1
|
Lian Q, Maestroni L, Gaudin M, Llorente B, Mercier R. Meiotic recombination is confirmed to be unusually high in the fission yeast Schizosaccharomyces pombe. iScience 2023; 26:107614. [PMID: 37664590 PMCID: PMC10474467 DOI: 10.1016/j.isci.2023.107614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/20/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
In most eukaryotes, meiotic crossovers (COs) are limited to 1-3 per chromosome, and are prevented from occurring close to one another by CO interference. The fission yeast Schizosaccharomyces pombe, an exception to these general rules, was reported to have the highest CO number per chromosome and no or weak interference. However, global CO frequency was indirectly estimated, calling for confirmation. Here, we used an innovative strategy to determine COs genome-wide in S. pombe. We confirmed weak CO interference, acting at physical distances compatible with the patterning of recombination precursors. We revealed a slight co-variation in CO number between chromosomes, suggesting that a limiting pro-CO factor varies between meiocytes. CO number per chromosome varies proportionally with chromosome size, with the three chromosomes having, on average, 15.9, 12.5, and 7.0 COs, respectively. This reinforces S. pombe's status as the eukaryote with the highest CO number per chromosome described to date.
Collapse
Affiliation(s)
- Qichao Lian
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Laetitia Maestroni
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Maxime Gaudin
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Bertrand Llorente
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| |
Collapse
|
2
|
Protacio RU, Davidson MK, Wahls WP. Adaptive Control of the Meiotic Recombination Landscape by DNA Site-dependent Hotspots With Implications for Evolution. Front Genet 2022; 13:947572. [PMID: 35812747 PMCID: PMC9257126 DOI: 10.3389/fgene.2022.947572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Meiosis is an essential component of the sexual life cycle in eukaryotes. The independent assortment of chromosomes in meiosis increases genetic diversity at the level of whole chromosomes and meiotic recombination increases genetic diversity within chromosomes. The resulting variability fuels evolution. Interestingly, global mapping of recombination in diverse taxa revealed dramatic changes in its frequency distribution between closely related species, subspecies, and even isolated populations of the same species. New insight into mechanisms for these evolutionarily rapid changes has come from analyses of environmentally induced plasticity of recombination in fission yeast. Many different DNA sites, and where identified their binding/activator proteins, control the positioning of recombination at hotspots. Each different class of hotspots functions as an independently controlled rheostat that modulates rates of recombination over a broad dynamic range in response to changing conditions. Together, this independent modulation can rapidly and dramatically alter the global frequency distribution of recombination. This process likely contributes substantially to (i.e., can largely explain) evolutionarily rapid, Prdm9-independent changes in the recombination landscape. Moreover, the precise control mechanisms allow cells to dynamically favor or disfavor newly arising combinations of linked alleles in response to changing extracellular and intracellular conditions, which has striking implications for the impacts of meiotic recombination on evolution.
Collapse
|
3
|
Pettie N, Llopart A, Comeron JM. Meiotic, genomic and evolutionary properties of crossover distribution in Drosophila yakuba. PLoS Genet 2022; 18:e1010087. [PMID: 35320272 PMCID: PMC8979470 DOI: 10.1371/journal.pgen.1010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/04/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.
Collapse
Affiliation(s)
- Nikale Pettie
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Llopart
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
4
|
Abstract
The presence of meiosis, which is a conserved component of sexual reproduction, across organisms from all eukaryotic kingdoms, strongly argues that sex is a primordial feature of eukaryotes. However, extant meiotic structures and processes can vary considerably between organisms. The ciliated protist Tetrahymena thermophila, which diverged from animals, plants, and fungi early in evolution, provides one example of a rather unconventional meiosis. Tetrahymena has a simpler meiosis compared with most other organisms: It lacks both a synaptonemal complex (SC) and specialized meiotic machinery for chromosome cohesion and has a reduced capacity to regulate meiotic recombination. Despite this, it also features several unique mechanisms, including elongation of the nucleus to twice the cell length to promote homologous pairing and prevent recombination between sister chromatids. Comparison of the meiotic programs of Tetrahymena and higher multicellular organisms may reveal how extant meiosis evolved from proto-meiosis.
Collapse
Affiliation(s)
- Josef Loidl
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
5
|
Abstract
Meiosis is the basis of the generative reproduction of eukaryotes. The crucial first step is homologous chromosome pairing. In higher eukaryotes, micrometer-scale chromosomes, micrometer distances apart, are brought together by nanometer DNA sequences, at least a factor of 1000 size difference. Models of homology search, homologue movement, and pairing at the DNA level in higher eukaryotes are primarily based on studies with yeast where the emphasis is on the induction and repair of DNA double-strand breaks (DSB). For such a model, the very large nuclei of most plants and animals present serious problems. Homology search without DSBs cannot be explained by models based on DSB repair. The movement of homologues to meet each other and make contact at the molecular level is not understood. These problems are discussed and the conclusion is that at present practically nothing is known of meiotic homologue pairing in higher eukaryotes up to the formation of the synaptonemal complex, and that new, necessarily speculative models must be developed. Arguments are given that RNA plays a central role in homology search and a tentative model involving RNA in homology search is presented. A role of actin in homologue movement is proposed. The primary role of DSBs in higher eukaryotes is concluded to not be in paring but in the preparation of Holliday junctions, ultimately leading to chromatid exchange.
Collapse
Affiliation(s)
- J Sybenga
- Laboratory of Genetics, Wageningen University, Wageningen, the Netherlands.,Laboratory of Genetics, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
6
|
Sex in Symbiodiniaceae dinoflagellates: genomic evidence for independent loss of the canonical synaptonemal complex. Sci Rep 2020; 10:9792. [PMID: 32555361 PMCID: PMC7299967 DOI: 10.1038/s41598-020-66429-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
Dinoflagellates of the Symbiodiniaceae family encompass diverse symbionts that are critical to corals and other species living in coral reefs. It is well known that sexual reproduction enhances adaptive evolution in changing environments. Although genes related to meiotic functions were reported in Symbiodiniaceae, cytological evidence of meiosis and fertilisation are however yet to be observed in these taxa. Using transcriptome and genome data from 21 Symbiodiniaceae isolates, we studied genes that encode proteins associated with distinct stages of meiosis and syngamy. We report the absence of genes that encode main components of the synaptonemal complex (SC), a protein structure that mediates homologous chromosomal pairing and class I crossovers. This result suggests an independent loss of canonical SCs in the alveolates, that also includes the SC-lacking ciliates. We hypothesise that this loss was due in part to permanently condensed chromosomes and repeat-rich sequences in Symbiodiniaceae (and other dinoflagellates) which favoured the SC-independent class II crossover pathway. Our results reveal novel insights into evolution of the meiotic molecular machinery in the ecologically important Symbiodiniaceae and in other eukaryotes.
