1
|
Abstract
Ca(2+)-ATPases (pumps) are key to the regulation of Ca(2+) in eukaryotic cells: nine are known today, belonging to three multigene families. The three endo(sarco)plasmic reticulum (SERCA) and the four plasma membrane (PMCA) pumps have been known for decades, the two Secretory Pathway Ca(2+) ATPase (SPCA) pumps have only become known recently. The number of pump isoforms is further increased by alternative splicing processes. The three pump types share the basic features of the catalytic mechanism, but differ in a number of properties related to tissue distribution, regulation, and role in the cellular homeostasis of Ca(2+). The molecular understanding of the function of all pumps has received great impetus from the solution of the three-dimensional (3D) structure of one of them, the SERCA pump. This landmark structural advance has been accompanied by the emergence and rapid expansion of the area of pump malfunction. Most of the pump defects described so far are genetic and produce subtler, often tissue and isoform specific, disturbances that affect individual components of the Ca(2+)-controlling and/or processing machinery, compellingly indicating a specialized role for each Ca(2+) pump type and/or isoform.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro Padova, Italy.
| | | | | | | |
Collapse
|
2
|
McCormick NH, Kelleher SL. ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol 2012; 303:C291-7. [PMID: 22621784 DOI: 10.1152/ajpcell.00443.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zinc (Zn) transporter 4 (ZnT4) plays a key role in mammary gland Zn metabolism. A mutation in ZnT4 (SLC30A4) that targets the protein for degradation is responsible for the "lethal milk" (lm/lm) mouse phenotype. ZnT4 protein is only detected in the secreting mammary gland, and lm/lm mice have ∼35% less Zn in milk, decreased mammary gland size, and decreased milk secretion. However, the precise contribution of ZnT4 is unknown. We used cultured mouse mammary epithelial cells (HC11) and determined that ZnT4 was localized to the trans-Golgi network (TGN) and cell membrane and transported Zn from the cytoplasm. ZnT4-mediated Zn import into the TGN directly contributed to labile Zn accumulation as ZnT4 overexpression increased FluoZin3 fluorescence. Moreover, ZnT4 provided Zn for metallation of galactosyltransferase, a Zn-dependent protein localized within the TGN that is critical for milk secretion, and carbonic anhydrase VI, a Zn-dependent protein secreted from the TGN into milk. We further noted that ZnT4 relocalized to the cell membrane in response to Zn. Together these studies demonstrated that ZnT4 transports Zn into the TGN, which is critical for key secretory functions of the mammary cell.
Collapse
Affiliation(s)
- Nicholas H McCormick
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
3
|
Shull GE, Miller ML, Prasad V. Secretory pathway stress responses as possible mechanisms of disease involving Golgi Ca2+ pump dysfunction. Biofactors 2011; 37:150-8. [PMID: 21674634 PMCID: PMC3338190 DOI: 10.1002/biof.141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 01/15/2023]
Abstract
In mammalian tissues, uptake of Ca(2+) and Mn(2+) by Golgi membranes is mediated by the secretory pathway Ca(2+) -ATPases, SPCA1 and SPCA2, encoded by the ATP2C1 and ATP2C2 genes. Loss of one copy of the ATP2C1 gene, which causes SPCA1 haploinsufficiency, leads to squamous cell tumors of keratinized epithelia in mice and to Hailey-Hailey disease, an acantholytic skin disease, in humans. Although the disease phenotypes resulting from SPCA1 haploinsufficiency in mice and humans are quite different, each species-specific phenotype is remarkably similar to those arising as a result of null mutations in one copy of the ATP2A2 gene, encoding SERCA2, the endoplasmic reticulum (ER) Ca(2+) pump. SERCA2 haploinsufficiency, like SPCA1 haploinsufficiency, causes squamous cell tumors in mice and Darier's disease, also an acantholytic skin disease, in humans. The phenotypic similarities between SPCA1 and SERCA2 haploinsufficiency in the two species, and the general functions of the two pumps in consecutive compartments of the secretory pathway, suggest that the underlying disease mechanisms are similar. In this review, we discuss evidence supporting the view that chronic Golgi stress and/or ER stress resulting from Ca(2+) pump haploinsufficiencies leads to activation of cellular stress responses in keratinocytes, with the predominance of proapoptotic pathways (although not necessarily apoptosis itself) leading to acantholytic skin disease in humans and the predominance of prosurvival pathways leading to tumors in mice.
