1
|
Capsaicin and Gut Microbiota in Health and Disease. Molecules 2020; 25:molecules25235681. [PMID: 33276488 PMCID: PMC7730216 DOI: 10.3390/molecules25235681] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Capsaicin is a widespread spice known for its analgesic qualities. Although a comprehensive body of evidence suggests pleiotropic benefits of capsaicin, including anti-inflammatory, antioxidant, anti-proliferative, metabolic, or cardioprotective effects, it is frequently avoided due to reported digestive side-effects. As the gut bacterial profile is strongly linked to diet and capsaicin displays modulatory effects on gut microbiota, a new hypothesis has recently emerged about its possible applicability against widespread pathologies, such as metabolic and inflammatory diseases. The present review explores the capsaicin–microbiota crosstalk and capsaicin effect on dysbiosis, and illustrates the intimate mechanisms that underlie its action in preventing the onset or development of pathologies like obesity, diabetes, or inflammatory bowel diseases. A possible antimicrobial property of capsaicin, mediated by the beneficial alteration of microbiota, is also discussed. However, as data are coming mostly from experimental models, caution is needed in translating these findings to humans.
Collapse
|
2
|
Choi YJ, Kim N, Lee JY, Nam RH, Suh JH, Lee SM, Ham MH, Jo HJ, Shim YK, Park YH, Lee JC, Choi YJ, Lee HS, Lee DH. PMK-S005 Alleviates Age-Related Gastric Acid Secretion, Inflammation, and Oxidative Status in the Rat Stomach. Gut Liver 2017; 10:749-56. [PMID: 27172930 PMCID: PMC5003198 DOI: 10.5009/gnl15584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/05/2015] [Indexed: 12/12/2022] Open
Abstract
Background/Aims The aim of this study was to evaluate the effect of the synthetic S-allyl-l-cysteine (SAC) PMK-S005 on gastric acid secretion, inflammation, and antioxidant enzymes in aging rats. Methods The rats were divided into four groups at 31 weeks of age and were continuously fed a diet containing a vehicle control, PMK-S005 (5 or 10 mg/kg), or lansoprazole (5 mg/kg). Gastric acid secretion and connective tissue thickness of the lamina propria were evaluated at 74 weeks and 2 years of age. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and COX-2 levels were measured by using enzyme-linked immunosorbent assays (ELISAs) or Western blot assays. Levels of antioxidant enzymes, including heme oxyganase 1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO-1), were also measured. Results As the rats aged, gastric acid secretion significantly decreased, and the connective tissue of the lamina propria increased. However, 74-week-old rats in the PMK-S005 group exhibited greater levels of gastric acid secretion than those of the control and lansoprazole groups. The increase of TNF-α, IL-1β, and COX-2 expression in 74-week and 2-year-old control rats were inhibited by PMK-S005. In addition, the decrease in HO-1 and NQO-1 protein expression that occurred with aging was inhibited by PMK-S005 in the 74-week-old rats. Conclusions These results suggest that PMK-S005 has therapeutic potential as an antiaging agent to ameliorate age-related gastric acid secretion, inflammation, and oxidative stress in the stomach.
