hydrophobic region in modulating PrP toxicity is to influence PrP assembly into neurotoxic channel conformations. Such conformations may underlie toxicity observed in prion diseases. We further suggest that the conversions of the normal cellular isoform of prion protein (PrP(c)) to abnormal scrapie isoform (PrP(Sc)) and intermediates represent conversions to protease-resistant neurotoxic channel conformations.
Collapse
Affiliation(s)
- J I Kourie
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra City, Australian Capital Territory, 0200 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
O'Neill ER, Sakowska MM, Laver DR. Regulation of the calcium release channel from skeletal muscle by suramin and the disulfonated stilbene derivatives DIDS, DBDS, and DNDS. Biophys J 2003; 84:1674-89. [PMID: 12609870 PMCID: PMC1302737 DOI: 10.1016/s0006-3495(03)74976-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Activation of skeletal muscle ryanodine receptors (RyRs) by suramin and disulfonic stilbene derivatives (Diisothiocyanostilbene-2',2'-disulfonic acid (DIDS), 4,4'-dibenzamidostilbene-2,2'-disulfonic acid (DBDS),and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS)) was investigated using planar bilayers. One reversible and two nonreversible mechanisms were identified. K(a) for reversible activation (approximately 100 micro M) depended on cytoplasmic [Ca(2+)] and the bilayer composition. Replacement of neutral lipids by negative phosphatidylserine increased K(a) fourfold, suggesting that reversible binding sites are near the bilayer surface. Suramin and the stilbene derivatives adsorbed to neutral bilayers with maximal mole fractions between 1-8% and with affinities approximately 100 micro M but did not adsorb to negative lipids. DIDS activated RyRs by two nonreversible mechanisms, distinguishable by their disparate DIDS binding rates (10(5) and 60 M(-1) s(-1)) and actions. Both mechanisms activated RyRs via several jumps in open probability, indicating several DIDS binding events. The fast and slow mechanisms are independent of each other, the reversible mechanism and ATP binding. The fast mechanism confers DIDS sensitivity approximately 1000-fold greater than previously reported, increases Ca(2+) activation and increases K(i) for Ca(2+)/Mg(2+) inhibition 10-fold. The slow mechanism activates RyRs in the absence of Ca(2+) and ATP, increases ATP activation without altering K(a), and slightly increases activity at pH < 6.5. These findings explain how different types of DIDS activation are observed under different conditions.
Collapse
Affiliation(s)
- Erin R O'Neill
- School of Biomedical Sciences, Faculty of Health, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | |
Collapse
|
28
|
Lee EH, Meissner G, Kim DH. Effects of quercetin on single Ca(2+) release channel behavior of skeletal muscle. Biophys J 2002; 82:1266-77. [PMID: 11867444 PMCID: PMC1301930 DOI: 10.1016/s0006-3495(02)75483-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Quercetin, a bioflavonoid, is known to affect Ca(2+) fluxes in sarcoplasmic reticulum, although its direct effect on Ca(2+) release channel (CRC) in sarcoplasmic reticulum has remained to be elucidated. The present study examined the effect of quercetin on the behavior of single skeletal CRC in planar lipid bilayer. The effect of caffeine was also studied for comparison. At very low [Ca(2+)](cis) (80 pM), quercetin activated CRC marginally, whereas at elevated [Ca(2+)](cis) (10 microM), both open probability (P(o)) and sensitivity to the drug increased markedly. Caffeine showed a similar tendency. Analysis of lifetimes for single CRC showed that quercetin and caffeine led to different mean open-time and closed-time constants and their proportions. Addition of 10 microM ryanodine to CRC activated by quercetin or caffeine led to the typical subconductance state (approximately 54%) and a subsequent addition of 5 microM ruthenium red completely blocked CRC activity. When 6 microM quercetin and 3 mM caffeine were added together to the cis side of CRC, a time-dependent increase of P(o) was observed (from mode 1 (0.376 +/- 0.043, n = 5) to mode 2 (0.854 +/- 0.062, n = 5)). On the other hand, no further activation was observed when quercetin was added after caffeine. Quercetin affected only the ascending phase of the bell-shaped Ca(2+) activation/inactivation curve, whereas caffeine affected both ascending and descending phases. [(3)H]ryanodine binding to sarcoplasmic reticulum showed that channel activity increased more by both quercetin and caffeine than by caffeine alone. These characteristic differences in the modes of activation of CRC by quercetin and caffeine suggest that the channel activation mechanisms and presumably the binding sites on CRC are different for the two drugs.