Collapse
Affiliation(s)
- Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, OH, USA.
| | | | | |
Collapse
|
4
|
Shennan DB. Calcium transport by mammary secretory cells: mechanisms underlying transepithelial movement. Cell Mol Biol Lett 2008; 13:514-25. [PMID: 18458827 PMCID: PMC6275681 DOI: 10.2478/s11658-008-0020-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/26/2008] [Indexed: 11/21/2022] Open
Abstract
The secretion of calcium into milk by mammary epithelial cells is a fundamentally important process. Despite this, the mechanisms which underlie the movement of calcium across the lactating mammary gland are still poorly understood. There are, however, two models which describe the handling of calcium by mammary epithelial cells. On the one hand, a model which has existed for several decades, suggests that the vast majority of calcium enters milk via the Golgi secretory vesicle route. On the other hand, a new model has recently been proposed which implies that the active transport of calcium across the apical membrane of mammary secretory cells is central to milk calcium secretion. This short review examines the strengths and weaknesses of both models and suggests some experiments which could add to our understanding of mammary calcium transport.
Collapse
Affiliation(s)
- David B Shennan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Royal College, 204 George St, Glasgow G1 1XW, UK.
| |
Collapse
|
5
|
VanHouten JN, Wysolmerski JJ. Transcellular calcium transport in mammary epithelial cells. J Mammary Gland Biol Neoplasia 2007; 12:223-35. [PMID: 17999165 DOI: 10.1007/s10911-007-9057-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022] Open
Abstract
The time-honored paradigm for mammary gland transepithelial calcium transport into milk is centered on the view that most, if not all, calcium enters milk through the secretory pathway, and no ionic calcium directly crosses the apical plasma membrane. Data from several recent studies all strongly suggest that most calcium, in fact, is extruded across the apical plasma membrane directly by the plasma membrane calcium-ATPase isoform 2 (PMCA2). In this review we break down transcellular calcium transport into the tasks of calcium entry, calcium sequestration and compartmentalization, and calcium extrusion. We compare and contrast the steps of calcium transport into milk by mammary epithelial cells, and the specific molecules that might perform these tasks, with well-characterized calcium transport mechanisms in other epithelia, such as the kidney, small intestine, and salivary gland. Finally, we suggest an updated model for calcium transport into milk that incorporates calcium transport across the apical plasma membrane.
Collapse
Affiliation(s)
- Joshua N VanHouten
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, New Haven, CT 06520-8020, USA.
| | | |
Collapse
|
6
|
Abstract
Ionized calcium ([Ca(2+)]) is present in milk at concentrations around 3 mM, a concentration that drives the formation of complexes with citrate, phosphate, and casein, thereby generating compounds that carry the major portion of calcium in milk. In humans and cows, where it has been studied, changes in milk calcium appear to be regulated by the amount of citrate and casein in milk rather than changes in [Ca(2+)]. Most or all of the calcium in milk is likely derived through exocytosis of secretory vesicles derived from the Golgi compartment where a calcium ATPase mediates transport from the cytoplasm. The identity of the transporters is not yet certain but gene expression for the plasma membrane calcium ATPase, PMCA2bw, and the secretory pathway calcium ATPase, SPCA, is highly upregulated during lactation. Currently nothing appears to be known about the mechanisms that mediate transport of calcium across the basolateral membrane of the alveolar cell.
Collapse
Affiliation(s)
- Margaret C Neville
- University of Colorado Health Sciences Center at Fitzsimmons, Aurora, 80010, USA
| |
Collapse
|
7
|
VanHouten J, Dann P, McGeoch G, Brown EM, Krapcho K, Neville M, Wysolmerski JJ. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest 2004; 113:598-608. [PMID: 14966569 PMCID: PMC338258 DOI: 10.1172/jci18776] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 12/16/2003] [Indexed: 11/17/2022] Open
Abstract
The transfer of calcium from mother to milk during lactation is poorly understood. In this report, we demonstrate that parathyroid hormone-related protein (PTHrP) production and calcium transport in mammary epithelial cells are regulated by extracellular calcium acting through the calcium-sensing receptor (CaR). The CaR becomes expressed on mammary epithelial cells at the transition from pregnancy to lactation. Increasing concentrations of calcium, neomycin, and a calcimimetic compound suppress PTHrP secretion by mammary epithelial cells in vitro, whereas in vivo, systemic hypocalcemia increases PTHrP production, an effect that can be prevented by treatment with a calcimimetic. Hypocalcemia also reduces overall milk production and calcium content, while increasing milk osmolality and protein concentrations. The changes in milk calcium content, milk osmolality, and milk protein concentration were mitigated by calcimimetic infusions. Finally, in a three-dimensional culture system that recapitulates the lactating alveolus, activation of the basolateral CaR increases transcellular calcium transport independent of its effect on PTHrP. We conclude that the lactating mammary gland can sense calcium and adjusts its secretion of calcium, PTHrP, and perhaps water in response to changes in extracellular calcium concentration. We believe this defines a homeostatic system that helps to match milk production to the availability of calcium.