Collapse
|
7
|
Blokhina YP, Nguyen AD, Draper BW, Burgess SM. The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio. PLoS Genet 2019; 15:e1007730. [PMID: 30653507 PMCID: PMC6336226 DOI: 10.1371/journal.pgen.1007730] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022] Open
Abstract
Meiosis is a cellular program that generates haploid gametes for sexual reproduction. While chromosome events that contribute to reducing ploidy (homologous chromosome pairing, synapsis, and recombination) are well conserved, their execution varies across species and even between sexes of the same species. The telomere bouquet is a conserved feature of meiosis that was first described nearly a century ago, yet its role is still debated. Here we took advantage of the prominent telomere bouquet in zebrafish, Danio rerio, and super-resolution microscopy to show that axis morphogenesis, synapsis, and the formation of double-strand breaks (DSBs) all take place within the immediate vicinity of telomeres. We established a coherent timeline of events and tested the dependence of each event on the formation of Spo11-induced DSBs. First, we found that the axis protein Sycp3 loads adjacent to telomeres and extends inward, suggesting a specific feature common to all telomeres seeds the development of the axis. Second, we found that newly formed axes near telomeres engage in presynaptic co-alignment by a mechanism that depends on DSBs, even when stable juxtaposition of homologous chromosomes at interstitial regions is not yet evident. Third, we were surprised to discover that ~30% of telomeres in early prophase I engage in associations between two or more chromosome ends and these interactions decrease in later stages. Finally, while pairing and synapsis were disrupted in both spo11 males and females, their reproductive phenotypes were starkly different; spo11 mutant males failed to produce sperm while females produced offspring with severe developmental defects. Our results support zebrafish as an important vertebrate model for meiosis with implications for differences in fertility and genetically derived birth defects in males and females. Inherent to reproduction is the transmission of genetic information from one generation to the next. In sexually reproducing organisms, each parent contributes an equal amount of genetic information, packaged in chromosomes, to the offspring. Diploid organisms, like humans, have two copies of every chromosome, while their haploid gametes (e.g. eggs and sperm) have only one. This reduction in ploidy depends on the segregation of chromosomes during meiosis, resulting in gametes with one copy of each chromosome. Missegregation of the chromosomes in the parents leads to abnormal chromosome numbers in the offspring, which is usually lethal or has detrimental developmental effects. While it has been known for over a century that homologous chromosomes pair and recombine to facilitate proper segregation, how homologs find their partners has remained elusive. A structure that has been central to the discussion of homolog pairing is the bouquet, or the dynamic clustering of telomeres during early stages of meiosis. Here we use zebrafish to show that the telomere bouquet is the site where key events leading to homologous chromosome pairing are coordinated. Furthermore, we show that deletion of spo11, a gene required for proper recombination in most studied organisms, resulted in very different effects in males and females where males were sterile while females produced deformed progeny.
Collapse
Affiliation(s)
- Yana P. Blokhina
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, United States of America
| | - An D. Nguyen
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Yamashita A, Sakuno T, Watanabe Y, Yamamoto M. Analysis of Schizosaccharomyces pombe Meiosis. Cold Spring Harb Protoc 2017; 2017:pdb.top079855. [PMID: 28733417 DOI: 10.1101/pdb.top079855] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Meiosis is a specialized cell cycle that generates haploid gametes from diploid cells. The fission yeast Schizosaccharomyces pombe is one of the best model organisms for studying the regulatory mechanisms of meiosis. S. pombe cells, which normally grow in the haploid state, diploidize by conjugation and initiate meiosis when starved for nutrients, especially nitrogen. Following two rounds of chromosome segregation, spore formation takes place. The switch from mitosis to meiosis is controlled by a kinase, Pat1, and an RNA-binding protein, Mei2. Mei2 is also a key factor for meiosis-specific gene expression. Studies on S. pombe have offered insights into cell cycle regulation and chromosome segregation during meiosis. Here we outline the current understanding of the molecular mechanisms regulating the initiation and progression of meiosis, and introduce methods for the study of meiosis in fission yeast.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Sakuno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
9
|
Loidl J, Lorenz A. DNA double-strand break formation and repair in Tetrahymena meiosis. Semin Cell Dev Biol 2016; 54:126-34. [PMID: 26899715 DOI: 10.1016/j.semcdb.2016.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/12/2016] [Indexed: 11/18/2022]
Abstract
The molecular details of meiotic recombination have been determined for a small number of model organisms. From these studies, a general picture has emerged that shows that most, if not all, recombination is initiated by a DNA double-strand break (DSB) that is repaired in a recombinogenic process using a homologous DNA strand as a template. However, the details of recombination vary between organisms, and it is unknown which variant is representative of evolutionarily primordial meiosis or most prevalent among eukaryotes. To answer these questions and to obtain a better understanding of the range of recombination processes among eukaryotes, it is important to study a variety of different organisms. Here, the ciliate Tetrahymena thermophila is introduced as a versatile meiotic model system, which has the additional bonus of having the largest phylogenetic distance to all of the eukaryotes studied to date. Studying this organism can contribute to our understanding of the conservation and diversification of meiotic recombination processes.
Collapse
Affiliation(s)
- Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
10
|
Chi J, Mahé F, Loidl J, Logsdon J, Dunthorn M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol Biol Evol 2013; 31:660-72. [PMID: 24336924 DOI: 10.1093/molbev/mst258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To establish which meiosis genes are present in ciliates, and to look for clues as to which recombination pathways may be treaded by them, four genomes were inventoried for 11 meiosis-specific and 40 meiosis-related genes. We found that the set of meiosis genes shared by Tetrahymena thermophila, Paramecium tetraurelia, Ichthyophthirius multifiliis, and Oxytricha trifallax is consistent with the prevalence of a Mus81-dependent class II crossover pathway that is considered secondary in most model eukaryotes. There is little evidence for a canonical class I crossover pathway that requires the formation of a synaptonemal complex (SC). This gene inventory suggests that meiotic processes in ciliates largely depend on mitotic repair proteins for executing meiotic recombination. We propose that class I crossovers and SCs were reduced sometime during the evolution of ciliates. Consistent with this reduction, we provide microscopic evidence for the presence only of degenerate SCs in Stylonychia mytilus. In addition, lower nonsynonymous to synonymous mutation rates of some of the meiosis genes suggest that, in contrast to most other nuclear genes analyzed so far, meiosis genes in ciliates are largely evolving at a slower rate than those genes in fungi and animals.
Collapse
Affiliation(s)
- Jingyun Chi
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
11
|
Lukaszewicz A, Howard-Till RA, Loidl J. Mus81 nuclease and Sgs1 helicase are essential for meiotic recombination in a protist lacking a synaptonemal complex. Nucleic Acids Res 2013; 41:9296-309. [PMID: 23935123 PMCID: PMC3814389 DOI: 10.1093/nar/gkt703] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Mus81 resolvase and Sgs1 helicase have well-established roles in mitotic DNA repair. Moreover, Mus81 is part of a minor crossover (CO) pathway in the meiosis of budding yeast, plants and vertebrates. The major pathway depends on meiosis-specific synaptonemal complex (SC) formation, ZMM proteins and the MutLγ complex for CO-directed resolution of joint molecule (JM)-recombination intermediates. Sgs1 has also been implicated in this pathway, although it may mainly promote the non-CO outcome of meiotic repair. We show in Tetrahymena, that homologous chromosomes fail to separate and JMs accumulate in the absence of Mus81 or Sgs1, whereas deletion of the MutLγ-component Mlh1 does not affect meiotic divisions. Thus, our results are consistent with Mus81 being part of an essential, if not the predominant, CO pathway in Tetrahymena. Sgs1 may exert functions similar to those in other eukaryotes. However, we propose an additional role in supporting homologous CO formation by promoting homologous over intersister interactions. Tetrahymena shares the predominance of the Mus81 CO pathway with the fission yeast. We propose that in these two organisms, which independently lost the SC during evolution, the basal set of mitotic repair proteins is sufficient for executing meiotic recombination.
Collapse
Affiliation(s)
| | | | - Josef Loidl
- Department of Chromosome Biology, Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
12
|
Abstract
The paradigm that meiotic recombination and chiasmata have the same basis has been challenged, primarily for plants. High resolution genetic mapping frequently results in maps with lengths far exceeding those based on chiasma counts. In addition, recombination between specific homoeologous chromosomes derived from interspecific hybrids is sometimes much higher than can be explained by meiotic chiasma frequencies. However, almost the entire discrepancy disappears when proper care is taken of map inflation resulting from the shortcomings of the mapping algorithm and classification errors, the use of dissimilar material, and the difficulty of accurately counting chiasmata. Still, some exchanges, especially of short interstitial segments, cannot readily be explained by normal meiotic behaviour. Aberrant meiotic processes involving segment replacement or insertion can probably be excluded. Some cases of unusual recombination are somatic, possibly premeiotic exchange. For other cases, local relaxation of chiasma interference caused by small interruptions of homology disturbing synaptonemal complex formation is proposed as the cause. It would be accompanied by a preference for compensating exchanges (negative chromatid interference) resulting from asymmetry of the pairing chromatid pairs, so that one side of each pair preferentially participates in pairing. Over longer distances, the pairing face may switch, causing the normal random chromatid participation in double exchanges and the relatively low frequency of short interstitial exchanges. Key words : recombination frequency, map length, chiasmata, discrepancy, chromatid interference.