Collapse
Affiliation(s)
- Eun Hui Lee
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
| | | | | |
Collapse
|
29
|
Laver DR, Lenz GK, Lamb GD. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine. J Physiol 2001; 537:763-78. [PMID: 11744753 PMCID: PMC2279010 DOI: 10.1111/j.1469-7793.2001.00763.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2001] [Accepted: 08/06/2001] [Indexed: 11/29/2022] Open
Abstract
1. Nucleotide activation of skeletal muscle ryanodine receptors (RyRs) was studied in planar lipid bilayers in order to understand RyR regulation in vivo under normal and fatigued conditions. With 'resting' calcium (100 nM cytoplasmic and 1 mM luminal), RyRs had an open probability (P(o)) of approximately 0.01 in the absence of nucleotides and magnesium. ATP reversibly activated RyRs with P(o) at saturation (P(max)) approximately 0.33 and K(a) (concentration for half-maximal activation) approximately 0.36 mM and with a Hill coefficient (n(H)) of approximately 1.8 in RyRs when P(max) < 0.5 and approximately 4 when P(max) > 0.5. 2. AMP was a much weaker agonist (P(max) approximately 0.09) and adenosine was weaker still (P(max) approximately 0.01-0.02), whereas inosine monophosphate (IMP), the normal metabolic end product of ATP hydrolysis, produced no activation at all. 3. Adenosine acted as a competitive antagonist that reversibly inhibited ATP- and AMP-activated RyRs with n(H) approximately 1 and K(i) approximately 0.06 mM at [ATP] < 0.5 mM, increasing 4-fold for each 2-fold increase in [ATP] above 0.5 mM. This is explained by the binding of a single adenosine preventing the cooperative binding of two ATP or AMP molecules, with dissociation constants of 0.4, 0.45 and 0.06 mM for ATP, AMP and adenosine, respectively. Importantly, IMP (< or = 8 mM) had no inhibitory effect whatsoever on ATP-activated RyRs. 4. Mean open (tau(o)) and closed (tau(c)) dwell-times were more closely related to P(o) than to the nucleotide species or individual RyRs. At P(o) < 0.2, RyR regulation occurred via changes in tau(c), whereas at higher P(o) this also occurred via changes in tau(o). The detailed properties of activation and competitive inhibition indicated complex channel behaviour that could be explained in terms of a model involving interactions between different subunits of the RyR homotetramer. 5. The results also show how deleterious adenosine accumulation is to the function of RyRs in skeletal muscle and, by comparison with voltage sensor-controlled Ca(2+) release, indicate that voltage sensor activation requires ATP binding to the RyR to be effective.
Collapse
Affiliation(s)
- D R Laver
- School of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|
30
|
Grinstein S, Vander Meulen J, Furuya W. Possible role of H+-alkali cation countertransport in secretary granule swelling during exocytosis. FEBS Lett 2001. [DOI: 10.1016/0014-5793(82)81230-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Kourie JI, Farrelly PV, Henry CL. Channel activity of deamidated isoforms of prion protein fragment 106-126 in planar lipid bilayers. J Neurosci Res 2001; 66:214-20. [PMID: 11592116 DOI: 10.1002/jnr.1213] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using the lipid bilayer technique, we have found that age-related derivatives, PrP[106-126] (L-Asp108) and PrP[106-126] (L-iso-Asp108), of the prion protein fragment 106-126 (PrP[106-126] (Asn108)) form heterogeneous ion channels. The deamidated isoforms, PrP[106-126] (L-Asp108) and PrP[106-126] (L-iso-Asp108), showed no enhanced propensity to form heterogeneous channels compared with PrP[106-126] (Asn108). One of the PrP[106-126] (L-Asp108)- and PrP[106-126] (L-iso-Asp108)-formed channels had three kinetic modes. The current-voltage (I-V) relationship of this channel, which had a reversal potential, E(rev), between -40 and -10 mV close to the equilibrium potential for K+ (E(K)-35 mV), exhibited a sigmoidal shape. The value of the maximal slope conductance (g(max)) was 62.5 pS at positive potentials between 0 and 140 mV. The probability (P(o)) and the frequency (F(o)) of the channel being open had inverted and bell-shaped curves, respectively, with a peak at membrane potential (V(m)) between -80 and +80 mV. The mean open and closed times (T(o) and T(c)) had inverted bell-shaped curves. The biophysical properties of PrP[106-126] (L-Asp108)- and PrP[106-126] (L-iso-Asp108)-formed channels and their response to Cu(2+) were similar to those of channels formed with PrP[106-126] (Asn108). Cu(2+) shifted the kinetics of the channel from being in the open state to a "burst state" in which rapid channel activities were separated by long durations of inactivity. The action of Cu(2+) on the open channel activity was both time-dependent and voltage-dependent. The fact that Cu(2+) induced changes in the kinetics of this channel with no changes in the conductance of the channel indicated that Cu(2+) binds at the mouth of the channel. Consistently with the hydrophilic and structural properties of PrP[106-126], the Cu(2+)-induced changes in the kinetic parameters of this channel suggest that the Cu(2+) binding site could be located at M(109) and H(111) of this prion fragment.
Collapse
Affiliation(s)
- J I Kourie
- Membrane Transport Group, Department of Chemistry, The Australian National University, Bldg. 33, Science Road, Canberra City, Act 0200, Australia.
| | | | | |
Collapse
|
32
|
Kourie JI, Hanna EA, Henry CL. Properties and modulation of alpha human atrial natriuretic peptide (α-hANP)-formed ion channels. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the lipid bilayer technique we have optimized recording conditions and confirmed that alpha human atrial natriuretic peptide [α-hANP(128)] forms single ion channels. The single channel currents recorded in 250/50 mM KCl cis/trans chambers show that the ANP-formed channels were heterogeneous, and differed in their conductance, kinetic, and pharmacological properties. The ANP-formed single channels were grouped as: (i) H2O2- and Ba2+-sensitive channel with fast kinetics; the nonlinear current-voltage (I-V) relationship of this channel had a reversal potential (Erev) of 28.2 mV, which is close to the equilibrium potential for K+ (EK = 35 mV) and a maximal slope conductance (gmax) of 68 pS at positive potentials. Sequential ionic substitution (KCl, K gluconate and choline Cl) of the cis solution suggests that the current was carried by cations. The fast channel had three modes (spike mode, burst mode, and open mode) that differed in their kinetics but not in their conductance properties. (ii) A large conductance channel possessing several subconductance levels that showed time-dependent inactivation at positive and negative membrane potentials (Vm). The inactivation ratio of the current at the end of the voltage step (Iss) to the initial current (Ii) activated immediately after the voltage step, (Iss/Ii), was voltage dependent and described by a bell-shaped curve. The maximal current-voltage (I-V) relationship of this channel, which had an Erev of +17.2 mV, was nonlinear and the value of gmax was 273 pS at negative voltages. (iii) A transiently-activated channel: the nonlinear I-V relationship of this channel had an Erev of 29.8 mV and the value of gmax was 160 pS at positive voltages. We propose that the voltage-dependence of the ionic currents and the kinetic parameters of these channel types indicate that if they were formed in vivo and activated by cytosolic factors they could change the membrane potential and the electrolyte homeostasis of the cell.Key words: natriuretic peptides, channel forming peptides, heterogeneous channels, signal transduction.