Collapse
Affiliation(s)
- Joshua VanHouten
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
VanHouten J, Dann P, McGeoch G, Brown EM, Krapcho K, Neville M, Wysolmerski JJ. The calcium-sensing receptor regulates mammary gland parathyroid hormone–related protein production and calcium transport. J Clin Invest 2004. [DOI: 10.1172/jci200418776] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Reinhardt TA, Horst RL, Waters WR. Characterization of Cos-7 cells overexpressing the rat secretory pathway Ca2+-ATPase. Am J Physiol Cell Physiol 2004; 286:C164-9. [PMID: 12967911 DOI: 10.1152/ajpcell.00065.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
On the basis of sequence similarities to the yeast PMR1 and hSPCA gene, the rat alternatively spliced mRNA has been suggested to be a Golgi secretory pathway Ca2+-ATPase (SPCA). Data in this report lend further support for this hypothesis in that sucrose gradient fractionation of rat liver microsomes resulted in SPCA comigrating with the Golgi calcium binding protein CALNUC, which was well resolved from the endoplasmic reticulum marker calreticulin. Also, in PC-12 cells, antibody to SPCA colocalized with an antibody to the Golgi marker alpha-mannosidase II. To study the biological effects of SPCA expression, we performed stable overexpression of SPCA in COS-7 cells. Seven clones were selected for further comparison with COS-7 cells containing an empty expression vector. Overexpression of SPCA resulted in a significant reduction of plasma membrane Ca2+-ATPase, sarco(endo)plasmic reticulum Ca2+-ATPase, and calreticulin expression in these clones. In contrast, the expression of the Golgi calcium-binding protein CALNUC increased significantly. The phosphoenzyme intermediate formed using membranes from clone G11/5 was calcium dependent, significantly more intense than in COS-7 cells, and not affected by La3+ treatment. Calcium uptake by G11/5 microsomes was ATP dependent and significantly greater than in microsomes from parent COS-7 cells. The overexpression of SPCA significantly increased the growth rate of these cells compared with COS-7 cells containing only the empty vector. These data demonstrate that overexpression of the rat SPCA results in significant changes in the expression of calcium transport and storage proteins in COS-7 cells.
Collapse
Affiliation(s)
- Timothy A Reinhardt
- Periparturient Diseases of Cattle Research Unit, U.S. Department of Agriculture-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010, USA.
| | | | | |
Collapse
|
10
|
Abstract
The presence of drugs or other potentially toxic materials in milk is an obvious public health risk, especially to infants and neonates. There is also increasing concern that human breast cancer is principally epigenetic in origin and results from environmentally produced lesions. Little is known about the mechanisms by which toxic substances enter milk or mammary tissue but knowledge of these processes is important to toxicologists and researchers involved in drug design and metabolism. Five general pathways have been described for transport of proteins, lipids, ions, nutrients and water into milk. Four of these pathways are transcellular, involving transport across at least two membrane barriers; the fifth is paracellular and allows direct exchange of interstitial and milk components. Solute transport by these pathways is mediated by a diverse, and complex array of transport and secretory processes that are regulated by hormonal, developmental, and physiological factors. Current research is beginning to define the mechanisms underlying some of these processes, however the regulation and coordination of solute transport mechanisms remains poorly understood. In this article we review our current understanding of the normal solute transport and secretory processes involved in milk production, and discuss potential regulatory mechanisms.
Collapse
Affiliation(s)
- James L McManaman
- Department of Physiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | |
Collapse
|
11
|
Shennan DB, Grant ACG, Gow IF. The effect of hyposmotic and isosmotic cell swelling on the intracellular [Ca2+] in lactating rat mammary acinar cells. Mol Cell Biochem 2002; 233:91-7. [PMID: 12083385 DOI: 10.1023/a:1015539026031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of hyposmotic and isosmotic cell swelling on the free intracellular calcium concentration ([Ca2+]i) in rat mammary acinar cells has been examined using the fura-2 dye technique. Ahyposmotic shock (40% reduction) increased the [Ca2+]i in rat mammary acinar cells in a fashion which was transient; the [Ca2+]i returned to a value similar to that found under isomotic conditions within 180 sec. The increase in the [Ca2+]i was dependent upon the extent of the osmotic shock. The hyposmotically-activated increase in the [Ca2+]i could not be attributed to a reduction in extracellular Na+ or a change in the ionic strength of the incubation medium. Thapsigargin (1 microM) enhanced the hyposmotically-activated increase in the [Ca2+]i. Isosmotic swelling of rat mammary acinar cells, using urea, had no significant effect on the [Ca2+]i. Similarly, a hyperosmotic shock did not affect the [Ca2+]i in rat mammary acinar cells. It appears that the effect of cell swelling on the [Ca2+]i in rat mammary acinar cells depends on how the cells are swollen (hyposmotic vs. isosmotic). This finding may have important physiological implications given that it is predicted that mammary cell volume will change in vivo under isomotic conditions.
