1
|
Fujita H, Watanabe TM. Use of optical techniques to evaluate the ionizing radiation effects on biological specimens. JOURNAL OF RADIATION RESEARCH 2024; 65:i117-i125. [PMID: 39679890 DOI: 10.1093/jrr/rrae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Indexed: 12/17/2024]
Abstract
Radiation induces various changes in biological specimens; however, the evaluation of these changes is usually complicated and can be achieved only through investment in time and labor. Optical methods reduce the cost of such evaluations as they require less pretreatment of the sample, are adaptable to high-throughput screening and are easy to automate. Optical methods are also advantageous, owing to their real-time and onsite evaluation capabilities. Here, we discuss three optical technologies to evaluate the effects of radiation on biological samples: single-molecule tracking microscopy to evaluate the changes in the physical properties of DNA, Raman spectral microscopy for dosimetry using human hair and second-harmonic generation microscopy to evaluate the effect of radiation on the differentiation of stem cells. These technologies can also be combined for more detailed information and are applicable to other biological samples. Although optical methods are not commonly used to evaluate the effects of radiation, advances in this technology may facilitate the easy and rapid assessment of radiation effects on biological samples.
Collapse
Affiliation(s)
- Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima 734-0037, Japan
| | - Tomonobu M Watanabe
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima 734-0037, Japan
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
2
|
Nikitina V, Nugis V, Astrelina T, Zheglo D, Kobzeva I, Kozlova M, Galstyan I, Lomonosova E, Zhanataev A, Karaseva T, Samoylov AS. Pattern of chromosomal aberrations persisting over 30 years in a Chernobyl Nuclear Power Plant accident survivor: study using mFISH. JOURNAL OF RADIATION RESEARCH 2022; 63:202-212. [PMID: 35146520 PMCID: PMC8944318 DOI: 10.1093/jrr/rrab131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/21/2021] [Indexed: 06/14/2023]
Abstract
The long-term in vivo cytogenetic effects of high-dose radiation exposure can be traced in accidentally irradiated persons, and particularly useful for developing strategies of monitoring and therapy of such patients, as well as for elucidating the fundamental aspects of hematopoiesis and radiobiology. Using 24-color fluorescent in situ hybridization (mFISH), we analysed the frequency and the spectrum of chromosomal aberrations (CA) in peripheral blood lymphocytes of the Chernobyl Nuclear Power Plant (NPP) accident victim 30, 31, 32 and 33 years after acute accidental exposure to high-dose gamma radiation of the whole body. Totally, 993 metaphase cells were analyzed (or 219, 272, 258, 244 cells each year), of which 297 were aberrant. Our study demonstrated a constant aberrant cell frequency at 28% in 2016-2018 years, while in 2019, a significant increase up to 35% occurred due to contribution of significantly elevated frequency of simple aberrations in the absence of evident recent genotoxic factors. Four clonal aberrations were detected, three of which persisted for more than one year at a frequency up to 2.5% of analyzed cells. The distribution of 731 breakpoints per individual chromosomes was nearly proportional to their physical length, excepting Chromosomes 13 and 20, which were significantly breakpoint-deficient compared to the genome median rate. Monitoring of the long-term effects on chromosomal instability caused by radiation exposure is important for understanding and predicting the long-term effects of ionizing radiation.