Collapse
|
33
|
Kourie JI, Henry CL, Farrelly P. Diversity of amyloid beta protein fragment [1-40]-formed channels. Cell Mol Neurobiol 2001; 21:255-84. [PMID: 11569537 PMCID: PMC11533809 DOI: 10.1023/a:1010995121153] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The lipid bilayer technique was used to characterize the biophysical and pharmacological properties of several ion channels formed by incorporating amyloid beta protein fragment (AbetaP) 1-40 into lipid membranes. Based on the conductance, kinetics, selectivity, and pharmacological properties, the following AbetaP[1-40]-formed ion channels have been identified: (i) The AbetaP[1-40]-formed "bursting" fast cation channel was characterized by (a) a single channel conductance of 63 pS (250/50 mM KCl cis/trans) at +140 mV. 17 pS (250/50 mM KCl cis/trans) at -160 mV, and the nonlinear current-voltage relationship drawn to a third-order polynomial, (b) selectivity sequence PK > PNa > PLi = 1.0:0.60:0.47, (c) Po of 0.22 at 0 mV and 0.55 at +120 mV, and (d) Zn2+-induced reduction in current amplitude, a typical property of a slow block mechanism. (ii) The AbetaP[1-40]-formed "spiky" fast cation channel was characterized by (a) a similar kinetics to the "bursting" fast channel with exception for the absence of the long intraburst closures, (b) single channel conductance of 63 pS (250/50 KCl) at +140 mV 17 pS (250/50 KCl) at -160 mV, the current-voltage relationship nonlinear drawn to a third-order polynomial fit, and (c) selectivity sequence PRb > (iii) The AbetaP[1-40]-formed medium conductance channel was charcterized by (a) 275 pS (250/50 mM KCl cis/trans) at +140 mV and 19 pS (250/50 mM KCl cis/trans) at -160 mV and (b) inactivation at Vms more negative than -120 and more positive than +120 mV. (iv) The AbetaP[1-40]-formed inactivating large conductance channel was characterized by (a) fast and slow modes of opening to seven multilevel conductances ranging between 0-589 pS (in 250/50 mM KCI) at +140 mV and 0-704 pS (in 250/50 mM KCl) at -160 mV. (b) The fast mode which had a conductance of <250 pS was voltage dependent. The inactivation was described by a bell-shaped curve with a peak lag time of 7.2 s at +36 mV. The slow mode which had a conductance of >250 pS was also voltage dependent. The inactivation was described by a bell-shaped curve with a peak lag time of 7.0 s at -76 mV, (c) the value of PK/Pcholine for the fast mode was 3.9 and selectivity sequence PK > PCs > PNa > PLi = 1.0:0.94:0.87:0.59. The value of PK/Pcholine for the slow mode was 2.7 and selectivity sequence PK > FNa > PLi > PCs = 1.0:0.59:0.49:0.21, and (d) asymmetric blockade with 10 mM Zn2+-induced reduction in the large conductance state of the slow mode mediated via slow block mechanism. The fast mode of the large conductance channel was not affected by 10 mM Zn2+. 2. It has been suggested that, although the "bursting" fast channel, the "spiky" fast channel and the inactivating medium conductance channel are distinct, it is possible that they are intermediate configurations of yet another configuration underlying the inactivating large conductance channel. It is proposed that this heterogeneity is one of the most common features of these positively-charged cytotoxic amyloid-formed channels reflecting these channels ability to modify multiple cellular functions. 3. Furthermore, the formation of beta-sheet based oligomers could be an important common step in the formation of cytotoxic amyloid channels.
