1
|
Skopenkova VV, Egorova TV, Bardina MV. Muscle-Specific Promoters for Gene Therapy. Acta Naturae 2021; 13:47-58. [PMID: 33959386 PMCID: PMC8084301 DOI: 10.32607/actanaturae.11063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Many genetic diseases that are responsible for muscular disorders have been described to date. Gene replacement therapy is a state-of-the-art strategy used to treat such diseases. In this approach, the functional copy of a gene is delivered to the affected tissues using viral vectors. There is an urgent need for the design of short, regulatory sequences that would drive a high and robust expression of a therapeutic transgene in skeletal muscles, the diaphragm, and the heart, while exhibiting limited activity in non-target tissues. This review focuses on the development and improvement of muscle-specific promoters based on skeletal muscle α-actin, muscle creatine kinase, and desmin genes, as well as other genes expressed in muscles. The current approaches used to engineer synthetic muscle-specific promoters are described. Other elements of the viral vectors that contribute to tissue-specific expression are also discussed. A special feature of this review is the presence of up-to-date information on the clinical and preclinical trials of gene therapy drug candidates that utilize muscle-specific promoters.
Collapse
Affiliation(s)
- V. V. Skopenkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - T. V. Egorova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
| | - M. V. Bardina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
2
|
Changes in Skeletal Muscle and Body Weight on Sleeping Beauty Transposon-Mediated Transgenic Mice Overexpressing Pig mIGF-1. Biochem Genet 2018; 56:341-355. [PMID: 29470680 PMCID: PMC6028850 DOI: 10.1007/s10528-018-9848-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/10/2018] [Indexed: 02/03/2023]
Abstract
Insulin-like growth factor (IGF-I) is an important growth factor in mammals, but the functions of the local muscle-specific isoform of insulin-like growth factor 1 (mIGF-1) to skeletal muscle development have rarely been reported. To determine the effect of pig mIGF-1 on body development and muscle deposition in vivo and to investigate the molecular mechanisms, the transgenic mouse model was generated which can also provide experimental data for making transgenic pigs with pig endogenous IGF1 gene. We constructed a skeletal muscle-specific expression vector using 5′- and 3′-regulatory regions of porcine skeletal α-actin gene. The expression cassette was flanked with Sleeping Beauty transposon (SB)-inverted terminal repeats. The recombinant vector could strongly drive enhanced green fluorescence protein (EGFP) reporter gene expression specifically in mouse myoblast cells and porcine fetal fibroblast cells, but not in porcine kidney cells. The EGFP level driven by α-actin regulators was significantly stronger than that driven by cytomegalovirus promoters. These results indicated that the cloned α-actin regulators could effectively drive specific expression of foreign genes in myoblasts, and the skeletal muscle-specific expression vector mediated with SB transposon was successfully constructed. To validate the effect of pig mIGF-1 on skeletal muscle growth, transgenic mice were generated by pronuclear microinjection of SB-mediated mIGF-1 skeletal expression vector and SB transposase-expressing plasmid. The transgene-positive rates of founder mice and the next-generation F1 mice were 30% (54/180) and 90.1% (64/71), respectively. The mIGF-1 gene could be expressed in skeletal muscle specifically. The levels of mRNA and protein in transgenic mice were 15 and 3.5 times higher, respectively, than in wild-type mice. The body weights of F1 transgenic mice were significantly heavier than wild-type mice from the age of 8 weeks onwards. The paraffin-embedded sections of gastrocnemius from 16-week-old transgenic male mice showed that the numbers of myofibers per unit were increased in comparison with those in the wild-type mice. mIGF-1 overexpression in mice skeletal muscle may promote myofibers hypertrophy and muscle production, and increased the average body weight of adult mice. Transgenic mice models can be generated by the mediation of SB transposon with high transgene efficiency.