Collapse
Affiliation(s)
- D B Shennan
- Hannah Research Institute, Ayr, Scotland, UK.
| | | | | |
Collapse
|
12
|
Reinhardt TA, Filoteo AG, Penniston JT, Horst RL. Ca(2+)-ATPase protein expression in mammary tissue. Am J Physiol Cell Physiol 2000; 279:C1595-602. [PMID: 11029307 DOI: 10.1152/ajpcell.2000.279.5.c1595] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein expression of plasma membrane Ca(2+)-ATPases (PMCAs) and the putative Golgi secretory pathway Ca(2+)-ATPase (SPCA) was examined in rat mammary tissue. As lactation started, PMCA protein expression increased dramatically, and this increased expression paralleled milk production. Mammary PMCA was primarily PMCA2b but was approximately 4,000 daltons larger than expected. RT-PCR showed that the primary mammary PMCA2b transcript was alternatively spliced, at splice site A, to include an additional 135 bp, resulting in the insertion of 45 amino acids. This splice form is designated 2bw. PMCA2bw is secreted into milk, associated with the milk fat globule membrane. Therefore, PMCA2bw is located on the apical membrane of the secretory cell. Smaller amounts of PMCA1b and 4b protein were found in mammary tissue. PMCA4b was the major PMCA expressed in developing tissue, and its level declined as lactation started. PMCA1b expression increased moderately during lactation. SPCA protein expression increased 1 wk before parturition and increased further as lactation proceeded. The abundance and cell location of PMCA2b suggest that it is important for macro-Ca(2+) homeostasis in lactating tissue. The pattern of expression and abundance of SPCA suggest that it is a candidate for the Golgi Ca(2+)-ATPase.
Collapse
Affiliation(s)
- T A Reinhardt
- Periparturient Diseases of Cattle Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa 50010, USA.
| | | | | | | |
Collapse
|
13
|
Abstract
This review deals with the cellular mechanisms that transport milk constituents or the precursors of milk constituents into, out of, and across the mammary secretory cell. The various milk constituents are secreted by different intracellular routes, and these are outlined, including the paracellular pathway between interstitial fluid and milk that is present in some physiological states and in some species throughout lactation. Also considered are the in vivo and in vitro methods used to study mammary transport and secretory mechanisms. The main part of the review addresses the mechanisms responsible for uptake across the basolateral cell membrane and, in some cases, for transport into the Golgi apparatus and for movement across the apical membrane of sodium, potassium, chloride, water, phosphate, calcium, citrate, iodide, choline, carnitine, glucose, amino acids and peptides, and fatty acids. Recent work on the control of these processes, by volume-sensitive mechanisms for example, is emphasized. The review points out where future work is needed to gain an overall view of milk secretion, for example, in marsupials where milk composition changes markedly during development of the young, and particularly on the intracellular coordination of the transport processes that result in the production of milk of relatively constant composition at a particular stage of lactation in both placental and marsupial mammals.
Collapse
|
14
|
Lin P, Yao Y, Hofmeister R, Tsien RY, Farquhar MG. Overexpression of CALNUC (nucleobindin) increases agonist and thapsigargin releasable Ca2+ storage in the Golgi. J Cell Biol 1999; 145:279-89. [PMID: 10209024 PMCID: PMC2133108 DOI: 10.1083/jcb.145.2.279] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We previously demonstrated that CALNUC, a Ca2+-binding protein with two EF-hands, is the major Ca2+-binding protein in the Golgi by 45Ca2+ overlay (Lin, P., H. Le-Niculescu, R. Hofmeister, J.M. McCaffery, M. Jin, H. Henneman, T. McQuistan, L. De Vries, and M. Farquhar. 1998. J. Cell Biol. 141:1515-1527). In this study we investigated CALNUC's properties and the Golgi Ca2+ storage pool in vivo. CALNUC was found to be a highly abundant Golgi protein (3.8 microg CALNUC/mg Golgi protein, 2.5 x 10(5) CALNUC molecules/NRK cell) and to have a single high affinity, low capacity Ca2+-binding site (Kd = 6.6 microM, binding capacity = 1.1 micromol Ca2+/micromol CALNUC). 45Ca2+ storage was increased by 2.5- and 3-fold, respectively, in HeLa cells transiently overexpressing CALNUC-GFP and in EcR-CHO cells stably overexpressing CALNUC. Deletion of the first EF-hand alpha helix from CALNUC completely abolished its Ca2+-binding capability. CALNUC was correctly targeted to the Golgi in transfected cells as it colocalized and cosedimented with the Golgi marker, alpha-mannosidase II (Man II). Approximately 70% of the 45Ca2+ taken up by HeLa and CHO cells overexpressing CALNUC was released by treatment with thapsigargin, a sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) (Ca2+ pump) blocker. Stimulation of transfected cells with the agonist ATP or IP3 alone (permeabilized cells) also resulted in a significant increase in Ca2+ release from Golgi stores. By immunofluorescence, the IP3 receptor type 1 (IP3R-1) was distributed over the endoplasmic reticulum and codistributed with CALNUC in the Golgi. These results provide direct evidence that CALNUC binds Ca2+ in vivo and together with SERCA and IP3R is involved in establishment of the agonist-mobilizable Golgi Ca2+ store.