Collapse
Affiliation(s)
- J I Kourie
- Department of Chemistry, The Faculties, The Australian National University, Canberra City, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
34
|
Abstract
Using the lipid bilayer technique we have optimized the recording conditions and confirmed that PrP[106-126] (KTNMKHMAGAAAAGAVVGGLG) forms single ion channels. Based on the conductance and kinetic parameters of the single channel currents recorded in 250/50 mM KCl cis/trans we have found that the PrP[106-126]-formed heterogeneous cation channels that differ in their conductance and kinetic properties. The most frequently observed PrP[106-126]-formed single cation channels were those of: (a) a GSSH- and TEA-sensitive channel with fast kinetics (n = 47). The current-voltage (I-V) relationship of this channel, that has a reversal potential E(rev) of -33 mV close to the equilibrium potential for K(+) (E(K) -35 mV), exhibited inward and outward rectification. The values of the maximal slope conductance (g(max)) were 138 and 141 pS at positive and negative potentials, respectively. The values of the permeability ratios were 1.0:0.87:0.72:0.49:0.41 for K(+) > Rb(+) > Na(+) > Cs(+) > Li(+) respectively. The probability of the channel being open (P(o)) and the frequency (F(o)) had bell-shaped curves with a peak at membrane potential (V(m)) between -10 and -5 mV whereas the mean open and closed times (T(o) and T(c)) had inverted bell-shaped curves; (b) a 4'-4'-dithiodipyridin (DTT)-sensitive channel with slow kinetics (n = 32). The I-V relationship of this channel that had an E(rev) of -35 mV and a g(max) of 41 pS at positive V(m) was non-linear. The parameter P(o) increased at positive V(m) to 0.6-0.7 at +80 mV. F(o) had an asymmetrical bell-shaped curve with a peak of 314 events/sec at -80 mV. The values of T(o) and T(c) were 312 and 164 msec at +120 mV, respectively; (c) a large channel (n = 24 channels) that had five equally spaced subconductances showed time-dependent fast and slow transitions at positive and negative V(m), respectively. The inactivation ratio I(ss)/I(i) was V(m) dependent and described by a bell-shape. The I-V relationship of this channel that had a E(rev) of -22 mV was non linear. The value of g(max) was 900 and 1444 pS at positive and negative V(m)s, respectively. The value of P(o) was 0.6 at negative V(m)s between -160 and -80 mV and 0.23 at +140 mV. F(o) increased from 22 events/sec at -160 mV to 80-100 events/sec at between +80 and +100 mV. T(o) decreased from 375 msec between -160 and -80 mV to 1-2 msec at V(m)s between 0 and +160 mV. In contrast, T(c) decreased from 160-240 msec at membrane voltages (V(m)s) between -160 and -80 mV. The biophysical properties of these channels indicate that they are capable of modifying cellular functions via modification of V(m) and electrolyte homeostasis of the cell.
Collapse
Affiliation(s)
- J I Kourie
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra City, Australia.
| | | |
Collapse
|
35
|
Laver DR, Eager KR, Taoube L, Lamb GD. Effects of cytoplasmic and luminal pH on Ca(2+) release channels from rabbit skeletal muscle. Biophys J 2000; 78:1835-51. [PMID: 10733964 PMCID: PMC1300778 DOI: 10.1016/s0006-3495(00)76733-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ryanodine receptor (RyR)-Ca(2+) release channels from rabbit skeletal muscle were incorporated into lipid bilayers. The effects of cytoplasmic and luminal pH were studied separately over the pH range 5-8, using half-unit intervals. RyR activity (at constant luminal pH of 7.5) was inhibited at acidic cytoplasmic pH, with a half-inhibitory pH (pH(I)) approximately 6.5, irrespective of bilayer potential and of whether the RyRs were activated by cytoplasmic Ca(2+) (50 microM), ATP (2 or 5 mM), or both. Inhibition occurred within approximately 1 s and could be fully reversed within approximately 1 s after brief inhibition or within approximately 30-60 s after longer exposure to acidic cytosolic pH. There was no evidence of any hysteresis in the cytoplasmic pH effect. Ryanodine-modified channels were less sensitive to pH inhibition, with pH(I) at approximately 5.5, but the inhibition was similarly reversible. Steady-state open and closed dwell times of RyRs during cytoplasmic pH inhibition suggest a mechanism where the binding of one proton inhibits the channel and the binding of two to three additional protons promotes further inhibited states. RyR activity was unaffected by luminal pH in the pH range 7.5 to 6.0. At lower luminal pH (5-5.5) most RyRs were completely inhibited, and raising the pH again produced partial to full recovery in only approximately 50% of cases, with the extent of recovery not detectably different between pH 7.5 and pH 9. The results indicate that isolated skeletal muscle RyRs are not inhibited as strongly by low cytoplasmic and luminal pH, as suggested by previous single-channel studies.
Collapse
Affiliation(s)
- D R Laver
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, ACT 2601, Australia
| | | | | | | |
Collapse
|
36
|
Kourie JI. Characterization of a C-type natriuretic peptide (CNP-39)-formed cation-selective channel from platypus (Ornithorhynchus anatinus) venom. J Physiol 1999; 518 ( Pt 2):359-69. [PMID: 10381585 PMCID: PMC2269427 DOI: 10.1111/j.1469-7793.1999.0359p.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The lipid bilayer technique is used to characterize the biophysical and pharmacological properties of a novel, fast, cation-selective channel formed by incorporating platypus (Ornithorhynchus anatinus) venom (OaV) into lipid membranes. 2. A synthetic C-type natriuretic peptide OaCNP-39, which is identical to that present in platypus venom, mimics the conductance, kinetics, selectivity and pharmacological properties of the OaV-formed fast cation-selective channel. The N-terminal fragment containing residues 1-17, i.e. OaCNP-39(1-17), induces the channel activity. 3. The current amplitude of the TEACl-insensitive fast cation-selective channel is dependent on cytoplasmic K+, [K+]cis. The increase in the current amplitude, as a function of increasing [K+]cis, is non-linear and can be described by the Michaelis-Menten equation. At +140 mV, the values of gammamax and KS are 63.1 pS and 169 mM, respectively, whereas at 0 mV the values of gammamax and KS are 21.1 pS and 307 mM, respectively. gammamax and KS are maximal single channel conductance and concentration for half-maximal gamma, respectively. The calculated permeability ratios, PK:PRb:PNa:PCs:PLi, were 1:0.76:0.21:0.09:0.03, respectively. 4. The probability of the fast channel being open, Po, increases from 0.15 at 0 mV to 0.75 at +140 mV. In contrast, the channel frequency, Fo, decreases from 400 to 180 events per second for voltages between 0 mV and +140. The mean open time, To, increases as the bilayer is made more positive, between 0 and +140 mV. The mean values of the voltage-dependent kinetic parameters, Po, Fo, To and mean closed time (Tc), are independent of [KCl]cis between 50 and 750 mM (P > 0. 05). 5. It is proposed that some of the symptoms of envenomation by platypus venom may be caused partly by changes in cellular functions mediated via the OaCNP-39-formed fast cation-selective channel, which affects signal transduction.