Collapse
|
13
|
Kan F, Davidson MK, Wahls WP. Meiotic recombination protein Rec12: functional conservation, crossover homeostasis and early crossover/non-crossover decision. Nucleic Acids Res 2010; 39:1460-72. [PMID: 21030440 PMCID: PMC3045620 DOI: 10.1093/nar/gkq993] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In fission yeast and other eukaryotes, Rec12 (Spo11) is thought to catalyze the formation of dsDNA breaks (DSBs) that initiate homologous recombination in meiosis. Rec12 is orthologous to the catalytic subunit of topoisomerase VI (Top6A). Guided by the crystal structure of Top6A, we engineered the rec12 locus to encode Rec12 proteins each with a single amino acid substitution in a conserved residue. Of 21 substitutions, 10 significantly reduced or abolished meiotic DSBs, gene conversion, crossover recombination and the faithful segregation of chromosomes. Critical residues map within the metal ion-binding pocket toprim (E179A, D229A, D231A), catalytic region 5Y-CAP (R94A, D95A, Y98F) and the DNA-binding interface (K201A, G202E, R209A, K242A). A subset of substitutions reduced DSBs but maintained crossovers, demonstrating crossover homeostasis. Furthermore, a strong separation of function mutation (R304A) suggests that the crossover/non-crossover decision is established early by a protein–protein interaction surface of Rec12. Fission yeast has multiple crossovers per bivalent, and chromosome segregation was robust above a threshold of about one crossover per bivalent, below which non-disjunction occurred. These results support structural and functional conservation among Rec12/Spo11/Top6A family members for the catalysis of DSBs, and they reveal how Rec12 regulates other features of meiotic chromosome dynamics.
Collapse
Affiliation(s)
- Fengling Kan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | | | | |
Collapse
|
14
|
Doll E, Molnar M, Cuanoud G, Octobre G, Latypov V, Ludin K, Kohli J. Cohesin and recombination proteins influence the G1-to-S transition in azygotic meiosis in Schizosaccharomyces pombe. Genetics 2008; 180:727-40. [PMID: 18780734 PMCID: PMC2567376 DOI: 10.1534/genetics.108.092619] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/05/2008] [Indexed: 11/18/2022] Open
Abstract
To determine whether recombination and/or sister-chromatid cohesion affect the timing of meiotic prophase events, the horsetail stage and S phase were analyzed in Schizosaccharomyces pombe strains carrying mutations in the cohesin genes rec8 or rec11, the linear element gene rec10, the pairing gene meu13, the double-strand-break formation genes rec6, rec7, rec12, rec14, rec15, and mde2, and the recombination gene dmc1. The double-mutant strains rec8 rec11 and rec8 rec12 were also assayed. Most of the single and both double mutants showed advancement of bulk DNA synthesis, start of nuclear movement (horsetail stage), and meiotic divisions by up to 2 hr. Only mde2 and dmc1 deletion strains showed wild-type timing. Contrasting behavior was observed for rec8 deletions (delayed by 1 hr) compared to a rec8 point mutation (advanced by 1 hr). An hypothesis for the role of cohesin and recombination proteins in the control of the G(1)-to-S transition is proposed. Finally, differences between azygotic meiosis and two other types of fission yeast meiosis (zygotic and pat1-114 meiosis) are discussed with respect to possible control steps in meiotic G(1).
Collapse
Affiliation(s)
- Eveline Doll
- Institute of Cell Biology, University of Berne, CH-3012 Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
15
|
Wells JL, Pryce DW, Estreicher A, Loidl J, McFarlane RJ. Linear element-independent meiotic recombination in Schizosaccharomyces pombe. Genetics 2006; 174:1105-14. [PMID: 16980386 PMCID: PMC1667095 DOI: 10.1534/genetics.106.063818] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most organisms form protein-rich, linear, ladder-like structures associated with chromosomes during early meiosis, the synaptonemal complex. In Schizosaccharomyces pombe, linear elements (LinEs) are thread-like, proteinacious chromosome-associated structures that form during early meiosis. LinEs are related to axial elements, the synaptonemal complex precursors of other organisms. Previous studies have led to the suggestion that axial structures are essential to mediate meiotic recombination. Rec10 protein is a major component of S. pombe LinEs and is required for their development. In this report we study recombination in a number of rec10 mutants, one of which (rec10-155) does not form LinEs, but is predicted to encode a truncated Rec10 protein. This mutant has levels of crossing over and gene conversion substantially higher than a rec10 null mutant (rec10-175) and forms cytologically detectable Rad51 foci indicative of meiotic recombination intermediates. These data demonstrate that while Rec10 is required for meiotic recombination, substantial meiotic recombination can occur in rec10 mutants that do not form LinEs, indicating that LinEs per se are not essential for all meiotic recombination.
Collapse
Affiliation(s)
- Jennifer L Wells
- North West Research Fund Institute, University of Wales, Bangor, UK
| | | | | | | | | |
Collapse
|
16
|
Davis L, Smith GR. The meiotic bouquet promotes homolog interactions and restricts ectopic recombination in Schizosaccharomyces pombe. Genetics 2006; 174:167-77. [PMID: 16988108 PMCID: PMC1569800 DOI: 10.1534/genetics.106.059733] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 07/06/2006] [Indexed: 11/18/2022] Open
Abstract
Chromosome architecture undergoes extensive, programmed changes as cells enter meiosis. A highly conserved change is the clustering of telomeres at the nuclear periphery to form the "bouquet" configuration. In the fission yeast Schizosaccharomyces pombe the bouquet and associated nuclear movement facilitate initial interactions between homologs. We show that Bqt2, a meiosis-specific protein required for bouquet formation, is required for wild-type levels of homolog pairing and meiotic allelic recombination. Both gene conversion and crossing over are reduced and exhibit negative interference in bqt2Delta mutants, reflecting reduced homolog pairing. While both the bouquet and nuclear movement promote pairing, only the bouquet restricts ectopic recombination (that between dispersed repetitive DNA). We discuss mechanisms by which the bouquet may prevent deleterious translocations by restricting ectopic recombination.
Collapse
Affiliation(s)
- Luther Davis
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | |
Collapse
|
17
|
Colaiácovo MP. The many facets of SC function during C. elegans meiosis. Chromosoma 2006; 115:195-211. [PMID: 16555015 DOI: 10.1007/s00412-006-0061-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 11/27/2022]
Abstract
Sexually reproducing organisms rely on meiosis for the formation of haploid gametes. This is achieved through two consecutive rounds of cell division (meiosis I and II) after one round of DNA replication. During the meiotic divisions, chromosomes face several challenges to ultimately ensure proper chromosome segregation. Unique events unfold during meiosis I to overcome these challenges. Homologous chromosomes pair, synapse, and recombine. A remarkable feature throughout this process is the formation of an evolutionarily conserved tripartite proteinaceous structure known as the synaptonemal complex (SC). It is comprised of two lateral elements, assembled along each axis of a pair of homologous chromosomes, and a central region consisting of transverse filaments bridging the gap between lateral elements. While the presence of the SC during meiosis has been appreciated now for 50 years (Moses, Biophys Biochem Cytol 2:215-218, 1956; Fawcett, J Biophys Biochem Cytol 2:403-406, 1956), its role(s) remain a matter of intense investigation. This review concentrates on studies performed in Caenorhabditis elegans, a powerful system for investigating meiosis. Studies in this organism are contributing to the unraveling of the various processes leading to the formation of the SC and the various facets of the functions it exerts throughout meiosis.