Collapse
Affiliation(s)
- P Lin
- Division of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093-0651, USA
| | | | | | | | | |
Collapse
|
15
|
Reinhardt TA, Horst RL. Ca2+-ATPases and their expression in the mammary gland of pregnant and lactating rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C796-802. [PMID: 10199809 DOI: 10.1152/ajpcell.1999.276.4.c796] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcellular Ca2+ fluxes required for milk production must be rigorously regulated to maintain the low cytosolic Ca2+ concentrations critical to cell function. Ca2+-ATPases play a critical role in the maintenance of this cellular Ca2+ homeostasis. Using RT-PCR and sequencing, we identified six Ca2+ pumps in lactating mammary tissue. Three plasma membrane Ca2+-ATPases (PMCAs) were found (PMCA1b, PMCA2b, and PMCA4b). Two sarco (endo)plasmic reticulum Ca2+-ATPases (SERCAs) were identified (SERCA2 and SERCA3), and the rat homologue to the yeast Golgi Ca2+-ATPase RS-10 was also found. The pattern of mRNA expression of each of these pumps was examined in rat mammary tissue from the 7th day of pregnancy to the 21st day of lactation. Northern blots revealed increased mRNA expression for all Ca2+ pumps by the 14th day of lactation, and transcripts continued to increase through the 18th day of lactation. PMCA1b, PMCA4b, SERCA2, and SERCA3 showed the lowest levels of expression. RS-10 transcripts were more abundant than SERCA2, SERCA3, PMCA1b, and PMCA4b. RS-10 was the only pump to increase in expression before parturition. PMCA2b was the most abundant transcript found in lactating mammary tissue. At peak lactation, expression of PMCA2b approached that of actin. The high expression, high affinity for Ca2+, and high activity at low calmodulin concentrations exhibited by PMCA2b suggest that it is uniquely suited for maintenance of Ca2+ homeostasis in the lactating mammary gland. The pattern of expression and abundance of RS-10 suggest that it is a candidate for the Golgi Ca2+-ATPase shown to be important in maintaining the Golgi Ca2+ concentration required for casein synthesis and micelle formation.
Collapse
Affiliation(s)
- T A Reinhardt
- Metabolic Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa 50010, USA.
| | | |
Collapse
|
16
|
Taylor RS, Jones SM, Dahl RH, Nordeen MH, Howell KE. Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol Biol Cell 1997; 8:1911-31. [PMID: 9348533 PMCID: PMC25639 DOI: 10.1091/mbc.8.10.1911] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/1997] [Accepted: 07/28/1997] [Indexed: 02/05/2023] Open
Abstract
To characterize endogenous molecules and activities of the Golgi complex, proteins in transit were > 99% cleared from rat hepatocytes by using cycloheximide (CHX) treatment. The loss of proteins in transit resulted in condensation of the Golgi cisternae and stacks. Isolation of a stacked Golgi fraction is equally efficient with or without proteins in transit [control (CTL SGF1) and cycloheximide (CHX SGF1)]. Electron microscopy and morphometric analysis showed that > 90% of the elements could be positively identified as Golgi stacks or cisternae. Biochemical analysis showed that the cis-, medial-, trans-, and TGN Golgi markers were enriched over the postnuclear supernatant 200- to 400-fold with and 400- to 700-fold without proteins in transit. To provide information on a mechanism for import of calcium required at the later stages of the secretory pathway, calcium uptake into CTL SGF1 and CHX SGF1 was examined. All calcium uptake into CTL SGF1 was dependent on a thapsigargin-resistant pump not resident to the Golgi complex and a thapsigargin-sensitive pump resident to the Golgi. Experiments using CHX SGF1 showed that the thapsigargin-resistant activity was a plasma membrane calcium ATPase isoform in transit to the plasma membrane and the thapsigargin-sensitive pump was a sarcoplasmic/endoplasmic reticulum calcium ATPase isoform. In vivo both of these calcium ATPases function to maintain millimolar levels of calcium within the Golgi lumen.
Collapse
Affiliation(s)
- R S Taylor
- Department of Cellular and Structural Biology, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Calcium transfer to the fetus in late pregnancy and the subsequent transfer of calcium to milk represent the greatest challenges to calcium homeostasis in adult animals. The adaptation of the maternal calcium homeostatic mechanisms is the result of a complex interplay between calciotropic hormones and the tissues, intestine, bone, and kidney, responsible for providing the large amounts of calcium needed to support fetal skeletal growth and lactation. In this review, we will discuss general calcium homeostasis followed by a review of the specific adaptations required by the human, rat, and cow to meet fetal and lactational demands for calcium. Finally, we will review what is known about the regulation of calcium transfer from the plasma to the milk.