Collapse
Affiliation(s)
- J I Kourie
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra City, ACT 0200, Australia.
| |
Collapse
|
37
|
Kourie JI. Calcium dependence of C-type natriuretic peptide-formed fast K(+) channel. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C43-50. [PMID: 10409107 DOI: 10.1152/ajpcell.1999.277.1.c43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lipid bilayer technique was used to characterize the Ca(2+) dependence of a fast K(+) channel formed by a synthetic 17-amino acid segment [OaCNP-39-(1-17)] of a 39-amino acid C-type natriuretic peptide (OaCNP-39) found in platypus (Ornithorhynchus anatinus) venom (OaV). The OaCNP-39-(1-17)-formed K(+) channel was reversibly dependent on 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-buffered cis (cytoplasmic) Ca(2+) concentration ([Ca(2+)](cis)). The channel was fully active when [Ca(2+)](cis) was >10(-4) M and trans (luminal) Ca(2+) concentration was 1.0 mM, but not at low [Ca(2+)](cis). The open probability of single channels increased from zero at 1 x 10(-6) M cis Ca(2+) to 0.73 +/- 0.17 (n = 22) at 10(-3) M cis Ca(2+). Channel openings to the maximum conductance of 38 pS were rapidly and reversibly activated when [Ca(2+)](cis), but not trans Ca(2+) concentration (n = 5), was increased to >5 x 10(-4) M (n = 14). Channel openings to the submaximal conductance of 10.5 pS were dominant at >/=5 x 10(-4) M Ca(2+). K(+) channels did not open when cis Mg(2+) or Sr(2+) concentrations were increased from zero to 10(-3) M or when [Ca(2+)](cis) was maintained at 10(-6) M (n = 3 and 2). The Hill coefficient and the inhibition constant were 1 and 0.8 x 10(-4) M cis Ca(2+), respectively. This dependence of the channel on high [Ca(2+)](cis) suggests that it may become active under 1) physiological conditions where Ca(2+) levels are high, e.g., during cardiac and skeletal muscle contractions, and 2) pathological conditions that lead to a Ca(2+) overload, e.g., ischemic heart and muscle fatigue. The channel could modify a cascade of physiological functions that are dependent on the Ca(2+)-activated K(+) channels, e.g., vasodilation and salt secretion.
Collapse
Affiliation(s)
- J I Kourie
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra City, Australian Capital Territory 0200, Australia.
| |
Collapse
|
38
|
Abstract
We report the first evidence that synthetic human C-type natriuretic peptide-22 and the OaC-type natriuretic peptide-39(18-39), a 22 amino acid fragment of the OaC-type natriuretic peptide-39 from platypus venom, can function directly by forming a novel voltage-gated weakly cation-selective channel in negatively charged artificial lipid bilayer membranes. The channel activity is characterized by a tendency for inactivation at negative voltages, e.g. -60 and -70 mV, whereas at positive voltages the channel is fully open. The channel has a maximal cord conductance of 546+/-23 pS (n = 16) and shows weak outward rectification. The sequence and the permeability ratios were P(K)+: P(Cs)+: P(Na)+: P(choline)+ 1:0.88:0.76:0.13, respectively. The addition of 50 mM TEA+ cis (a blocker of outwardly rectifying K+ channels), 20 mM Cs+ cis (a blocker of inwardly rectifying K+ channels) or 0.5 mM glibenclamide cis (a blocker of ATP-sensitive K+ channels) to the cis chamber did not affect the conductance or the kinetics of the OaC-type natriuretic peptide-39(18-39)-formed channels (n = 2-5). It is concluded that the weak cation selectivity, large conductance and high open probability as well as their voltage dependency are consistent with the ability of these peptides to cause that loss of compartmentation of the membrane, which is a characteristic feature of adverse conditions that cause C-type natriuretic peptide-related pathologies.
Collapse
Affiliation(s)
- J I Kourie
- Department of Chemistry, The Faculties, The Australian National University, Canberra.