Collapse
|
3
|
Bertola LD, Ott EB, Griepsma S, Vonk FJ, Bagowski CP. Developmental expression of the alpha-skeletal actin gene. BMC Evol Biol 2008; 8:166. [PMID: 18518953 PMCID: PMC2443135 DOI: 10.1186/1471-2148-8-166] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 06/02/2008] [Indexed: 01/01/2023] Open
Abstract
Background Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins. Results We present here a model for the evolution of the genomic organization of alpha-skeletal actin and by molecular modeling, illustrate the structural differences of actin proteins of different phyla. We further describe and compare alpha-skeletal actin expression in two developmental stages of five vertebrate species (mouse, chicken, snake, salamander and fish). Our findings confirm that alpha-skeletal actin is expressed in skeletal muscle and in the heart of all five species. In addition, we identify many novel non-muscular expression domains including several in the central nervous system. Conclusion Our results show that the high sequence homology of alpha-skeletal actins is reflected by similarities of their 3 dimensional protein structures, as well as by conserved gene expression patterns during vertebrate development. Nonetheless, we find here important differences in 3D structures, in gene architectures and identify novel expression domains for this structural and functional important gene.
Collapse
Affiliation(s)
- Laura D Bertola
- Institute of Biology, Department of Integrative Zoology University of Leiden, 2333 AL Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
4
|
Shavlakadze T, Boswell JM, Burt DW, Asante EA, Tomas FM, Davies MJ, White JD, Grounds MD, Goddard C. Rskalpha-actin/hIGF-1 transgenic mice with increased IGF-I in skeletal muscle and blood: impact on regeneration, denervation and muscular dystrophy. Growth Horm IGF Res 2006; 16:157-73. [PMID: 16716629 DOI: 10.1016/j.ghir.2005.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 11/08/2005] [Accepted: 11/09/2005] [Indexed: 10/24/2022]
Abstract
Human IGF-I was over-expressed in skeletal muscles of C57/BL6xCBA mice under the control of the rat skeletal alpha-actin gene promoter. RT-PCR verified expression of the transgene in skeletal muscle but not in the liver of 1- and 21-day old heterozygote transgenic mice. The concentration of endogenous mouse IGF-I, measured by an immunoassay which does not detect human IGF-I, was not significantly different between transgenic mice and wild-type littermates (9.5 +/- 0.8 and 13.3 +/- 1.9 ng/g in muscle; 158.3 +/- 18.6 and 132.9 +/- 33.1 ng/ml in plasma, respectively). In contrast, quantitation with antibodies to human IGF-I showed an increase in IGF-I of about 100 ng/ml in plasma and 150 ng/g in muscle of transgenic mice at 6 months of age. Transgenic males, compared to their age matched wild-type littermates, had a significantly higher body weight (38.6 +/- 0.53 g vs. 35.8 +/- 0.64 g at 6 months of age; P < 0.001), dry fat-free carcass mass (5.51 +/- 0.085 vs. 5.08 +/- 0.092 g; P < 0.001) and myofibrillar protein mass (1.62 +/- 0.045 vs. 1.49 +/- 0.048 g; P < 0.05), although the fractional content of fat in the carcass was lower (167 +/- 7.0 vs. 197 +/- 7.7 g/kg wet weight) in transgenic animals. There was no evidence of muscle hypertrophy and no change in the proportion of slow type I myofibres in the limb muscles of Rskalpha-actin/hIGF-I transgenic mice at 3 or 6 months of age. Phenotypic changes in Rskalpha-actin/hIGF-I mice are likely to be due to systemic as well as autocrine/paracrine effects of overproduction of IGF-I due to expression of the human IGF-I transgene. The effect of muscle specific over-expression of Rskalpha-actin/hIGF-I transgene was tested on: (i) muscle regeneration in auto-transplanted whole muscle grafts; (ii) myofibre atrophy following sciatic nerve transection; and (iii) sarolemmal damage and myofibre necrosis in dystrophic mdx muscle. No beneficial effect of muscle specific over-expression of Rskalpha-actin/hIGF-I transgene was seen in these three experimental models.