Collapse
Affiliation(s)
- Victoriya Nikitina
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Vladimir Nugis
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Tatiyana Astrelina
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Diana Zheglo
- Federal State Budgetary Scientific Institution "Research Centre for Medical Genetics", 115522, Moskvorechye str., 1, Moscow, Russia
| | - Irina Kobzeva
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Mariya Kozlova
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Irina Galstyan
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Elena Lomonosova
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Aliy Zhanataev
- Research Zakusov Institute of Pharmacology, 125315 Baltyiskaya str., 8, Moscow, Russia
| | - Tatiyana Karaseva
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| | - Alexander S Samoylov
- State Research Center Burnasyan Federal Medical Biophysical Center of Federal Medical Biology Agency of Russia, 123128 Zhivopisnaya str., 46, Moscow, Russia
| |
Collapse
|
3
|
Tanaka K, Ohtaki M, Hoshi M. Chromosome aberrations in Japanese fishermen exposed to fallout radiation 420-1200 km distant from the nuclear explosion test site at Bikini Atoll: report 60 years after the incident. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:329-337. [PMID: 27017218 DOI: 10.1007/s00411-016-0648-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
During the period from March to May, 1954, the USA conducted six nuclear weapon tests at the "Bravo" detonation sites at the Bikini and Enewetak Atolls, Marshall Islands. At that time, the crew of tuna fishing boats and cargo ships that were operating approximately 150-1200 km away from the test sites were exposed to radioactive fallout. The crew of the fishing boats and those on cargo ships except the "5th Fukuryu-maru" did not undergo any health examinations at the time of the incident. In the present study, chromosome aberrations in peripheral blood lymphocytes were examined in detail by the G-banding method in 17 crew members from 8 fishing boats and 2 from one cargo ship, 60 years after the tests. None of the subjects examined had suffered from cancer. The percentages of both stable-type aberrations such as translocation, inversion and deletion, and unstable-type aberrations such as dicentric and centric ring in the study group were significantly higher (1.4- and 2.3-fold, respectively) than those in nine age-matched controls. In the exposed and control groups, the percentages of stable-type aberrations were 3.35 % and 2.45 %, respectively, and the numbers of dicentric and centric ring chromosomes per 100 cells were 0.35 and 0.15, respectively. Small clones were observed in three members of the exposed group. These results suggest that the crews were exposed to slightly higher levels of fallout than had hitherto been assumed.
Collapse
Affiliation(s)
- Kimio Tanaka
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan.
- Institute for Environmental Sciences, Takahoko, Rokkasho, Kakimita, Aomori, 039-3213, Japan.
| | - Megu Ohtaki
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Masaharu Hoshi
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| |
Collapse
|
4
|
Hada M, Zhang Y, Feiveson A, Cucinotta FA, Wu H. Association of inter- and intrachromosomal exchanges with the distribution of low- and high-LET radiation-induced breaks in chromosomes. Radiat Res 2011; 176:25-37. [PMID: 21466383 DOI: 10.1667/rr2433.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To study the effects of low- and high-linear energy transfer (LET) radiation on break locations within a chromosome, we exposed human epithelial cells in vitro to (137)Cs γ rays at both low and high dose rates, secondary neutrons at a low dose rate, and 600 MeV/u iron ions at a high dose rate. Breakpoints were identified using multicolor banding in situ hybridization (mBAND), which paints chromosome 3 in 23 different colored bands. For all four radiation scenarios, breakpoint distributions were found to be different from the predicted distribution based on band width. Detailed analysis of chromosome fragment ends involved in inter- or intrachromosomal exchanges revealed that the distributions of fragment ends participating in interchromosomal exchanges were similar between the two low-LET radiation dose rates and between the two high-LET radiation types, but the distributions were less similar between low- and high-LET radiations. For fragment ends participating in intrachromosomal exchanges, the distributions for all four radiation scenarios were similar, with clusters of breaks found in three regions. Analysis of the locations of the two fragment ends in chromosome 3 that joined to form an intrachromosomal exchange demonstrated that two breaks with a greater genomic separation can be more likely to rejoin than two closer breaks, indicating that chromatin folding can play an important role in the rejoining of chromosome breaks. Comparison of the breakpoint distributions to the distributions of genes indicated that the gene-rich regions do not necessarily contain more breaks. In general, breakpoint distributions depend on whether a chromosome fragment joins with another fragment in the same chromosome or with a fragment from a different chromosome.
Collapse
Affiliation(s)
- Megumi Hada
- NASA Johnson Space Center, Houston, Texas 77058, USA
| | | | | | | | | |
Collapse
|
5
|
Pandey BN, Kumar A, Tiwari P, Mishra KP. Radiobiological basis in management of accidental radiation exposure. Int J Radiat Biol 2010; 86:613-35. [DOI: 10.3109/09553001003746059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Domrachev EV, Aseeva EA, Obukhova TN, Kobzev YN, Olshanskaya YV, D'achenko LV, Udovichenko AI, Zakharova AV, Milyutina GI, Nechai VV, Vorobiov AI. Cytogenetic features of leukaemias diagnosed in residents of areas contaminated after the Chernobyl nuclear accident. Appl Radiat Isot 2000; 52:1171-7. [PMID: 10836425 DOI: 10.1016/s0969-8043(00)00066-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A comparison of chromosomal abnormalities in bone marrow leukaemic cells and of stable and unstable aberrations in lymphocytes of patients with hematological malignancies who live in areas with or without contamination by the Chernobyl nuclear accident has been made using FISH and G-banding. Healthy residents of these areas comprised the control group. No systematic cytogenetic differences of leukaemic cells between patients from contaminated and uncontaminated areas were observed. Lymphocyte aberrations, however, were generally higher in all subjects from contaminated areas. Comparison has been made with specific cytogenetic features of leukaemic cells and a high level of stable aberrations in lymphocytes of patients with secondary leukaemias that had developed after chemo- and/or radio-therapy.