| |
Collapse
|
39
|
Favre I, Sun YM, Moczydlowski E. Reconstitution of native and cloned channels into planar bilayers. Methods Enzymol 1999; 294:287-304. [PMID: 9916234 DOI: 10.1016/s0076-6879(99)94018-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- I Favre
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
40
|
Kourie JI. Chloride channels in the sarcoplasmic reticulum of muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1998; 68:263-300. [PMID: 9652173 DOI: 10.1016/s0079-6107(97)00029-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J I Kourie
- Department of Chemistry, Australian National University, Canberra City, Australia
| |
Collapse
|
41
|
Laver DR, Lamb GD. Inactivation of Ca2+ release channels (ryanodine receptors RyR1 and RyR2) with rapid steps in [Ca2+] and voltage. Biophys J 1998; 74:2352-64. [PMID: 9591662 PMCID: PMC1299578 DOI: 10.1016/s0006-3495(98)77944-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transient responses of sheep cardiac and rabbit skeletal ryanodine receptors (RyRs) to step changes in membrane potential and cytosolic [Ca2+] were measured. Both cardiac and skeletal RyRs have two voltage-dependent inactivation processes (tau approximately 1-3 s at +40 mV) that operate at opposite voltage extremes. Approximately one-half to two-thirds of RyRs inactivated when the bilayer voltage was stepped either way between positive and negative values. Inactivation was not detected (within 30 s) in RyRs with Po less than 0.2. Inactivation rates increased with intraburst open probability (Po) and in proportion to the probability of a long-lived, RyR open state (P(OL)) RyR inactivation depended on P(OL) and not on the particular activator (Ca2+ (microM), ATP, caffeine, and ryanodine), inhibitor (mM Ca2+ and Mg2+), or gating mode. The activity of one-half to two-thirds of RyRs declined (i.e., the RyRs inactivated) after [Ca2+] steps from subactivating (0.1 microM) to activating (1-100 microM) levels. This was due to the same inactivation mechanism responsible for inactivation after voltage steps. Both forms of inactivation had the same kinetics and similar dependencies on Po and voltage. Moreover, RyRs that failed to inactivate after voltage steps also did not inactivate after [Ca2+] steps. The inactivating response to [Ca2+] steps (0.1-1 microM) was not RyRs "adapting" to steady [Ca2+] after the step, because a subsequent step from 1 to 100 microM failed to reactivate RyRs.
Collapse
Affiliation(s)
- D R Laver
- John Curtin School of Medical Research, Australian National University, Canberra, ACT.
| | | |
Collapse
|
42
|
Ahern GP, Laver DR. ATP inhibition and rectification of a Ca2+-activated anion channel in sarcoplasmic reticulum of skeletal muscle. Biophys J 1998; 74:2335-51. [PMID: 9591661 PMCID: PMC1299577 DOI: 10.1016/s0006-3495(98)77943-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We describe ATP-dependent inhibition of the 75-105-pS (in 250 mM Cl-) anion channel (SCl) from the sarcoplasmic reticulum (SR) of rabbit skeletal muscle. In addition to activation by Ca2+ and voltage, inhibition by ATP provides a further mechanism for regulating SCl channel activity in vivo. Inhibition by the nonhydrolyzable ATP analog 5'-adenylylimidodiphosphate (AMP-PNP) ruled out a phosphorylation mechanism. Cytoplasmic ATP (approximately 1 mM) inhibited only when Cl- flowed from cytoplasm to lumen, regardless of membrane voltage. Flux in the opposite direction was not inhibited by 9 mM ATP. Thus ATP causes true, current rectification in SCl channels. Inhibition by cytoplasmic ATP was also voltage dependent, having a K(I) of 0.4-1 mM at -40 mV (Hill coefficient approximately 2), which increased at more negative potentials. Luminal ATP inhibited with a K(I) of approximately 2 mM at +40 mV, and showed no block at negative voltages. Hidden Markov model analysis revealed that ATP inhibition 1) reduced mean open times without altering the maximum channel amplitude, 2) was mediated by a novel, single, voltage-independent closed state (approximately 1 ms), and 3) was much less potent on lower conductance substates than the higher conductance states. Therefore, the SCl channel is unlikely to pass Cl- from cytoplasm to SR lumen in vivo, and balance electrogenic Ca2+ uptake as previously suggested. Possible roles for the SCl channel in the transport of other anions are discussed.
Collapse
Affiliation(s)
- G P Ahern
- John Curtin School of Medical Research, Australian National University, Canberra ACT.
| | | |
Collapse
|
43
|
Laver DR, Owen VJ, Junankar PR, Taske NL, Dulhunty AF, Lamb GD. Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia. Biophys J 1997; 73:1913-24. [PMID: 9336187 PMCID: PMC1181092 DOI: 10.1016/s0006-3495(97)78222-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Malignant hyperthermia (MH) is a potentially fatal, inherited skeletal muscle disorder in humans and pigs that is caused by abnormal regulation of Ca2+ release from the sarcoplasmic reticulum (SR). MH in pigs is associated with a single mutation (Arg615Cys) in the SR ryanodine receptor (RyR) Ca2+ release channel. The way in which this mutation leads to excessive Ca2+ release is not known and is examined here. Single RyR channels from normal and MH-susceptible (MHS) pigs were examined in artificial lipid bilayers. High cytoplasmic (cis) concentrations of either Ca2+ or Mg2+ (>100 microM) inhibited channel opening less in MHS RyRs than in normal RyRs. This difference was more prominent at lower ionic strength (100 mM versus 250 mM). In 100 mM cis Cs+, half-maximum inhibition of activity occurred at approximately 100 microM Mg2+ in normal RyRs and at approximately 300 microM Mg2+ in MHS RyRs, with an average Hill coefficient of approximately 2 in both cases. The level of Mg2+ inhibition was not appreciably different in the presence of either 1 or 50 microM activating Ca2+, showing that it was not substantially influenced by competition between Mg2+ and Ca2+ for the Ca2+ activation site. Even though the absolute inhibitory levels varied widely between channels and conditions, the inhibitory effects of Ca2+ and Mg2+ were virtually identical for the same conditions in any given channel, indicating that the two cations act at the same low-affinity inhibitory site. It seems likely that at the cytoplasmic [Mg2+] in vivo (approximately 1 mM), this Ca2+/Mg2+-inhibitory site will be close to fully saturated with Mg2+ in normal RyRs, but less fully saturated in MHS RyRs. Therefore MHS RyRs should be more sensitive to any activating stimulus, which would readily account for the development of an MH episode.