Collapse
Affiliation(s)
- T Shavlakadze
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, Perth.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shavlakadze T, Winn N, Rosenthal N, Grounds MD. Reconciling data from transgenic mice that overexpress IGF-I specifically in skeletal muscle. Growth Horm IGF Res 2005; 15:4-18. [PMID: 15701567 DOI: 10.1016/j.ghir.2004.11.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 11/26/2022]
Abstract
Transgenic mice that overexpress insulin-like growth factor-1 (IGF-I) specifically in skeletal muscle have generated much information about the role of this factor for muscle growth and remodelling and provide insight for therapeutic applications of IGF-I for different pathological states and ageing. However, difficulties arise when attempting to critically compare the significance of data obtained in vivo by using different genetically engineered mouse lines and various experimental models. Complications arise due to complexity of the IGF-I system, since multiple transcripts of the IGF-I gene encode different isoforms generated by alternate promoter usage, differential splicing and post-translational modification, and how IGF-I gene expression relates to its diverse autocrine, paracrine and endocrine modes of action in vivo has still to be elucidated. In addition, there are problems related to specification of the exact IGF-I isoform used, expression patterns of the promoters, and availability of the transgene product under different experimental conditions. This review discusses the factors that must be considered when reconciling data from cumulative studies on IGF-I in striated muscle growth and differentiation using genetically modified mice. Critical evaluation of the literature focuses specifically on: (1) the importance of detailed information about the IGF-I isoforms and their mode of action (local, systemic or both); (2) expression pattern and strength of the promoters used to drive transgenic IGF-I in skeletal muscle cells (mono and multi-nucleated); (3) local compared with systemic action of the transgene product and possible indirect effects of transgenic IGF-I due to upregulation of other genes within skeletal muscle; (4) re-interpretation of these results in light of the most recent approaches to the dissection of IGF-I function. Full understanding of these complex in vivo issues is essential, not only for skeletal muscle but for many other tissues, in order to effectively extend observations derived from transgenic studies into potential clinical situations.
Collapse
Affiliation(s)
- Thea Shavlakadze
- School of Anatomy and Human Biology, the University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.
| | | | | | | |
Collapse
|
6
|
Xiao YY, Beilstein MA, Wang MC, Purintrapiban J, Forsberg NE. Development of a ponasterone A-inducible gene expression system for application in cultured skeletal muscle cells. Int J Biochem Cell Biol 2003; 35:79-85. [PMID: 12467649 DOI: 10.1016/s1357-2725(02)00122-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The goal of this study was to develop an inducible gene expression system to assess functions of specific proteins in differentiated cultured skeletal muscle. We utilized and modified the ecdysone inducible system because others have used this system to express exogenous genes in vitro and in transgenic animals. A limitation of the commercially-available ecdysone system is its constitutive expression in all tissues. Hence, its application in vivo would result in expression of a cloned gene in undifferentiated and differentiated tissues. To target its expression to muscle, we removed the constitutively-active CMV promoter of pVgRXR and replaced it with a skeletal muscle alpha-actin promoter so that the regulatory features of the system would be expressed in differentiated muscle cells. We transfected our newly designed expression system into L8 muscle myoblasts and established stable cell lines via antibiotic selection. We determined that reporter gene activity was induced by ponasterone A in myotubes, a differentiated muscle phenotype, but not in myoblasts (undifferentiated cells). This proved the validity of the concept of an inducible muscle-specific expression system. We then determined that beta-galactosidase expression was dependent upon the dose of ponasterone A and duration of exposure to inducer. This creates potential to regulate both the level of expression and duration of expression of a cloned gene in differentiated muscle.
Collapse
Affiliation(s)
- Ying-yi Xiao
- Department of Animal Sciences, Oregon State University, Corvallis, OR 97331-6702, USA.