Collapse
Affiliation(s)
- Yoon Jeong Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ju Yup Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Hyung Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Min Hee Ham
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyun Jin Jo
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Kwang Shim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yo Han Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong-Chan Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Tarnawski AS, Ahluwalia A, Jones MK. Increased susceptibility of aging gastric mucosa to injury: the mechanisms and clinical implications. World J Gastroenterol 2014; 20:4467-4482. [PMID: 24782600 PMCID: PMC4000484 DOI: 10.3748/wjg.v20.i16.4467] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 01/30/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023] Open
Abstract
This review updates the current views on aging gastric mucosa and the mechanisms of its increased susceptibility to injury. Experimental and clinical studies indicate that gastric mucosa of aging individuals-"aging gastropathy"-has prominent structural and functional abnormalities vs young gastric mucosa. Some of these abnormalities include a partial atrophy of gastric glands, impaired mucosal defense (reduced bicarbonate and prostaglandin generation, decreased sensory innervation), increased susceptibility to injury by a variety of damaging agents such as ethanol, aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs), impaired healing of injury and reduced therapeutic efficacy of ulcer-healing drugs. Detailed analysis of the above changes indicates that the following events occur in aging gastric mucosa: reduced mucosal blood flow and impaired oxygen delivery cause hypoxia, which leads to activation of the early growth response-1 (egr-1) transcription factor. Activation of egr-1, in turn, upregulates the dual specificity phosphatase, phosphatase and tensin homologue deleted on chromosome ten (PTEN) resulting in activation of pro-apoptotic caspase-3 and caspase-9 and reduced expression of the anti-apoptosis protein, survivin. The imbalance between pro- and anti-apoptosis mediators results in increased apoptosis and increased susceptibility to injury. This paradigm has human relevance since increased expression of PTEN and reduced expression of survivin were demonstrated in gastric mucosa of aging individuals. Other potential mechanisms operating in aging gastric mucosa include reduced telomerase activity, increase in replicative cellular senescence, and reduced expression of vascular endothelial growth factor and importin-α-a nuclear transport protein essential for transport of transcription factors to nucleus. Aging gastropathy is an important and clinically relevant issue because of: (1) an aging world population due to prolonged life span; (2) older patients have much greater risk of gastroduodenal ulcers and gastrointestinal complications (e.g., NSAIDs-induced gastric injury) than younger patients; and (3) increased susceptibility of aging gastric mucosa to injury can be potentially reduced or reversed pharmacologically.
Collapse
|
4
|
Jo HJ, Kim N, Nam RH, Kang JM, Kim JH, Choe G, Lee HS, Park JH, Chang H, Kim H, Lee MY, Kim YS, Kim JS, Jung HC. Fat deposition in the tunica muscularis and decrease of interstitial cells of Cajal and nNOS-positive neuronal cells in the aged rat colon. Am J Physiol Gastrointest Liver Physiol 2014; 306:G659-69. [PMID: 24525022 DOI: 10.1152/ajpgi.00304.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Little is known about the time course of aging on interstitial cells of Cajal (ICC) of colon. The aim of this study was to investigate the change of morphology, ICC, and neuronal nitric oxide synthase (nNOS)-immunoreactive cells in the aged rat. The proximal colon of 344 Fischer rats at four different ages (6, 31, 74 wk, and 2 yr) were studied. The immunoreactivity of c-Kit, nNOS, anti-protein gene product 9.5, and synaptophysin were counted after immunohistochemistry. The c-kit, stem cell factor (ligand of Kit), and nNOS mRNA were measured by real-time PCR. c-Kit and nNOS protein were assessed by Western blot. Isovolumetric contractile force measurement and electrical field stimulation (EFS) were conducted. The area of intramuscular fat deposition significantly increased with age after 31 wk. c-Kit-immunoreactive ICC and nNOS-immunoreactive neurons and nerve fibers significantly declined with age. mRNA and protein expression of c-kit and nNOS decreased with aging. The functional study showed that the spontaneous contractility was decreased in aged rat, whereas EFS responses in the presence of atropine and L-NG-Nitroarginine methyl ester were increased in aged rat. In conclusion, the decrease of proportion of proper smooth muscle, the density of ICC and nNOS-immunoreactive neuronal fibers, and the number of nNOS-immunoreactive neurons during the aging process may explain the aging-associated colonic dysmotility.