Collapse
Affiliation(s)
- R L Horst
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Metabolic Diseases and Immunology Research Unit, Ames, Iowa 50010-0070, USA.
| | | | | |
Collapse
|
18
|
Ghosal D, Shappell NW, Keenan TW. Endoplasmic reticulum lumenal proteins of rat mammary gland. Potential involvement in lipid droplet assembly during lactation. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1200:175-81. [PMID: 8031838 DOI: 10.1016/0304-4165(94)90133-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intracellular distribution of selected reticuloplasmins, soluble proteins of the endoplasmic reticulum lumen, in rat mammary gland was investigated during pregnancy, lactation, and involution. During lactation the levels of the calcium binding protein calreticulin, and of protein disulfide isomerase, were elevated. Endoplasmic reticulum was as efficient as Golgi apparatus in sequestration and accumulation of Ca2+ from surrounding medium, as suggested from in vitro experiments with isolated cell fractions. Both protein disulfide isomerase and calreticulin were present in cytosol from homogenates of mammary gland prepared under mild conditions. Protein disulfide isomerase was abundant in intracellular lipid droplet precursors of milk lipid globules. Calreticulin and immunoglobulin binding protein (BiP, GRP 78) were associated with lipid droplets. Glucose-regulated protein (GRP 94) was not detected in association with intracellular lipid droplets. Milk lipid globule membrane lacked more than barely detectable quantities of protein disulfide isomerase, calreticulin, and immunoglobulin binding protein, suggesting that these proteins are lost from intracellular lipid droplets before or during their secretion as milk lipid globules. Immunocytochemical localization confirmed the presence of protein disulfide isomerase or calreticulin on intracellular lipid droplets and in non-endoplasmic reticulum regions of cells.
Collapse
Affiliation(s)
- D Ghosal
- Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | | | | |
Collapse
|
19
|
Shull GE, Clarke DM, Gunteski-Hamblin AM. cDNA cloning of possible mammalian homologs of the yeast secretory pathway Ca(2+)-transporting ATPase. Ann N Y Acad Sci 1992; 671:70-80; discussion 81. [PMID: 1288355 DOI: 10.1111/j.1749-6632.1992.tb43785.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- G E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Ohio 45267-0524
| | | | | |
Collapse
|
20
|
Gunteski-Hamblin AM, Clarke DM, Shull GE. Molecular cloning and tissue distribution of alternatively spliced mRNAs encoding possible mammalian homologues of the yeast secretory pathway calcium pump. Biochemistry 1992; 31:7600-8. [PMID: 1380825 DOI: 10.1021/bi00148a023] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rat stomach and testis cDNAs corresponding to two alternatively spliced mRNAs encoding variants of a P-type ion-transport ATPase that closely resembles the yeast secretory pathway Ca2+ pump have been isolated and characterized. A partial kidney cDNA was identified previously using an oligonucleotide probe corresponding to part of the sarcoplasmic reticulum Ca(2+)-ATPase [Gunteski-Hamblin, A., Greeb, J., & Shull, G.E. (1988) J. Biol. Chem. 263, 15032-15040]. In the present study, we first isolated and characterized a stomach cDNA that contains the entire coding sequence. The 919 amino acid enzyme has the same apparent transmembrane organization and contains all of the conserved domains present in other P-type ATPases. Northern blot analyses demonstrate that 3.9- and 5-kilobase mRNAs corresponding to the cDNA were present in all tissues examined, suggesting that the protein it encodes performs a housekeeping function. Rat testis also contained a 3.7-kilobase mRNA that hybridized with a probe from the 5' end of the stomach cDNA but did not hybridize with a probe from the 3' end. Cloning and characterization of cDNAs corresponding to the smaller testis mRNA revealed that it is derived from the same gene but encodes a variant of the enzyme in which the C-terminal residue, Val-919, is replaced by the sequence Phe-919-Tyr-Pro-Lys-Ile-923. Similarity comparisons show that the two enzymes are more closely related to the known Ca2+ pumps than to other P-type ATPases.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A M Gunteski-Hamblin
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Ohio 45267-0524
| | | | | |
Collapse
|
21
|
Affiliation(s)
- C Holt
- Hannah Research Institute, Ayr, Scotland
| |
Collapse
|
22
|
|
23
|
Shennan DB. Mechanisms of mammary gland ion transport. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1990; 97:317-24. [PMID: 1979530 DOI: 10.1016/0300-9629(90)90617-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Navaratnam N, Virk SS, Ward S, Kuhn NJ. Cationic activation of galactosyltransferase from rat mammary Golgi membranes by polyamines and by basic peptides and proteins. Biochem J 1986; 239:423-33. [PMID: 3101666 PMCID: PMC1147297 DOI: 10.1042/bj2390423] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Galactosyltransferase (EC 2.4.1.22) requires bivalent metal ions for its activity. However, preparations of this enzyme solubilized from Golgi membranes of lactating rat mammary gland were shown to be activated not only by Mn2+, Ca2+ and Mg2+, but also by spermine, spermidine, lysyl-lysine, ethylenediamine and other diaminoalkanes, and by a range of basic proteins and peptides, including clupeine, histone, polylysine, ribonuclease, pancreatic trypsin inhibitor, cytochrome c, melittin, avidin and myelin basic protein. Both N-acetyl-lactosamine synthetase and lactose synthetase activities were enhanced. A basic protein fraction was isolated from bovine milk and shown to activate galactosyltransferase at low concentrations. The polyanions ATP, casein, chondroitin sulphate and heparin reversed the activation of galactosyltransferase by several of the above substances. Galactosyltransferase, assayed as a lactose synthetase, showed a 10-fold greater affinity for glucose when Mn2+ ions were replaced by clupeine or by ribonuclease as cationic activator. Evidence was obtained for the presence of an endogenous cationic activator in solubilized Golgi membrane preparations which evoked a similar low apparent Km,glucose. The findings are discussed in the light of cationic activations of glycosyltransferases generally, of the porous nature of the Golgi membrane, and of the unlikelihood of bivalent metal ions being the physiological activators of galactosyltransferase. It is suggested that the natural cationic activator of lactose synthetase may be a secretory protein acting in a manner analogous to the enzyme's activation by alpha-lactalbumin. A scheme is proposed for the two-stage synthesis of lactose and phosphorylation of casein within the cell, to accommodate the apparent incompatibility of these two processes.