| | | | | | | | | |
Collapse
|
7
|
Abdulrazzak H, Noro N, Simons JP, Goldspink G, Barnard EA, Górecki DC. Structural diversity despite strong evolutionary conservation in the 5'-untranslated region of the P-type dystrophin transcript. Mol Cell Neurosci 2001; 17:500-13. [PMID: 11273645 DOI: 10.1006/mcne.2000.0950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Analysis of the 5'-flanking regions of the Purkinje (P-) dystrophin genes and mRNAs in different species revealed strong sequence conservation but functional diversity. Multiple transcription initiation sites were identified in cerebella and muscles, tissues expressing P-dystrophin. The predominant initiation site was conserved, with another muscle-specific site located upstream. Despite sequence homology, significant tissue- and species-specific structural diversity in the P-type 5'-ends exists, including alternative splicing within the 5'-untranslated region combined with alternative splicing of intron 1. One amino terminus is conserved in mammals and, to a lesser extent, in chicken. However, alternative usage of ATG codons may result in a choice of N-termini or translation of short upstream ORFs in different species. Promoter activity of a fragment upstream of the cap site was shown by transient expression in myoblasts and in vivo following intramuscular injection. It is tissue- and developmentally regulated. Analysis of promoter deletions suggests the existence of negative regulatory elements in the proximal region.
Collapse
Affiliation(s)
- H Abdulrazzak
- Department of Anatomy and Developmental Biology, Division of Basic Medical Sciences, Royal Free and University College Medical School, London, NW3 2PF, United Kingdom
| | | | | | | | | | | |
Collapse
|
8
|
Yamanouchi K, Soeta C, Suzuki S, Hasegawa T, Naito K, Tojo H. Identification of skeletal muscle satellite cells by transfecting EGFP driven by skeletal alpha-actin promoter. J Vet Med Sci 2000; 62:1213-6. [PMID: 11129869 DOI: 10.1292/jvms.62.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In isolating skeletal muscle satellite cells, sometimes a problem is encountered in removing contaminating nonmyogenic cells. In the present study, we constructed a novel vector, pSKA-EGFP, which achieves the expression of enhanced green fluorescent protein (EGFP) exclusively in myogenic cells under the control of skeletal alpha-actin promoter when transfected to primary cultured cells from skeletal muscle. Cells from rat skeletal muscle positive for EGFP after transfecting with pSKA-EGFP were all positive for desmin and none of the nonmyogenic cells expressed EGFP, indicating that the expression of EGFP is specific to myogenic cells. Among the cells positive for EGFP were proliferating cells, presumably satellite cells. In addition, EGFP positive cells derived from horse skeletal muscle after transfecting pSKA-EGFP in vitro formed multinuclear myotubes, indicating that myogenic expression of EGFP driven by skeletal alpha-actin was achieved also in the equine cells. These results indicated that pSKA-EGFP vector will be useful in identifying and following up the satellite cells in real time, and also permit us to isolate satellite cells in combination with fluorescence-activated cell sorting (FACS).
Collapse
Affiliation(s)
- K Yamanouchi
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Wells DJ, Maule J, McMahon J, Mitchell R, Damien E, Poole A, Wells KE. Evaluation of plasmid DNA for in vivo gene therapy: factors affecting the number of transfected fibers. J Pharm Sci 1998; 87:763-8. [PMID: 9607956 DOI: 10.1021/js970391o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene transfer by intramuscular injection of plasmid DNA has potential application in gene therapy. We examined factors affecting the number of expressing fibers, in contrast to total expression, following injection of plasmid DNA. Barium chloride proved effective in inducing muscle necrosis and regeneration in mice, and this increased the number of fibers expressing a reporter gene. Coinjection of ion-channel modulators did not increase the number of positive fibers, but increasing dose and repeated administration of plasmid did. Importantly, the plasmid size (7-16 kb) did not affect the number of fibers expressing the transgene, in both normal and regenerating muscle.
Collapse
Affiliation(s)
- D J Wells
- Gene Targeting Unit, Department of Neuromuscular Diseases, Division of Neuroscience and Psychological Medicine, Imperial College School of Medicine, Charing Cross Hospital, London W6 8RP,UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- A Faerman
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | | |
Collapse
|
11
|
Heath SK, Carne S, Hoyle C, Johnson KJ, Wells DJ. Characterisation of expression of mDMAHP, a homeodomain-encoding gene at the murine DM locus. Hum Mol Genet 1997; 6:651-7. [PMID: 9158137 DOI: 10.1093/hmg/6.5.651] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We examined the expression of the murine homologue of myotonic dystrophy associated homeodomain protein (mDMAHP) using two different strategies. The first approach, RT-PCR, detected spliced transcripts in a wide range of embryonic and adult tissues, in a pattern overlapping substantially with the expression of mDMPK. A second approach, the generation of transgenic mice expressing the lacZ reporter gene from a 4.3 kb promoter fragment, also demonstrated expression in a range of tissues with potential links to the phenotype in myotonic dystrophy. We conclude that murine DMAHP has a similar pattern of expression to human DMAHP and will serve as a useful model for functional studies of this gene, although species differences, such as the reduced CpG island (1.8 kb compared with 3.5 kb) must be carefully considered.