Collapse
|
18
|
Loidl J. S. pombe linear elements: the modest cousins of synaptonemal complexes. Chromosoma 2006; 115:260-71. [PMID: 16532354 DOI: 10.1007/s00412-006-0047-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 01/04/2023]
Abstract
Synaptonemal complexes (SCs) are not formed during meiotic prophase in the fission yeast, Schizosaccharomyces pombe. Instead, so-called linear elements (LinEs) are formed at the corresponding stages. LinEs are remarkable in that their number does not correspond to the number of chromosomes or bivalents and that the changes in their organisation during prophase do not evidently reflect the pairing of chromosomes. Yet, LinEs are necessary for full meiotic pairing levels and for meiotic recombination. In this review, the composition of LinEs, their evolutionary relationship to SCs and their possible functions are discussed.
Collapse
Affiliation(s)
- Josef Loidl
- Department of Chromosome Biology, University of Vienna, Rennweg 14, 1030, Vienna, Austria.
| |
Collapse
|
19
|
de Boer E, Heyting C. The diverse roles of transverse filaments of synaptonemal complexes in meiosis. Chromosoma 2006; 115:220-34. [PMID: 16523321 DOI: 10.1007/s00412-006-0057-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 01/30/2006] [Accepted: 01/30/2006] [Indexed: 10/24/2022]
Abstract
In most eukaryotes, homologous chromosomes (homologs) are closely apposed during the prophase of the first meiotic division by a ladderlike proteinaceous structure, the synaptonemal complex (SC) [Fawcett, J Biophys Biochem Cytol 2:403-406, 1956; Moses, J Biophys Biochem Cytol 2:215-218, 1956]. SCs consist of two proteinaceous axes, which each support the two sister chromatids of one homolog, and numerous transverse filaments (TFs), which connect the two axes. Organisms that assemble SCs perform meiotic recombination in the context of these structures. Although much information has accumulated about the composition of SCs and the pathways of meiotic crossing over, several questions remain about the role of SCs in meiosis, in particular, about the role of the TFs. In this review, we focus on possible role(s) of TFs. The interest in TF functions received new impulses from the recent characterization of TF-deficient mutants in a number of species. Intriguingly, the phenotypes of these mutants are very different, and a variety of TF functions appear to be hidden behind a façade of morphological conservation. However, in all TF-deficient mutants a specific class of crossovers that display interference is affected. TFs appear to create suitable preconditions for the formation of these crossovers in most species, but are most likely not directly involved in the interference process itself. Furthermore, TFs are important for full-length homolog alignment.
Collapse
Affiliation(s)
- Esther de Boer
- Botanical centre, Molecular genetics group, Wageningen University, Arboretumlaan 4, 6703 BD, Wageningen, The Netherlands
| | | |
Collapse
|
20
|
Abstract
New evidence suggests that the model plant Arabidopsis has two biochemically distinct pathways that produce genetic crossovers. Studies in several organisms have revealed that one kind of crossover regulation - crossover interference - is applied differently from species to species. Arabidopsis appears to use an interference system similar to that of budding yeast.
Collapse
Affiliation(s)
- Gregory P Copenhaver
- Department of Biology, The University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Cnudde F, Gerats T. Meiosis: inducing variation by reduction. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:321-41. [PMID: 16025405 DOI: 10.1055/s-2005-865655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A brief introduction is presented with some thought on the origin of meiosis. Subsequently, a sequential overview of the diverse processes that take place during meiosis is provided, with an eye to similarities and differences between the different eukaryotic systems. In the final part, we try to summarize the available core meiotic mutants and make a comprehensive comparison for orthologous genes between fungal, plant, and animal systems.
Collapse
Affiliation(s)
- F Cnudde
- Department of Experimental Botany, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | |
Collapse
|
22
|
Nabeshima K, Villeneuve AM, Hillers KJ. Chromosome-wide regulation of meiotic crossover formation in Caenorhabditis elegans requires properly assembled chromosome axes. Genetics 2005; 168:1275-92. [PMID: 15579685 PMCID: PMC1448768 DOI: 10.1534/genetics.104.030700] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most sexually reproducing organisms depend on the regulated formation of crossovers, and the consequent chiasmata, to accomplish successful segregation of homologous chromosomes at the meiosis I division. A robust, chromosome-wide crossover control system limits chromosome pairs to one crossover in most meioses in the nematode Caenorhabditis elegans; this system has been proposed to rely on structural integrity of meiotic chromosome axes. Here, we test this hypothesis using a mutant, him-3(me80), that assembles reduced levels of meiosis-specific axis component HIM-3 along cohesin-containing chromosome axes. Whereas pairing, synapsis, and crossing over are eliminated when HIM-3 is absent, the him-3(me80) mutant supports assembly of synaptonemal complex protein SYP-1 along some paired chromosomes, resulting in partial competence for chiasma formation. We present both genetic and cytological evidence indicating that the him-3(me80) mutation leads to an increased incidence of meiotic products with two crossovers. These results indicate that limiting the amount of a major axis component results in a reduced capacity to communicate the presence of a (nascent) crossover and/or to discourage others in response.
Collapse
Affiliation(s)
- Kentaro Nabeshima
- Department of Developmental Biology and Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
23
|
Young JA, Hyppa RW, Smith GR. Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 2005; 167:593-605. [PMID: 15238514 PMCID: PMC1470912 DOI: 10.1534/genetics.103.023762] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During meiosis DNA double-strand breaks initiate recombination in the distantly related budding and fission yeasts and perhaps in most eukaryotes. Repair of broken meiotic DNA is essential for formation of viable gametes. We report here distinct but overlapping sets of proteins in these yeasts required for formation and repair of double-strand breaks. Meiotic DNA breakage in Schizosaccharomyces pombe did not require Rad50 or Rad32, although the homologs Rad50 and Mre11 are required in Saccharomyces cerevisiae; these proteins are required for meiotic DNA break repair in both yeasts. DNA breakage required the S. pombe midmeiosis transcription factor Mei4, but the structurally unrelated midmeiosis transcription factor Ndt80 is not required for breakage in S. cerevisiae. Rhp51, Swi5, and Rad22 + Rti1 were required for full levels of DNA repair in S. pombe, as are the related S. cerevisiae proteins Rad51, Sae3, and Rad52. Dmc1 was not required for repair in S. pombe, but its homolog Dmc1 is required in the well-studied strain SK1 of S. cerevisiae. Additional proteins required in one yeast have no obvious homologs in the other yeast. The occurrence of conserved and nonconserved proteins indicates potential diversity in the mechanism of meiotic recombination and divergence of the machinery during the evolution of eukaryotes.
Collapse
Affiliation(s)
- Jennifer A Young
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
24
|
Blanton H, Sekelsky J. Unique invasions and resolutions: DNA repair proteins in meiotic recombination in Drosophila melanogaster. Cytogenet Genome Res 2005; 107:172-9. [PMID: 15467362 DOI: 10.1159/000080595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 02/06/2004] [Indexed: 11/19/2022] Open
Abstract
To ensure the accurate disjunction of homologous chromosomes during meiosis, most eukaryotes rely on physical connections called chiasmata, which form at sites of crossing over. In the absence of crossing over, homologs may segregate randomly, resulting in high frequencies of aneuploid gametes. The process of meiotic recombination poses unique problems for the cell that must be overcome to ensure normal disjunction of homologous chromosomes. How is it ensured that crossovers occur between homologous chromosomes, rather than between sister chromatids? What determines the number and location of crossovers? The functions of DNA repair proteins hold some of the answers to these questions. In this review, we discuss DNA repair proteins that function in meiotic recombination in Drosophila melanogaster. We emphasize the processes of strand invasion and Holliday junction resolution in order to shed light on the questions raised above. Also, we compare the variety of ways several eukaryotes perform these processes and the different proteins they require.