Collapse
|
5
|
Ahluwalia A, Jones MK, Tarnawski AS. Key role of endothelial importin-α in VEGF expression and gastric angiogenesis: novel insight into aging gastropathy. Am J Physiol Gastrointest Liver Physiol 2014; 306:G338-G345. [PMID: 24356884 DOI: 10.1152/ajpgi.00382.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent in vivo studies demonstrated that aging gastric mucosa has impaired angiogenesis and reduced expression of vascular endothelial growth factor (VEGF). Angiogenesis is triggered by hypoxia and VEGF gene activation, and the latter requires transport of transcription factor(s) into endothelial cell nuclei. We focused on gastric mucosal endothelial cells (GMEC), which are key targets and effectors of gastric angiogenesis, and determined whether and to what extent importin-α, a nuclear transport protein, regulates VEGF gene activation and gastric angiogenesis and the possible role of importin-α in aging gastropathy. GMEC were isolated from rats 3 and 24 mo of age, young (YGEC) and aging (AGEC), respectively. We examined in these cells 1) in vitro angiogenesis, 2) expression of VEGF and importin-α, 3) nuclear transport of hypoxia-inducible factor (HIF)-1α by importin-α, 4) binding of HIF-1α to the VEGF gene promoter, and 5) effects of importin-α silencing in YGEC and its upregulation in AGEC on angiogenesis and VEGF expression. AGEC exhibited significantly impaired in vitro angiogenesis by fourfold and decreased expression of VEGF, importin-α, and nuclear HIF-1α by 1.4-fold, 1.6-fold, and 2.9-fold, respectively, vs. YGEC. Upregulation of importin-α in AGEC significantly reversed all these abnormalities. In YGEC, knockdown of importins-α1 and -α3 significantly reduced in vitro angiogenesis by 93% and 73% and VEGF expression by 48% and 52%, respectively. The above findings demonstrate that importin-α is a novel and critical regulator of gastric angiogenesis. Its reduced expression in AGEC is the key mechanism for impaired angiogenesis and reduced VEGF.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS) and Southern California Institute for Research and Education
| | | | | |
Collapse
|
6
|
Ahluwalia A, Jones MK, Deng X, Sandor Z, Szabo S, Tarnawski AS. An imbalance between VEGF and endostatin underlies impaired angiogenesis in gastric mucosa of aging rats. Am J Physiol Gastrointest Liver Physiol 2013; 305:G325-G332. [PMID: 23788612 DOI: 10.1152/ajpgi.00127.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastric mucosa of aging individuals exhibits increased susceptibility to injury and delayed healing. Our previous studies in young rats showed that healing of mucosal injury depends on and is critically dependent on VEGF and angiogenesis. Since angiogenesis in aging gastric mucosa has not been examined before, in this study we examined the extent to which angiogenesis is impaired in gastric mucosa of aging vs. young rats and determined the underlying mechanisms with a focus on mucosal expression of VEGF (proangiogenic factor) and endostatin (antiangiogenic factor). Aging rats had significantly impaired gastric angiogenesis by ~12-fold, 5-fold, 4-fold, and 3-fold, respectively (vs. young rats; all P < 0.001) at 24, 48, 72, and 120 h following ethanol-induced gastric injury and reduced and delayed healing of mucosal erosions. In gastric mucosa of aging (vs. young) rats at baseline, VEGF expression was significantly reduced, whereas endostatin levels were significantly increased (P < 0.05 and P < 0.01, respectively). In contrast to young rats, gastric mucosal VEGF levels did not increase following ethanol-induced injury in aging rats. MMP-9 enzyme activity was significantly higher in gastric mucosa of aging vs. young rats both at baseline (2.7-fold) and 24 h (3.8-fold) after ethanol injury (both P < 0.001). Since endostatin is generated from collagen XVIII by MMP-9, this finding can explain the mechanism of increased endostatin expression in aging gastric mucosa. The above findings demonstrate that reduced VEGF and increased endostatin result in the impaired angiogenesis and delayed injury healing in gastric mucosa of aging rats.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Veterans Affairs Long Beach Healthcare System, and Univ. of California, Irvine, 5901 E. 7th St., 09/151, Bldg. 162, Rm. 115, Long Beach, CA 90822. or
| | | | | | | | | | | |
Collapse
|
7
|