Collapse
Affiliation(s)
- D R Laver
- John Curtin School of Medical Research, Australian National University, Canberra
| | | | | | | | | | | |
Collapse
|
44
|
Kourie JI. ATP-sensitive voltage- and calcium-dependent chloride channels in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. J Membr Biol 1997; 157:39-51. [PMID: 9141357 DOI: 10.1007/s002329900214] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chloride channels in the sarcoplasmic reticulum (SR) are thought to play an essential role in excitation-contraction (E-C) coupling by balancing charge movement during calcium release and uptake. In this study the nucleotide-sensitivity of Cl- channels in the SR from rabbit skeletal muscle was investigated using the lipid bilayer technique. Two distinct ATP-sensitive Cl- channels that differ in their conductance and kinetic properties and in the mechanism of ATP-induced channel inhibition were observed. The first, a nonfrequent 150 pS channel was inhibited by trans (luminal) ATP, and the second, a common 75 pS small chloride (SCl) channel was inhibited by cis (cytoplasmic) ATP. In the case of the SCl channel the ATP-induced reversible decline in the values of current (maximal current amplitude, Imax and integral current, I') and kinetic parameters (frequency of opening FO, probability of the channel being open PO, mean open TO and closed Tc times) show a nonspecific block of the voltage- and Ca2+-dependent SCl channel. ATP was a more potent blocker from the cytoplasmic side than from the luminal side of the channel. The SCl channel block was not due to Ca2+ chelation by ATP, nor to phosphorylation of the channel protein. The inhibitory action of ATP was mimicked by the nonhydrolyzable analogue adenylylimidodiphosphate (AMP-PNP) in the absence of Mg2+. The inhibitory potency of the adenine nucleotides was charge dependent in the following order ATP4- > ADP3- > > > AMP2-. The data suggest that ATP-induced effects are mediated via an open channel block mechanism. Modulation of the SCl channel by [ATP]cis and [Ca2+]cis indicates that (i) this channel senses the bioenergetic state of the muscle fiber and (ii) it is linked to the ATP-dependent cycling of the Ca2+ between the SR and the sarcoplasm.
Collapse
Affiliation(s)
- J I Kourie
- Muscle Research Group, Division of Neuroscience, John Curtin School of Medical Research, ANU, PO Box 334, Canberra City, ACT, 2601 Australia
| |
Collapse
|
45
|
Picher M, Decrouy A, Rousseau E. Conducting and voltage-dependent behaviors of potassium ion channels reconstituted from diaphragm sarcoplasmic reticulum: comparison with the cardiac isoform. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1279:93-103. [PMID: 8624367 DOI: 10.1016/0005-2736(95)00239-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sarcoplasmic reticulum (SR) K+ channels from canine diaphragm were studied upon fusion of longitudinal and junctional membrane vesicles into planar lipid bilayers (PLB). The large-conductance cation selective channel (gamma(max) = 250 pS; Km = 33 mM) displays long-lasting open events which are much more frequent at positive than at negative voltages. A major subconducting state about 45% of the fully-open state current amplitude was occasionally observed at all voltages. The voltage-dependence of the open probability displays a sigmoid relationship that was fitted by the Boltzmann equation and expressed in terms of thermodynamic parameters, namely the free energy (delta Gi) and the effective gating charge (Zs): delta Gi = 0.27 kcal/mol and Zs = -1.19 in 250 mM potassium gluconate (K-gluconate). Kinetic analyses also confirmed the voltage-dependent gating behavior of this channel, and indicate the implication of at least two open and three closed states. The diaphragm SR K+ channel shares several biophysical properties with the cardiac isoform: g = 180 pS, delta Gi = 0.75 kcal/mol, Zs = -1.45 in 150 mM K-gluconate, and a similar sigmoid P(o)/voltage relationship. Little is known about the regulation of the diaphragm and cardiac SR K+ channels. The conductance and gating of these channels were not influenced by physiological concentrations of Ca2+ (0.1 microM-1 mM) or Mg2+ (0.25-1 mM), as well as by cGMP (25-100 microM), lemakalim (1-100 microM), glyburide (up to 10 microM) or charybdotoxin (45-200 nM), added either to the cis or to the trans chamber. The apparent lack of biochemical or pharmacological modulation of these channels implies that they are not related to any of the well characterized surface membrane K+ channels. On the other hand, their voltage sensitivity strongly suggests that their activity could be modulated by putative changes in SR membrane potential that might occur during calcium fluxes.