Collapse
Affiliation(s)
- H Blanton
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
25
|
Loidl J, Scherthan H. Organization and pairing of meiotic chromosomes in the ciliate Tetrahymena thermophila. J Cell Sci 2004; 117:5791-801. [PMID: 15522890 DOI: 10.1242/jcs.01504] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During meiotic prophase in the ciliate Tetrahymena thermophila micronuclei dramatically elongate and form thread-like crescents. The arrangement of the chromosomes within the crescent as well as the timing of chromosome pairing and recombination with respect to the elongation process have been subjects of ongoing debate. Here, we addressed these issues by means of fluorescence in situ hybridization, labeling of individual chromosomes by BrdU (BrdU-painting) and by immunostaining of the recombination protein, Rad51. BrdU-painting indicated that chromosomes are arranged as parallel bundles within the crescent, and telomere-directed fluorescent in situ hybridization (FISH) revealed that most if not all telomeres are assembled near one end of the developing crescent. Prior to full crescent formation, Rad51 localizes to chromatin as numerous foci. Locus-specific FISH demonstrated that close pairing of homologues only occurs in the full crescent. Meiotic DNA double-strand break formation and the initiation of recombination thus seem to precede close pairing. A synaptonemal complex was not detected. We conclude that the chromosomes adopt a polarized arrangement within the crescent, probably resembling the classical bouquet arrangement. Furthermore, we propose that the elongated shape of meiotic micronuclei promotes the parallel arrangement of chromosomes and supports the juxtaposition of homologous regions in the absence of a synaptonemal complex. Several pieces of evidence indicate the presence of one to four chiasmata per bivalent, which would call for crossover interference to explain regular bivalent formation in spite of this low mean number. Tetrahymena might, therefore, pose a case of interference in the absence of a synaptonemal complex.
Collapse
Affiliation(s)
- Josef Loidl
- Institute of Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | | |
Collapse
|
26
|
Ding DQ, Yamamoto A, Haraguchi T, Hiraoka Y. Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev Cell 2004; 6:329-41. [PMID: 15030757 DOI: 10.1016/s1534-5807(04)00059-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 01/24/2004] [Accepted: 01/26/2004] [Indexed: 10/26/2022]
Abstract
Pairing of homologous chromosomes is important for homologous recombination and correct chromosome segregation during meiosis. It has been proposed that telomere clustering, nuclear oscillation, and recombination during meiotic prophase facilitate homologous chromosome pairing in fission yeast. Here we examined the contributions of these chromosomal events to homologous chromosome pairing, by directly observing the dynamics of chromosomal loci in living cells of fission yeast. Homologous loci exhibited a dynamic process of association and dissociation during the time course of meiotic prophase. Lack of nuclear oscillation reduced association frequency for both centromeric and arm regions of the chromosome. Lack of telomere clustering or recombination reduced association frequency at arm regions, but not significantly at centromeric regions. Our results indicate that homologous chromosomes are spatially aligned by oscillation of telomere-bundled chromosomes and physically linked by recombination at chromosome arm regions; this recombination is not required for association of homologous centromeres.
Collapse
Affiliation(s)
- Da-Qiao Ding
- CREST Research Project, Kansai Advanced Research Center, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | | | | | | |
Collapse
|
27
|
Abstract
A central event in sexual reproduction is the reduction in chromosome number that occurs at the meiosis I division. Most eukaryotes rely on crossing over between homologs, and the resulting chiasmata, to direct meiosis I chromosome segregation, yet make very few crossovers per chromosome pair. This indicates that meiotic recombination must be tightly regulated to ensure that each chromosome pair enjoys the crossover necessary to ensure correct segregation. Here, we investigate control of meiotic crossing over in Caenorhabditis elegans, which averages only one crossover per chromosome pair per meiosis, by constructing genetic maps of end-to-end fusions of whole chromosomes. Fusion of chromosomes removes the requirement for a crossover in each component chromosome segment and thereby reveals a propensity to restrict the number of crossovers such that pairs of fusion chromosomes composed of two or even three whole chromosomes enjoy but a single crossover in the majority of meioses. This regulation can operate over physical distances encompassing half the genome. The meiotic behavior of heterozygous fusion chromosomes further suggests that continuous meiotic chromosome axes, or structures that depend on properly assembled axes, may be important for crossover regulation.
Collapse
Affiliation(s)
- Kenneth J Hillers
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
28
|
Abstract
The double Holliday junction (dHJ) is generally regarded to be a key intermediate of meiotic recombination, whose resolution is critical for the formation of crossover recombinants. In fission yeast, the Mus81-Eme1 endonuclease has been implicated in resolving dHJs. Consistent with this role, we show that Mus81-Eme1 is required for generating meiotic crossovers. However, purified Mus81-Eme1 prefers to cleave junctions that mimic those formed during the transition from double-strand break to dHJ. Crucially, these junctions are cleaved by Mus81-Eme1 in precisely the right orientation to guarantee the formation of a crossover every time. These data demonstrate how crossovers could arise without forming or resolving dHJs using an enzyme that is widely conserved amongst eukaryotes.
Collapse
Affiliation(s)
- Fekret Osman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
29
|
Molnar M, Doll E, Yamamoto A, Hiraoka Y, Kohli J. Linear element formation and their role in meiotic sister chromatid cohesion and chromosome pairing. J Cell Sci 2003; 116:1719-31. [PMID: 12665553 DOI: 10.1242/jcs.00387] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fission yeast does not form synaptonemal complexes in meiotic prophase. Instead, linear elements appear that resemble the axial cores of other eukaryotes. They have been proposed to be minimal structures necessary for proper meiotic chromosome functions. We examined linear element formation in meiotic recombination deficient mutants. The rec12, rec14 and meu13 mutants showed altered linear element formation. Examination of rec12 and other mutants deficient in the initiation of meiotic recombination revealed that occurrence of meiosis-specific DNA breaks is not a precondition for the formation of linear elements. The rec11 and rec8 mutants exhibited strongly impaired linear elements with morphologies specific for these meiotic cohesin mutants. The rec10 and rec16/rep1 mutants lack linear elements completely. The region specificity of loss of recombination in the rec8, rec10 and rec11 mutants can be explained by their defects in linear element formation. Investigation of the rec10 mutant showed that linear elements are basically dispensable for sister chromatid cohesion, but contribute to full level pairing of homologous chromosomes.
Collapse
Affiliation(s)
- Monika Molnar
- CREST Research Project, Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492, Japan
| | | | | | | | | |
Collapse
|
30
|
Shinohara M, Sakai K, Shinohara A, Bishop DK. Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Genetics 2003; 163:1273-86. [PMID: 12702674 PMCID: PMC1462529 DOI: 10.1093/genetics/163.4.1273] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two RecA-like recombinases, Rad51 and Dmc1, function together during double-strand break (DSB)-mediated meiotic recombination to promote homologous strand invasion in the budding yeast Saccharomyces cerevisiae. Two partially redundant proteins, Rad54 and Tid1/Rdh54, act as recombinase accessory factors. Here, tetrad analysis shows that mutants lacking Tid1 form four-viable-spore tetrads with levels of interhomolog crossover (CO) and noncrossover recombination similar to, or slightly greater than, those in wild type. Importantly, tid1 mutants show a marked defect in crossover interference, a mechanism that distributes crossover events nonrandomly along chromosomes during meiosis. Previous work showed that dmc1Delta mutants are strongly defective in strand invasion and meiotic progression and that these defects can be partially suppressed by increasing the copy number of RAD54. Tetrad analysis is used to show that meiotic recombination in RAD54-suppressed dmc1Delta cells is similar to that in tid1; the frequency of COs and gene conversions is near normal, but crossover interference is defective. These results support the proposal that crossover interference acts at the strand invasion stage of recombination.