Collapse
Affiliation(s)
- S K Heath
- Department of Pharmacology, Charing Cross & Westminster Medical School, London, UK
| | | | | | | | | |
Collapse
|
12
|
Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 1995; 270:12109-16. [PMID: 7744859 DOI: 10.1074/jbc.270.20.12109] [Citation(s) in RCA: 458] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The avian skeletal alpha-actin gene was used as a template for construction of a myogenic expression vector that was utilized to direct expression of a human IGF-I cDNA in cultured muscle cells and in striated muscle of transgenic mice. The proximal promoter region, together with the first intron and 1.8 kilobases of 3'-noncoding flanking sequence of the avian skeletal alpha-actin gene directed high level expression of human insulin-like growth factor I (IGF-I) in stably transfected C2C12 myoblasts and transgenic mice. Expression of the actin/IGF-I hybrid gene in C2C12 muscle cells increased levels of myogenic basic helix-loop-helix factor and contractile protein mRNAs and enhanced myotube formation. Expression of the actin/IGF-I hybrid gene in mice elevated IGF-I concentrations in skeletal muscle 47-fold resulting in myofiber hypertrophy. IGF-I concentrations in serum and body weight were not increased by transgene expression, suggesting that the effects of transgene expression were localized. These results indicate that sustained overexpression of IGF-I in skeletal muscle elicits myofiber hypertrophy and provides the basis for manipulation of muscle physiology utilizing skeletal alpha-actin-based vectors.
Collapse
Affiliation(s)
- M E Coleman
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Karns LR, Kariya K, Simpson PC. M-CAT, CArG, and Sp1 elements are required for alpha 1-adrenergic induction of the skeletal alpha-actin promoter during cardiac myocyte hypertrophy. Transcriptional enhancer factor-1 and protein kinase C as conserved transducers of the fetal program in cardiac growth. J Biol Chem 1995; 270:410-7. [PMID: 7814403 DOI: 10.1074/jbc.270.1.410] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Induction of the fetal isogenes skeletal alpha-actin (skACT) and beta-myosin heavy chain (beta-MHC) is characteristic of cardiac growth in many models, suggesting a conserved signaling pathway. However, divergent regulation has also been observed. beta-Protein kinase C (PKC) and transcriptional enhancer factor-1 (TEF-1) are involved in induction of beta-MHC in alpha 1-adrenergic-stimulated hypertrophy of cultured cardiac myocytes (Kariya, K., Farrance, I.K. G., and Simpson, P.C. (1993) J. Biol. Chem. 268, 26658-26662; Kariya, K., Karns, L. R., and Simpson, P.C. (1994) J. Biol. Chem. 269, 3775-3782). In the present study, we asked whether the skACT promoter used the same mechanism. A mouse skACT promoter fragment (-113/-46) was induced by both alpha 1-adrenergic stimulation and co-transfection of activated beta-PKC, and contained three required DNA sequence elements: M-CAT, CArG, and Sp1. The skACT M-CAT element bound TEF-1 in cardiac myocytes. Thus the skACT and beta-MHC promoters both require a TEF-1 binding site for activation by alpha 1-adrenergic stimulation, but differ in that skACT also requires a CArG box. These results provide a potential molecular basis for divergent regulation of the fetal program, and also imply that PKC and TEF-1 are conserved transducers for this program during cardiac growth.
Collapse
Affiliation(s)
- L R Karns
- Division of Cardiology and Research Service, Veterans Affairs Medical Center, San Francisco, California 94121
| | | | | |
Collapse
|