Collapse
|
25
|
|
26
|
Hira T, Fukumoto S, Kono S, Takenaka S. Calmodulin in breast milk, and umbilical and maternal plasma. ASIA-OCEANIA JOURNAL OF OBSTETRICS AND GYNAECOLOGY 1985; 11:107-111. [PMID: 4015513 DOI: 10.1111/j.1447-0756.1985.tb00055.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Brooks CL, Landt M. Calcium-ion and calmodulin-dependent kappa-casein kinase in rat mammary acini. Biochem J 1984; 224:195-200. [PMID: 6594996 PMCID: PMC1144413 DOI: 10.1042/bj2240195] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A Ca2+- and calmodulin-dependent casein kinase specific for dephosphorylated bovine kappa-casein was identified in a microsomal fraction of mammary acini prepared from rats in late lactation. This phosphorylation has an absolute requirement for Mg2+ for either the basal or the Ca2+- and calmodulin-dependent activity. One-half of the maximal stimulation is achieved at a calmodulin concentration of 204nM in the presence of Ca2+. The Ca2+- and calmodulin-dependent kinase activity (but not the basal activity) is inhibited by trifluoperazine. The casein kinase is associated with a microsomal fraction enriched in markers for plasma membrane and Golgi (5'-nucleotidase and galactosyltransferase respectively). The activity of this casein kinase remains relatively constant throughout lactation, but declines dramatically in 24h when rats are removed from their pups. This activity may represent the physiological activity responsible in part or whole for kappa-casein phosphorylation occurring before micelle formation and milk secretion.
Collapse
|
28
|
Watters CD. A Ca2+-stimulated adenosine triphosphatase in Golgi-enriched membranes of lactating murine mammary tissue. Biochem J 1984; 224:39-45. [PMID: 6239617 PMCID: PMC1144395 DOI: 10.1042/bj2240039] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A membrane fraction isolated from lactating murine mammary tissue and enriched for the Golgi membrane marker enzyme galactosyltransferase exhibited Ca2+-stimulated ATPase activity (Ca-ATPase) in 20 microM-free Mg2+ and 10 microM-MgATP, with an apparent Km for Ca2+ of 0.8 microM. Exogenous calmodulin did not enhance Ca2+ stimulation, nor could Ca-ATPase activities be detected in millimolar total Mg2+ and ATP. When assayed with micromolar Mg2+ and MgATP the Ca-ATPases of skeletal-muscle sarcoplasmic reticulum and of calmodulin-enriched red blood cell plasma membranes were half-maximally activated by 0.1 microM- and 0.6 microM-Ca2+ respectively. All three Ca-ATPases were inhibited by similar micromolar concentrations of trifluoperazine, but the Golgi activity was unaffected by quercetin in concentrations which completely inhibited both the sarcoplasmic-reticulum and red-blood-cell enzymes. The results are consistent with the hypothesis that the high-affinity Ca-ATPase is responsible for the ATP-dependent Ca2+ transport exhibited by Golgi-enriched vesicles derived from lactating mammary gland [Neville, Selker, Semple & Watters (1981) J. Membr. Biol. 61, 97-105; West (1981) Biochim. Biophys. Acta 673, 374-386].