Collapse
Affiliation(s)
- Miki Shinohara
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Homologous recombination is essential during meiosis in most sexually reproducing organisms. In budding yeast, and most likely in other organisms as well, meiotic recombination proceeds via the formation and repair of DNA double-strand breaks (DSBs). These breaks appear to be formed by the Spo11 protein, with assistance from a large number of other gene products, by a topoisomerase-like transesterase mechanism. Recent studies in fission yeast, multicellular fungi, flies, worms, plants, and mammals indicate that the role of Spo11 in meiotic recombination initiation is highly conserved. This chapter reviews the properties of Spo11 and the other gene products required for meiotic DSB formation in a number of organisms and discusses ways in which recombination initiation is coordinated with other events occurring in the meiotic cell.
Collapse
Affiliation(s)
- S Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, and Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| |
Collapse
|
32
|
Arkhipova IR, Morrison HG. Three retrotransposon families in the genome of Giardia lamblia: two telomeric, one dead. Proc Natl Acad Sci U S A 2001; 98:14497-502. [PMID: 11734649 PMCID: PMC64710 DOI: 10.1073/pnas.231494798] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transposable elements inhabiting eukaryotic genomes are generally regarded either as selfish DNA, which is selectively neutral to the host organism, or as parasitic DNA, deleterious to the host. Thus far, the only agreed-upon example of beneficial eukaryotic transposons is provided by Drosophila telomere-associated retrotransposons, which transpose directly to the chromosome ends and thereby protect them from degradation. This article reports the transposon content of the genome of the protozoan Giardia lamblia, one of the earliest-branching eukaryotes. A total of three non-long terminal repeat retrotransposon families have been identified, two of which are located at the ends of chromosomes, and the third one contains exclusively dead copies with multiple internal deletions, nucleotide substitutions, and frame shifts. No other reverse transcriptase- or transposase-related sequences were found. Thus, the entire genome of this protozoan, which is not known to reproduce sexually, contains only retrotransposons that are either confined to telomeric regions and possibly beneficial, or inactivated and completely nonfunctional.
Collapse
Affiliation(s)
- I R Arkhipova
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
33
|
Abstract
The meiotic mutant c(3)G (crossover suppressor on 3 of Gowen) abolishes both synaptonemal complex (SC) formation and meiotic recombination, whereas mutations in the mei-W68 and mei-P22 genes prevent recombination but allow normal SC to form. These data, as well as a century of cytogenetic studies, support the argument that meiotic recombination between homologous chromosomes in Drosophila females requires synapsis and SC formation. We have cloned the c(3)G gene and shown that it encodes a protein that is structurally similar to SC proteins from yeast and mammals. Immunolocalization of the C(3)G protein, as well as the analysis of a C(3)G-eGFP expression construct, reveals that C(3)G is present in a thread-like pattern along the lengths of chromosomes in meiotic prophase, consistent with a role as an SC protein present on meiotic bivalents. The availability of a marker for SC in Drosophila allowed the investigation of the extent of synapsis in exchange-defective mutants. These studies indicate that SC formation is impaired in certain meiotic mutants and that the synaptic defect correlates with the exchange defects. Moreover, the observation of interference among the residual exchanges in these mutant oocytes implies that complete SC formation is not required for crossover interference in Drosophila.
Collapse
Affiliation(s)
- S L Page
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
34
|
Cohen PE, Pollard JW. Regulation of meiotic recombination and prophase I progression in mammals. Bioessays 2001; 23:996-1009. [PMID: 11746216 DOI: 10.1002/bies.1145] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Meiosis is the process by which diploid germ cells divide to produce haploid gametes for sexual reproduction. The process is highly conserved in eukaryotes, however the recent availability of mouse models for meiotic recombination has revealed surprising regulatory differences between simple unicellular organisms and those with increasingly complex genomes. Moreover, in these higher eukaryotes, the intervention of physiological and sex-specific factors may also influence how meiotic recombination and progression are monitored and regulated. This review will focus on the recent studies involving mouse mutants for meiosis, and will highlight important differences between traditional model systems for meiosis (such as yeast) and those involving more complex cellular, physiological and genetic criteria.
Collapse
Affiliation(s)
- P E Cohen
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | |
Collapse
|
35
|
Pelttari J, Hoja MR, Yuan L, Liu JG, Brundell E, Moens P, Santucci-Darmanin S, Jessberger R, Barbero JL, Heyting C, Höög C. A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol Cell Biol 2001; 21:5667-77. [PMID: 11463847 PMCID: PMC87287 DOI: 10.1128/mcb.21.16.5667-5677.2001] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Accepted: 05/07/2001] [Indexed: 11/20/2022] Open
Abstract
The behavior of meiotic chromosomes differs in several respects from that of their mitotic counterparts, resulting in the generation of genetically distinct haploid cells. This has been attributed in part to a meiosis-specific chromatin-associated protein structure, the synaptonemal complex. This complex consist of two parallel axial elements, each one associated with a pair of sister chromatids, and a transverse filament located between the synapsed homologous chromosomes. Recently, a different protein structure, the cohesin complex, was shown to be associated with meiotic chromosomes and to be required for chromosome segregation. To explore the functions of the two different protein structures, the synaptonemal complex and the cohesin complex, in mammalian male meiotic cells, we have analyzed how absence of the axial element affects early meiotic chromosome behavior. We find that the synaptonemal complex protein 3 (SCP3) is a main determinant of axial-element assembly and is required for attachment of this structure to meiotic chromosomes, whereas SCP2 helps shape the in vivo structure of the axial element. We also show that formation of a cohesin-containing chromosomal core in meiotic nuclei does not require SCP3 or SCP2. Our results also suggest that the cohesin core recruits recombination proteins and promotes synapsis between homologous chromosomes in the absence of an axial element. A model for early meiotic chromosome pairing and synapsis is proposed.
Collapse
Affiliation(s)
- J Pelttari
- Department of Cell and Molecular Biology and Center for Genomics Research, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Molnar M, Bähler J, Kohli J, Hiraoka Y. Live observation of fission yeast meiosis in recombination-deficient mutants. J Cell Sci 2001; 114:2843-53. [PMID: 11683417 DOI: 10.1242/jcs.114.15.2843] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regular segregation of homologous chromosomes during meiotic divisions is essential for the generation of viable progeny. In recombination-proficient organisms, chromosome disjunction at meiosis I generally occurs by chiasma formation between the homologs (chiasmate meiosis). We have studied meiotic stages in living rec8 and rec7 mutant cells of fission yeast, with special attention to prophase and the first meiotic division. Both rec8 and rec7 are early recombination mutants, and in rec7 mutants, chromosome segregation at meiosis I occurs without any recombination (achiasmate meiosis). Both mutants showed distinct irregularities in nuclear prophase movements. Additionally, rec7 showed an extended first division of variable length and with single chromosomes changing back and forth between the cell poles. Two other early recombination deficient mutants (rec14 and rec15) showed very similar phenotypes to rec7 during the first meiotic division, and the fidelity of achiasmate chromosome segregation slightly exceeded the expected random level. We discuss possible regulatory mechanisms of fission yeast to deal with achiasmate chromosome segregation.