Collapse
Affiliation(s)
- M Picher
- Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke, Canada
| | | | | |
Collapse
|
46
|
Kourie JI, Laver DR, Junankar PR, Gage PW, Dulhunty AF. Characteristics of two types of chloride channel in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. Biophys J 1996; 70:202-21. [PMID: 8770199 PMCID: PMC1224921 DOI: 10.1016/s0006-3495(96)79564-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A comparison is made of two types of chloride-selective channel in skeletal muscle sarcoplasmic reticulum (SR) vesicles incorporated into lipid bilayers. The I/V relationships of both channels, in 250/50 mM Cl- (cis/trans), were linear between -20 and +60 mV (cis potential,) reversed near Ecl and had slope conductances of approximately 250 pS for the big chloride (BCl) channel and approximately 70 pS for the novel, small chloride (SCl) channel. The protein composition of vesicles indicated that both channels originated from longitudinal SR and terminal cisternae. BCl and SCl channels responded differently to cis SO4(2-) (30-70 mM), 4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid (8-80 microM) and to bilayer potential. The BCl channel open probability was high at all potentials, whereas SCl channels exhibited time-dependent activation and inactivation at negative potentials and deactivation at positive potentials. The duration and frequency of SCl channel openings were minimal at positive potentials and maximal at -40 mV, and were stationary during periods of activity. A substate analysis was performed using the Hidden Markov Model (S. H. Chung, J. B. Moore, L. Xia, L. S. Premkumar, and P. W. Gage, 1990, Phil. Trans. R. Soc. Lond. B., 329:265-285) and the algorithm EVPROC (evaluated here). SCl channels exhibited transitions between 5 and 7 conductance levels. BCl channels had 7-13 predominant levels plus many more short-lived substates. SCl channels have not been described in previous reports of Cl- channels in skeletal muscle SR.
Collapse
Affiliation(s)
- J I Kourie
- John Curtin School of Medical Research, Australian National University, Canberra City, Australia.
| | | | | | | | | |
Collapse
|
47
|
Noceti F, Ramírez AN, Possani LD, Prestipino G. Characterization of a voltage-dependent potassium channel in squid Schwann cells reconstituted in planar lipid bilayers. Glia 1995; 15:33-42. [PMID: 8847099 DOI: 10.1002/glia.440150105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An affinity column prepared with noxiustoxin (NTx), a K+ channel blocker from the venom of the Mexican scorpion Centruroides noxius, was used to purify a functional channel from a detergent extract of Schwann cell membrane of the giant axon of the squid Loligo vulgaris. The purified protein was reconstituted as a functional unit in a planar lipid bilayer and tested with a sequence of potentials to obtain information about single-channel amplitude and kinetics. The reconstituted channel showed delayed rectifier behavior with a slope conductance of 10 pS under 5:1 asymmetric KCl concentrations and a clear tendency to open under negative potentials. The zero-current potential was +36mV, which fitted well with the Nernst equation for the CIS/TRANS K(+)-concentration ratio of 5:1. The channel also showed a strong sensitivity to tetraethylammonium and its activity was inhibited by NTx, as expected from the purification procedure. The behavior of this protein in the presence of 0.5 mM ATP (cis side) was also tested, significantly increasing current fluctuations across the membrane. In order to compare the modulation of the Schwann cell K+ channel with that of the axonal K+ channel, a purified protein from the squid axon membrane was also tested in the presence of ATP. This 10-11 pS, delayed rectifier channel from the squid giant axon (Prestipino et al., FEBS Lett. 250:570-574, 1989) was also tested in the presence of ATP and showed a similar rise in activity.
Collapse
Affiliation(s)
- F Noceti
- Istituto di Cibernetica e Biofisica, CNR, Genova, Italy
| | | | | | | |
Collapse
|
48
|
Ornberg RL, Furuya S, Goping G, Kuijpers GA. Granule swelling in stimulated bovine adrenal chromaffin cells: regulation by internal granule pH. Cell Tissue Res 1995; 279:85-92. [PMID: 7895265 DOI: 10.1007/bf00300694] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adrenal medullary chromaffin cells secrete catecholamines through exocytosis of their intracellular chromaffin granules. Osmotic granule swelling has been implicated to play a role in the generation of membrane stress associated with the fusion of the granule membrane. However, controversy exists as to whether swelling occurs before or after the actual fusion event. Using morphometric methods we have determined the granule diameter distributions in rapidly frozen, freeze-substituted chromaffin cells. Our measurements show that intracellular chromaffin granules increase in size from an average of 234 nm to 274 nm or 277 nm in cells stimulated to secrete with nicotine or high external K+, respectively. Granule swelling occurs before the formation of membrane contact. Ammonium chloride, an agent which inhibits stimulated catecholamine secretion by approximately 50% by altering the intragranular pH, also inhibits granule swelling. In addition, ammonium chloride-treated secreting cells show more granule-plasma membrane contacts than untreated secreting cells. Sodium propionate induces granule swelling in the absence of secretagogue and has been shown to enhance nicotine- and high K(+)- induced catecholamine release. These results indicate that in adrenal chromaffin cells granule swelling is an essential step in exocytosis before fusion pore formation, and is related to the pH of the granule environment.
Collapse
Affiliation(s)
- R L Ornberg
- Laboratory of Cell Biology and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
49
|
Affiliation(s)
- B L Kagan
- Department of Psychiatry, University of California at Los Angeles School of Medicine 90024
| | | |
Collapse
|
50
|
Abstract
Smooth muscle cells in culture isolated from myometrium were characterized by scanning microscope and immunohistochemistry. Using the whole-cell patch-clamp configuration, and the single channel bilayer technique, the properties of ionic channels expressed in both non-pregnant and pregnant myometrium have been described. The predominantly expressed potassium channel changes from a transient inactivating outward current seen before puberty, to a calcium sensitive delayed outward current present in the adult stage. A change in the calcium channel population occurs from the nonpregnant to the pregnant state. Finally, sodium channels are expressed with greater frequency towards the end of gestation suggesting that these channels may play a role in labor.
Collapse
Affiliation(s)
- J Ludmir
- Department of Obstetrics and Gynecology, University of Pennsylvania Medical Center, Philadelphia 19104
| | | |
Collapse
|