Collapse
|
29
|
Abstract
Milk calcium exists in bound and ionized forms. Bound calcium is associated both with casein micelles and complexed to citrate and phosphate. Ionized calcium in milk is 1 to 4 millimolar, at least 1000 times its postulated concentration in the mammary alveolar cell. For this reason active transport mechanisms are necessary for transfer of this nutrient to the lumen of the mammary alveolus. Evidence that the major active transport system is a calcium adenosine triphosphatase residing in the membrane of the Golgi secretory vesicle is summarized. This adenosine triphosphatase appears to be activated by calcium concentrations in the micromolar range, to require magnesium ions, and to operate by phosphorylation of a 100,000 dalton enzyme intermediate. Metabolic processes are required to maintain a low concentration of calcium within the cytosol of the mammary alveolar cell. Because no evidence for sodium/calcium exchange could be found in the mammary gland of the lactating mouse, we suggest that these processes operate through a calcium adenosine triphosphatase in the basolateral membrane of the cell. Decreased calcium in the alveolar lumina decreased the integrity of the barrier between blood and milk. It is postulated from observations in other secretory systems that an increase in cystolic activity calcium may play a role in lactogenesis.
Collapse
|
30
|
Zulak IM, Keenan TW. Citrate accumulation by a Golgi apparatus-rich fraction from lactating bovine mammary gland. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1983; 15:747-50. [PMID: 6683204 DOI: 10.1016/0020-711x(83)90203-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. Golgi apparatus-rich fractions from lactating bovine mammary gland rapidly accumulated citrate from incubation medium. Characteristics of this process suggested that a citrate transport system may be present in Golgi apparatus membranes. 2. Endoplasmic reticulum fractions accumulated citrate at nearly the same rate as Golgi apparatus; secretory vesicle fractions displayed lower ability to accumulate citrate. Intact epithelial cells (acini) from lactating mammary gland did not accumulate citrate. 3. Citrate accumulation by Golgi apparatus was pH and temperature sensitive but was not altered by metabolic inhibitors. 4. These observations suggest a role for Golgi apparatus in packaging intracellular citrate for secretion into milk.
Collapse
|
31
|
Tartakoff AM. Perturbation of the structure and function of the Golgi complex by monovalent carboxylic ionophores. Methods Enzymol 1983; 98:47-59. [PMID: 6366472 DOI: 10.1016/0076-6879(83)98138-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Coty WA, Mc Conkey CL. A high-affinity calcium-stimulated ATPase activity in the hen oviduct shell gland. Arch Biochem Biophys 1982; 219:444-53. [PMID: 6219624 DOI: 10.1016/0003-9861(82)90176-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Neville MC, Peaker M. Calcium fluxes in mouse mammary tissue in vitro: intracellular and extracellular calcium pools. J Physiol 1982; 323:497-517. [PMID: 7097584 PMCID: PMC1250372 DOI: 10.1113/jphysiol.1982.sp014088] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
1. The total Ca content of the mammary gland increased from about 2 to 12 mumole/g tissue during the transition from pregnancy to lactation in the mouse. In tissue from lactating mice at least two thirds of the total Ca exchanged with external Ca in 6 hr. There was little non-exchangeable Ca in tissues from pregnant mice.2. At 37 degrees C the time courses of influx and efflux of (45)Ca in lactating tissues could be analysed by assuming three exponential components with rate constants of about 0.3, 0.06 and 0.005 min(-1) and containing, respectively, 1.7, 1.5 and 4.7 mumole (45)Ca/g tissue at the steady state.3. The rapidly effluxing component showed the time- and temperature-dependence characteristic of bulk-phase-limited diffusion through the extracellular space. The diffusion coefficient was about one quarter of the self-diffusion coefficient of Ca in aqueous solution, consistent with a tortuosity factor of about 2. A portion of the Ca in this component was displaced by La(3+). The amount remaining in the presence of 3 mm-La(3+) was close to that expected for free extracellular Ca. The rapid component was therefore interpreted as originating from an extracellular compartment containing both free and bound Ca.4. The rate of efflux of the intermediate component was slowed by a factor of ten when the temperature was decreased from 37 to 0 degrees C giving a Q(10) of 2.7, expected for membrane transport. The slow component present at 37 degrees C was not displaced by EGTA or La(3+), suggesting that it is not localized extracellularly. It was not apparent in the 0 degrees C efflux curves.5. The biphasic time course of uptake of ionophore (A23187)-releasable (45)Ca in particulate fractions obtained by homogenization and centrifugation of tissues which had been incubated with the isotope was consistent with the hypothesis that the two slower components of (45)Ca flux originate from intracellular compartments. Mitochondrial uptake probably did not contribute significantly to Ca exchange in these tissues.6. (45)Calcium fluxes in mammary tissues from pregnant mice also showed three components with rate constants similar to those found in tissues from lactating mice. The amount of Ca in each component was much smaller than in lactating tissue when compared on the basis of tissue weight.7. We conclude from these studies that: (i) intra- and extracellular Ca pools in mammary tissue can be distinguished on the basis of the temperature dependence of their fluxes and (ii) the transition from pregnancy to lactation is accompanied by large increases in both intra- and extracellular Ca pools in mammary alveolar cells.
Collapse
|