Collapse
Affiliation(s)
- M Molnar
- Institute of Cell Biology, University of Bern, Switzerland
| | | | | | | |
Collapse
|
37
|
Tarsounas M, Moens PB. Checkpoint and DNA-repair proteins are associated with the cores of mammalian meiotic chromosomes. Curr Top Dev Biol 2001; 51:109-34. [PMID: 11236712 DOI: 10.1016/s0070-2153(01)51004-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Meiotic checkpoints are manifested through protein complexes capable of detecting an abnormality in chromosome metabolism and signaling it to effector molecules that subsequently delay or arrest the progression of meiosis. Some checkpoints act during the first meiotic prophase to monitor the repair of chromosomal DSBs, predominantly by meiotic recombination, or to ensure the correct establishment of synapsis and its well-timed dissolution. In mammals, a number of checkpoint and repair proteins localize to the meiotic chromosomal cores, sometimes in the context of the synaptonemal complex (SC). Here we discuss possible functions of these proteins in the accomplishment of meiotic recombination and normal progression of the meiotic pathway. Also, we present arguments for a structural role of cores and SCs in the assembly of the repair and checkpoint protein complexes on the chromosomes.
Collapse
Affiliation(s)
- M Tarsounas
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | | |
Collapse
|
38
|
Tzung KW, Williams RM, Scherer S, Federspiel N, Jones T, Hansen N, Bivolarevic V, Huizar L, Komp C, Surzycki R, Tamse R, Davis RW, Agabian N. Genomic evidence for a complete sexual cycle in Candida albicans. Proc Natl Acad Sci U S A 2001; 98:3249-53. [PMID: 11248064 PMCID: PMC30639 DOI: 10.1073/pnas.061628798] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2000] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is a diploid fungus that has become a medically important opportunistic pathogen in immunocompromised individuals. We have sequenced the C. albicans genome to 10.4-fold coverage and performed a comparative genomic analysis between C. albicans and Saccharomyces cerevisiae with the objective of assessing whether Candida possesses a genetic repertoire that could support a complete sexual cycle. Analyzing over 500 genes important for sexual differentiation in S. cerevisiae, we find many homologues of genes that are implicated in the initiation of meiosis, chromosome recombination, and the formation of synaptonemal complexes. However, others are striking in their absence. C. albicans seems to have homologues of all of the elements of a functional pheromone response pathway involved in mating in S. cerevisiae but lacks many homologues of S. cerevisiae genes for meiosis. Other meiotic gene homologues in organisms ranging from filamentous fungi to Drosophila melanogaster and Caenorhabditis elegans were also found in the C. albicans genome, suggesting potential alternative mechanisms of genetic exchange.
Collapse
Affiliation(s)
- K W Tzung
- Graduate Program in Oral Biology, Department of Stomatology, University of California, San Francisco, CA 94143-0422, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Molnar M, Parisi S, Kakihara Y, Nojima H, Yamamoto A, Hiraoka Y, Bozsik A, Sipiczki M, Kohli J. Characterization of rec7, an early meiotic recombination gene in Schizosaccharomyces pombe. Genetics 2001; 157:519-32. [PMID: 11156975 PMCID: PMC1461520 DOI: 10.1093/genetics/157.2.519] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
rec7 is involved in intra- and intergenic meiotic recombination in all tested regions of the genome of the fission yeast Schizosaccharomyces pombe. Segregational analysis in a rec7 gene disruption mutant revealed frequent occurrence of two-spored asci. Spores giving rise to diploid colonies were shown to derive from skipping of the second meiotic division. Nondisjunction of homologous chromosomes at the first meiotic division was also frequent. The cytological structures and processes, such as formation of linear elements, pairing of homologous chromosomes, and clustering of telomeres and centromeres, are regular in the mutant. Northern blot experiments revealed meiosis-specific expression of rec7. Screening of a meiotic cDNA library also identified transcripts from the opposite strand in the rec7 region. A Rec7-GFP fusion protein was localized in the nucleus of whole cells before karyogamy, during prophase, and after meiosis I. On spreads of prophase nuclei approximately 50 foci of Rec7-GFP were counted. Some of the observed phenotypes of the disruption mutant and the N-terminal sequence homology suggest that Rec7p is a functional homolog of Rec114p of Saccharomyces cerevisiae. The observed phenotypes of the disruption and the appearance of Rec7-GFP in mating haploid cells and after meiosis I are consistent with Rec7p functions before, during, and after meiotic prophase.
Collapse
Affiliation(s)
- M Molnar
- Institute of Cell Biology, University of Bern, Baltzer-Str.4, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Faris JD, Haen KM, Gill BS. Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 2000; 154:823-35. [PMID: 10655233 PMCID: PMC1460934 DOI: 10.1093/genetics/154.2.823] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Physical mapping of wheat chromosomes has revealed small chromosome segments of high gene density and frequent recombination interspersed with relatively large regions of low gene density and infrequent recombination. We constructed a detailed genetic and physical map of one highly recombinant region on the long arm of chromosome 5B. This distally located region accounts for 4% of the physical size of the long arm and at least 30% of the recombination along the entire chromosome. Multiple crossovers occurred within this region, and the degree of recombination is at least 11-fold greater than the genomic average. Characteristics of the region such as gene order and frequency of recombination appear to be conserved throughout the evolution of the Triticeae. The region is more prone to chromosome breakage by gametocidal gene action than gene-poor regions, and evidence for genomic instability was implied by loss of gene collinearity for six loci among the homeologous regions. These data suggest that a unique level of chromatin organization exists within gene-rich recombination hot spots. The many agronomically important genes in this region should be accessible by positional cloning.
Collapse
Affiliation(s)
- J D Faris
- Wheat Genetics Resource Center and Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
41
|
Krawchuk MD, DeVeaux LC, Wahls WP. Meiotic chromosome dynamics dependent upon the rec8(+), rec10(+) and rec11(+) genes of the fission yeast Schizosaccharomyces pombe. Genetics 1999; 153:57-68. [PMID: 10471700 PMCID: PMC1460733 DOI: 10.1093/genetics/153.1.57] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During meiosis homologous chromosomes replicate once, pair, experience recombination, and undergo two rounds of segregation to produce haploid meiotic products. The rec8(+), rec10(+), and rec11(+) genes of the fission yeast Schizosaccharomyces pombe exhibit similar specificities for meiotic recombination and rec8(+) is required for sister chromatid cohesion and homolog pairing. We applied cytological and genetic approaches to identify potential genetic interactions and to gauge the fidelity of meiotic chromosome segregation in the mutants. The rec8(+) gene was epistatic to rec10(+) and to rec11(+), but there was no clear epistatic relationship between rec10(+) and rec11(+). Reciprocal (crossover) recombination in the central regions of all three chromosomes was compromised in the rec mutants, but recombination near the telomeres was nearly normal. Each of the mutants also exhibited a high rate of aberrant segregation for all three chromosomes. The rec8 mutations affected mainly meiosis I segregation. Remarkably, the rec10 and rec11 mutations, which compromised recombination during meiosis I, affected mainly meiosis II segregation. We propose that these genes encode regulators or components of a "meiotic chromatid cohesion" pathway involved in establishing, maintaining, and appropriately releasing meiotic interactions between chromosomes. A model of synergistic interactions between sister chromatid cohesion and crossover position suggests how crossovers and cohesion help ensure the proper segregation of chromosomes in each of the meiotic divisions.