Collapse
Affiliation(s)
- E V Domrachev
- Karyology Laboratory, National Research Center for Hematology, Russian Academy of Medical Sciences, Moscow.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tawn EJ. Monitoring for environmental mutagenesis in wild animals--lessons from human studies. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 1999; 19:333-338. [PMID: 10616779 DOI: 10.1088/0952-4746/19/4/304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The increasing realisation that environmental monitoring practices need to demonstrate radiological protection of the whole ecosystem has led to suggestions that genotoxic techniques derived from human monitoring of radiation exposure could be applied to other animal species. Human studies have highlighted the need to establish the relationship between exposure, genetic effect and biological consequence so that different study objectives, e.g. hazard identification, dose estimation, risk evaluation, can be addressed by the application of the most appropriate and informative assay.
Collapse
Affiliation(s)
- E J Tawn
- Westlakes Research Institute, International Research & Graduate Centre, Westlakes Science & Technology Park, Cumbria, UK.
| |
Collapse
|
8
|
Johnson KL, Nath J, Pluth JM, Tucker JD. The distribution of chromosome damage, non-reciprocal translocations and clonal aberrations in lymphocytes from Chernobyl clean-up workers. Mutat Res 1999; 439:77-85. [PMID: 10029681 DOI: 10.1016/s1383-5718(98)00177-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this paper we determined whether the frequencies of translocations and insertions are proportional to chromosome size in peripheral blood lymphocytes from Chernobyl nuclear accident clean-up workers and healthy unexposed control subjects. The frequency of aberrations among chromosomes 1, 2 and 4 in both groups was found to be significantly different from the distribution expected on the basis of chromosome size, although the difference was only marginally significant in controls. We also determined whether differences exist in aberration frequencies measured by two scoring systems: the classical method, where reciprocal exchanges are scored as one event, and PAINT, where each break junction is scored as a single event. The two scoring systems gave highly correlated results which yielded an interpretable arithmetic relationship between frequency measurements using the two systems. Approximately 34% of all translocations were observed to be non-reciprocal, and cells bearing clones of abnormal cells were observed in 6 of 198 subjects (3.0%). Our results demonstrate that clones of abnormal cells and the presence of non-reciprocal translocations contribute to the non-proportional distribution of radiation-induced and spontaneous cytogenetic damage.
Collapse
MESH Headings
- Chromosome Breakage/genetics
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/radiation effects
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 2/radiation effects
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Pair 4/radiation effects
- Clone Cells/radiation effects
- Humans
- Lymphocytes/metabolism
- Lymphocytes/radiation effects
- Occupational Exposure
- Power Plants
- Radioactive Hazard Release
- Translocation, Genetic/genetics
- Translocation, Genetic/radiation effects
- Ukraine
Collapse
Affiliation(s)
- K L Johnson
- Genetics and Developmental Biology Program, West Virginia University, Morgantown, WV 26506-6108, USA
| | | | | | | |
Collapse
|
9
|
Sachs RK, Chen AM, Brenner DJ. Review: proximity effects in the production of chromosome aberrations by ionizing radiation. Int J Radiat Biol 1997; 71:1-19. [PMID: 9020958 DOI: 10.1080/095530097144364] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
After ionizing radiation has induced double-strand DNA breaks (dsb), misrejoining produces chromosome aberrations. Aberration yields are influenced by "proximity' effects, i.e., by the dependence of misrejoining probabilities on initial dsb separations. We survey proximity effects, emphasizing implications for chromosome aberration-formation mechanisms, for chromatin geometry, and for dose-response relations. Evidence for proximity effects comes from observed biases for centric rings and against three-way interchanges, relative to dicentrics or translocations. Other evidence comes from the way aberration yields depend on radiation dose and quality, tightly bunched ionizations being relatively effective. We concludes (1) that misrejoining probabilities decrease as the distance between dsb at the time of their formation increases, and almost all misrejoining occurs among dsb initially separated by < 1/3 of a cell nucleus diameter; (2) that chromosomes occupy (irregular) territories during the G0/G1 phase of the cell cycle, having dimensions also roughly 1/3 of a cell nucleus diameter, (3) that proximity effects have the potential to probe how much different chromosomes intertwine on move relative to each other: and (4) that incorporation of proximity effects into the classic random breakage-and-reunion model allows quantitative interrelation of yields for many different aberration types and of data obtained with various FISH painting methods or whole-genome scoring.