Influence of aging on experimental gastrointestinal motility in extraction of rat molar teeth. PEDIATRIC DENTAL JOURNAL 2012. [DOI: 10.1016/s0917-2394(12)70246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Kang JM, Kim N, Kim JH, Oh E, Lee BY, Lee BH, Shin CM, Park JH, Lee MK, Nam RH, Lee HE, Lee HS, Kim JS, Jung HC, Song IS. Effect of aging on gastric mucosal defense mechanisms: ROS, apoptosis, angiogenesis, and sensory neurons. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1147-53. [PMID: 20724528 DOI: 10.1152/ajpgi.00218.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aging changes in the stomach lead to a decreased capacity for tissue repair in response to gastric acid. The aim of this study was to determine the mechanism associated with the increased susceptibility to injury of aging mucosa including reactive oxygen species (5), apoptosis, angiogenesis, and sensory neuron activity. Fischer 344 rats at four different ages (6, 31, 74 wk, and 2 yr of age) were studied. The connective tissue indicators [salt-soluble collagen and sulfated glycosaminoglycan (sGAG)], lipid hydroperoxide (LPO), myeloperoxidase (MPO), and hexosamine were assessed. We also evaluated the expression of early growth response-1 (Egr-1), phosphatase and tension homologue deleted on chromosome 10 (PTEN), caspase-9 (index of apoptosis), VEGF (index of angiogenesis), calcitonin gene-related peptide (CGRP, index of sensory neurons), and neuronal nitric oxide synthase (nNOS). The histological connective tissue area in the lower part of rat gastric mucosa increased with aging, with increase of salt-soluble collagen and sGAG. LPO and MPO in old rats were significantly greater than in the young rats, whereas hexosamine was significantly reduced. The old gastric mucosa had increased expression of Egr-1, PTEN, and caspase-9, whereas the VEGF, CGRP, and nNOS expression were significantly reduced. These results indicate that the lower part of rat gastric mucosa was found to be replaced by connective tissue with accumulation of oxidative products with aging. In addition, impairment of apoptosis, angiogenesis, and sensory neuron activity via the activation of Egr-1 and PTEN might increase the susceptibility of gastric mucosa to injury during aging.
Collapse
Affiliation(s)
- Jung Mook Kang
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Laine L, Takeuchi K, Tarnawski A. Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterology 2008; 135:41-60. [PMID: 18549814 DOI: 10.1053/j.gastro.2008.05.030] [Citation(s) in RCA: 483] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/07/2008] [Accepted: 05/05/2008] [Indexed: 02/06/2023]
Abstract
The gastric mucosa maintains structural integrity and function despite continuous exposure to noxious factors, including 0.1 mol/L HCl and pepsin, that are capable of digesting tissue. Under normal conditions, mucosal integrity is maintained by defense mechanisms, which include preepithelial factors (mucus-bicarbonate-phospholipid "barrier"), an epithelial "barrier" (surface epithelial cells connected by tight junctions and generating bicarbonate, mucus, phospholipids, trefoil peptides, prostaglandins (PGs), and heat shock proteins), continuous cell renewal accomplished by proliferation of progenitor cells (regulated by growth factors, PGE(2) and survivin), continuous blood flow through mucosal microvessels, an endothelial "barrier," sensory innervation, and generation of PGs and nitric oxide. Mucosal injury may occur when noxious factors "overwhelm" an intact mucosal defense or when the mucosal defense is impaired. We review basic components of gastric mucosal defense and discuss conditions in which mucosal injury is directly related to impairment in mucosal defense, focusing on disorders with important clinical sequelae: nonsteroidal anti-inflammatory drug (NSAID)-associated injury, which is primarily related to inhibition of cyclooxygenase (COX)-mediated PG synthesis, and stress-related mucosal disease (SRMD), which occurs with local ischemia. The annual incidence of NSAID-associated upper gastrointestinal (GI) complications such as bleeding is approximately 1%-1.5%; and reductions in these complications have been demonstrated with misoprostol, proton pump inhibitors (PPIs) (only documented in high-risk patients), and COX-2 selective inhibitors. Clinically significant bleeding from SRMD is relatively uncommon with modern intensive care. Pharmacologic therapy with antisecretory drugs may be used in high-risk patients (eg, mechanical ventilation >or=48 hours), although the absolute risk reduction is small, and a decrease in mortality is not documented.