Collapse
MESH Headings
- Aneuploidy
- Centromere/genetics
- Chromosome Segregation/genetics
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/metabolism
- Epistasis, Genetic
- Fungal Proteins/genetics
- Fungal Proteins/physiology
- Genes, Essential
- Genes, Fungal
- Genotype
- Meiosis/genetics
- Models, Genetic
- Mutation
- Phenotype
- Phosphoproteins
- Recombination, Genetic/genetics
- Schizosaccharomyces/genetics
- Schizosaccharomyces/physiology
- Schizosaccharomyces pombe Proteins
- Sequence Homology, Nucleic Acid
- Spores, Fungal/genetics
- Spores, Fungal/growth & development
Collapse
Affiliation(s)
- M D Krawchuk
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
42
|
Zwierzykowski Z, Lukaszewski AJ, Naganowska B, Lesniewska A. The pattern of homoeologous recombination in triploid hybrids of Lolium multiflorum with Festuca pratensis. Genome 1999. [DOI: 10.1139/g98-169] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homoeologous chromosomes of Lolium-Festuca hybrids are capable of frequent meiotic pairing and recombination. The frequency and distribution of recombination was studied by genomic in situ hybridization in backcross progenies of reciprocal triploid hybrids of Lolium multiflorum with Festuca pratensis. Significant differences in the male transmission of the parental and translocated chromosomes were observed depending on the cytoplasm of the F1 hybrids and the ploidy level of the female test cross partner. The frequency of intergeneric translocations in the progeny indicated that, on average, there must have been at least 4.5 homoeologous arms paired in the F1 hybrids; the actual frequency might have been higher because of pre- or post-zygotic selection against the F. pratensis chromatin, which probably eliminated certain gametes with Festuca-Lolium translocations. Both parental species are known for localized distal chiasmata, but the intergeneric translocation breakpoints were distributed along the entire lengths of the chromosome arms. The change in the distribution of homoeologous recombination might have been related to different pairing initiation of homologues and homoeologues. It probably resulted from allocation of additional chiasmata to chromosome arms and produced a net increase in recombination.Key words: homoeologous exchanges, Lolium-Festuca, translocations, recombination.
Collapse
|
43
|
Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63:349-404. [PMID: 10357855 PMCID: PMC98970 DOI: 10.1128/mmbr.63.2.349-404.1999] [Citation(s) in RCA: 1670] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
44
|
Abstract
The leptotene/zygotene transition of meiosis, as defined by classical cytological studies, is the period when homologous chromosomes, already being discernible individualized entities, begin to be close together or touching over portions of their lengths. This period also includes the bouquet stage: Chromosome ends, which have already become integral components of the inner nuclear membrane, move into a polarized configuration, along with other nuclear envelope components. Chromosome movements, active or passive, also occur. The detailed nature of interhomologue interactions during this period, with special emphasis on the involvement of chromosome ends, and the overall role for meiosis and recombination of chromosome movement and, especially, the bouquet stage are discussed.
Collapse
Affiliation(s)
- D Zickler
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France.
| | | |
Collapse
|
45
|
Yamashita A, Watanabe Y, Nukina N, Yamamoto M. RNA-assisted nuclear transport of the meiotic regulator Mei2p in fission yeast. Cell 1998; 95:115-23. [PMID: 9778252 DOI: 10.1016/s0092-8674(00)81787-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Fission yeast Mei2p is an RNA-binding protein required for both premeiotic DNA synthesis and meiosis I. Mei2p binds to a polyadenylated RNA molecule, meiRNA, loss of which blocks meiosis I. Mei2p forms a dot in meiotic prophase nuclei. Here, we show that meiRNA is required for the nuclear localization of Mei2p and is detectable in the dot. However, Mei2p carrying a nuclear localization signal can produce a nuclear dot and promote meiosis I in the absence of meiRNA. Mei2p expressed in cultured mammalian cells stays in the cytoplasm, but it accumulates in the nucleolus if meiRNA is coexpressed. These results indicate that meiRNA contributes to the promotion of meiosis I exclusively as a cofactor that assists nuclear transport of Mei2p.
Collapse
Affiliation(s)
- A Yamashita
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Japan
| | | | | | | |
Collapse
|
46
|
Fox ME, Smith GR. Control of meiotic recombination in Schizosaccharomyces pombe. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:345-78. [PMID: 9752725 DOI: 10.1016/s0079-6603(08)60831-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Homologous recombination occurs at high frequency during meiosis and is essential for the proper segregation of chromosomes and the generation of genetic diversity. Meiotic recombination is controlled in numerous ways. In the fission yeast Schizosaccharomyces pombe nutritional starvation induces meiosis and high-level expression of many genes, including numerous recombination (rec) genes, whose products are required for recombination. Accompanying the two meiotic divisions are profound changes in nuclear and chromosomal structure and movement, which may play an important role in meiotic recombination. Although recombination occurs throughout the genome, it occurs at high frequency in some intervals (hotspots) and at low frequency in others (coldspots). The well-characterized hotspot M26 is activated by the Mts1/Mts2 protein; this site and its binding proteins interact with the local chromosomal structure to enhance recombination. A coldspot between the silent mating-type loci is repressed by identified proteins, which may also alter local chromatin. We discuss in detail the rec genes and the possible functions of their products, some but not all of which share homology with other identified proteins. Although some of the rec gene products are required for recombination throughout the genome, others demonstrate regional specificity and are required in certain genomic regions but not in others. Throughout the review contrasts are made with meiotic recombination in the more thoroughly studied budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M E Fox
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
47
|
Affiliation(s)
- G S Roeder
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103 USA.
| |
Collapse
|
48
|
Osman F, Subramani S. Double-strand break-induced recombination in eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 58:263-99. [PMID: 9308369 DOI: 10.1016/s0079-6603(08)60039-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genetic recombination is of fundamental importance for a wide variety of biological processes in eukaryotic cells. One of the major questions in recombination relates to the mechanism by which the exchange of genetic information is initiated. In recent years, DNA double strand breaks (DSBs) have emerged as an important lesion that can initiate and stimulate meiotic and mitotic homologous recombination. In this review, we examine the models by which DSBs induce recombination, describe the types of recombination events that DSBs stimulate, and compare the genetic control of DSB-induced mitotic recombination in budding and fission yeasts.
Collapse
Affiliation(s)
- F Osman
- Department of Biochemistry, University of Oxford, United Kingdom
| | | |
Collapse
|
49
|
Tarsounas M, Pearlman RE, Gasser PJ, Park MS, Moens PB. Protein-protein interactions in the synaptonemal complex. Mol Biol Cell 1997; 8:1405-14. [PMID: 9285814 PMCID: PMC276165 DOI: 10.1091/mbc.8.8.1405] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In mammalian systems, an approximately M(r) 30,000 Cor1 protein has been identified as a major component of the meiotic prophase chromosome cores, and a M(r) 125,000 Syn1 protein is present between homologue cores where they are synapsed and form the synaptonemal complex (SC). Immunolocalization of these proteins during meiosis suggests possible homo- and heterotypic interactions between the two as well as possible interactions with yet unrecognized proteins. We used the two-hybrid system in the yeast Saccharomyces cerevisiae to detect possible protein-protein associations. Segments of hamsters Cor1 and Syn1 proteins were tested in various combinations for homo- and heterotypic interactions. In the cause of Cor1, homotypic interactions involve regions capable of coiled-coil formation, observation confirmed by in vitro affinity coprecipitation experiments. The two-hybrid assay detects no interaction of Cor1 protein with central and C-terminal fragments of Syn1 protein and no homotypic interactions involving these fragments of Syn1. Hamster Cor1 and Syn1 proteins both associate with the human ubiquitin-conjugation enzyme Hsubc9 as well as with the hamster Ubc9 homologue. The interactions between SC proteins and the Ubc9 protein may be significant for SC disassembly, which coincides with the repulsion of homologs by late prophase I, and also for the termination of sister centromere cohesiveness at anaphase II.
Collapse
Affiliation(s)
- M Tarsounas
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
50
|
Abstract
A physical connection between homologs is required for reductional segregation at the first division of meiosis. This connection is usually provided by one or a few well-spaced crossovers. A speculative overview of processes leading to formation of these crossovers is presented.
Collapse
Affiliation(s)
- N Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|