Collapse
Affiliation(s)
- R K Sachs
- Department of Mathematics, University of California, Berkeley 94720, USA.
| | | | | |
Collapse
|
10
|
Radiation damage to lymphocyte membranes. J Radioanal Nucl Chem 1996. [DOI: 10.1007/bf02040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Chen AM, Lucas JN, Hill FS, Brenner DJ, Sachs RK. Proximity effects for chromosome aberrations measured by FISH. Int J Radiat Biol 1996; 69:411-20. [PMID: 8627123 DOI: 10.1080/095530096145706] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A Monte Carlo simulation computer program for radiation-produced chromosome aberrations, based on the breakage-and-reunion model, was extended to include proximity effects due to localization of chromosomes and limited range for break-break interactions. Two adjustable parameters were used. One corresponds to total dose: the other determines proximity effects by specifying the number of 'interaction regions' in a cell nucleus. The use of additional adjustable parameters was avoided by assuming randomness of break induction and aberration production. FISH chromosome painting data were obtained from 1.9 Gy 60Co gamma-rays-irradiated human lymphocytes. The data were compared with the computer simulation results, taking individual chromosome lengths into account. With about 13 interaction regions, agreement between the experiment and the simulation was good, even when detailed categories of damage were scored. An estimated average dsb-dsb interaction distance, based on 13 interaction regions, is about 1.3 micron. Monte Carlo methods give useful quantitative estimates of relative aberration yields, with a minimum of adjustable parameters and the theoretical assumptions, and indicated proximity effects. Computer simulation of FISH experiments can be adapted to any number of colours, any scoring criteria and any method of grouping aberrations into categories. Simulation allows systematic extrapolation of aberration data on painted chromosomes to whole-genome aberration frequencies.
Collapse
Affiliation(s)
- A M Chen
- Department of Mathematics, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
12
|
Lucas JN, Chen AM, Sachs RK. Theoretical predictions on the equality of radiation-produced dicentrics and translocations detected by chromosome painting. Int J Radiat Biol 1996; 69:145-53. [PMID: 8609450 DOI: 10.1080/095530096145977] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Existing models of chromosome aberrations produced by ionizing-radiation predict equal numbers of dicentrics and translocations if the dose is so low that complex aberrations can be ignored. We show that, for a specific subset of aberrations detected by FISH, dicentric/translocation equality is predicted even at higher doses. Assuming one-colour whole-chromosome painting (with unpainted chromosomes counterstained and centromeres recognizable) the relevant restriction is that the final metaphase pattern be, in the terminology of Simpson and Savage, 'apparently simple'. This means that the painted pattern is required to have the colour/centromere appearance corresponding to a single complete reciprocal exchange but its actual formation, as reflected for example in lengths, is allowed to be more complicated. The restriction to apparent simplicity is significantly less limiting than ignoring all complex aberrations. Our analysis of predicted dicentric/translocation equality in this case uses examples, a combinatorial counting method, Monte Carlo computer programs, and a duality proof. However, we argue that for 'visibly complex' dicentrics or translocations, no similar equality is expected in general. Corresponding experimental results are briefly surveyed. Checking dicentric/translocation equality experimentally can provide a significant test of current chromosome aberration models.
Collapse
Affiliation(s)
- J N Lucas
- Lawrence Livermore National Laboratory, University of California, 94551, USA
| | | | | |
Collapse
|