Collapse
Affiliation(s)
- Loren Laine
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | | | | |
Collapse
|
10
|
Tarnawski A, Pai R, Deng X, Ahluwalia A, Khomenko T, Tanigawa T, Akahoshi T, Sandor Z, Szabo S. Aging gastropathy-novel mechanisms: hypoxia, up-regulation of multifunctional phosphatase PTEN, and proapoptotic factors. Gastroenterology 2007; 133:1938-1947. [PMID: 18054565 DOI: 10.1053/j.gastro.2007.08.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 07/19/2007] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Aging gastric mucosa has impaired mucosal defense and increased susceptibility to injury. Our aims were to determine the mechanisms responsible for above abnormalities. METHODS We used Fisher F-344 rats, 3 and 24 months of age. We measured gastric mucosal blood flow; visualized mucosal hypoxia; examined expression of early growth response-1 transcription factor and phosphatase and tensin homologue deleted on chromosome 10 (PTEN); assessed apoptosis; and determined expression of caspase-3, caspase-9, and survivin. We also examined susceptibility of gastric mucosa of young and aging rats to ethanol injury and whether down-regulation of PTEN affects susceptibility of aging gastric mucosa to injury. To determine human relevance, we examined expression of PTEN and survivin in human gastric specimens of young and aging individuals. RESULTS Gastric mucosa of aging (vs young) rats has a 60% reduction in mucosal blood flow; prominent hypoxia; and increased early growth response-1 transcription factor and PTEN messenger RNAs, and proteins. It also has increased expression of proapoptotic proteins caspase-3 and capase-9, reduced survivin, and a 6-fold increased apoptosis vs mucosa of young rats. Ethanol-induced gastric mucosal injury in aging (vs young) rats was significantly increased. The down-regulation of PTEN in gastric mucosa of aging rats completely reversed its increased susceptibility to ethanol injury. In aging human gastric mucosa, PTEN expression was significantly increased, whereas survivin was significantly reduced. CONCLUSIONS (1) Gastric mucosa of aging rats has significantly reduced blood flow, tissue hypoxia, activation of Egr-1, PTEN; increased caspases; and reduced survivin. (2) These changes increase susceptibility of aging gastric mucosa to injury.
Collapse
Affiliation(s)
- Andrzej Tarnawski
- Department of Medicine, VA Long Beach Healthcare System and the University of California, Irvine, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ichikawa T, Kusakabe T, Gono Y, Shikama N, Hiruma H, Kawakami T, Ishihara K. Nitric oxide synthase activity in rat gastric mucosa contributes to mucin synthesis elicited by calcitonin gene-related peptide. Biomed Res 2006; 27:117-24. [PMID: 16847357 DOI: 10.2220/biomedres.27.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The majority of research for the calcitonin gene-related peptide (CGRP) in the stomach has been devoted to the submucosal blood flow, and only slight attention has been paid to its involvement in the gastric epithelial function. In this study, we examined the age-related change in the CGRP-containing nerves and its effects on the mucus metabolism. We compared the immunoreactivity for CGRP in the gastric mucosa of 7-week-old rats (young) to that of 52-week-old animals (middle-aged). The effects of CGRP on the mucin biosynthesis were compared using the stomachs from both young and middle-aged rats. The nitric oxide synthase (NOS) activity was measured in the surface and deep mucosa of the gastric corpus. The density of the CGRP nerve fibers was reduced in both the lamina propria and submucosa of the middle-aged rats compared to the young rats. CGRP stimulated the mucin biosynthesis in the cultured corpus mucosa from the 7-week-old rats, but not from the 52-week-old rats. The total NOS activity of the surface layer in the corpus mucosa was markedly reduced in the middle-aged rats compared to the young rats. These findings demonstrate the age-dependent reduction in the CGRP-induced mucin biosynthesis, as well as in the density of the CGRP fibers in the rat stomach. The decreased NOS activity in the surface layer of the oxyntic mucosa in the aged rats may also be a principal cause for the lack of regulation of the mucin biosynthesis by CGRP.
Collapse
Affiliation(s)
- Takafumi Ichikawa
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Interventions to reduce mortality and disability in older people are vital. Aspirin is cheap and effective and known to prevent cardiovascular and cerebrovascular disease, many cancers, and Alzheimer dementia. The widespread use of aspirin in older people is limited by its gastrointestinal side effects. Understanding age-related changes in gastrointestinal physiology that could put older people at risk of the side effects of aspirin may direct strategies to improve tolerance and hence lead to greater numbers of older people being able to take this effective intervention.
Collapse
Affiliation(s)
- Julia L Newton
- Institute for Ageing and Health, University of Newcastle upon Tyne, Care of the Elderly Offices, Royal Victoria Infirmary, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Newton JL. Effect of age-related changes in gastric physiology on tolerability of medications for older people. Drugs Aging 2005; 22:655-61. [PMID: 16060716 DOI: 10.2165/00002512-200522080-00003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies specifically examining the effect of age upon the stomach are limited and frequently uncontrolled for the high prevalence of Helicobacter pylori in this age group. Age-related changes in gastric physiology such as reduced mucosal protection, gastric blood flow and impaired repair mechanisms may all impact upon gastrointestinal adverse effects and how older people tolerate medicines. Understanding how the upper gastrointestinal tract changes with advancing age could allow interventions that lead to more appropriate prescribing for older people, potentially reduce adverse effects, increase compliance with treatment regimens, and may allow older people to take medications that they would not otherwise tolerate. This review emphasises how the stomach changes with age, and how understanding this will aid clinicians when prescribing medications with potential gastrointestinal adverse effects to older people.
Collapse
Affiliation(s)
- Julia L Newton
- Institute for Ageing and Health, University of Newcastle, Newcastle, UK.
| |
Collapse
|
14
|
Hall KE, Proctor DD, Fisher L, Rose S. American gastroenterological association future trends committee report: effects of aging of the population on gastroenterology practice, education, and research. Gastroenterology 2005; 129:1305-38. [PMID: 16230084 DOI: 10.1053/j.gastro.2005.06.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Karen E Hall
- Veterans Affairs Healthcare System, Geriatric Research, Education and Clinical Center, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Aspirin has a role in the prevention of cardiovascular and cerebrovascular disease, Alzheimer's dementia and several cancers. Encouraging all 50 year olds to take low-dose aspirin doubles their chances of living a healthy life into their nineties. The widespread use of aspirin, however, is limited as many older subjects are currently unable to take aspirin because of gastrointestinal side-effects. This review explores why gastrointestinal events occur with aspirin use and how a net benefit from prophylactic aspirin might be achieved in older subjects. It is suggested that, by understanding the age-related changes in upper gastrointestinal physiology and the mechanisms by which aspirin leads to the risk reductions associated with its use, it may be possible to direct interventions to improve tolerability in older subjects. This would allow greater numbers of older subjects to gain the benefits associated with aspirin use.
Collapse
Affiliation(s)
- J L Newton
- Institute for Ageing and Health, University of Newcastle upon Tyne, Care of the Elderly Offices, Royal Victoria Infirmary, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
16
|
Gasparetti AL, Hyslop S, Costa SKP, Priviero FBM, De Nucci G, Antunes E, Zanesco A. Chronotropic response of beta-adrenergic-, muscarinic-, and calcitonin gene-related peptide-receptor agonists in right atria from neonatal capsaicin-treated rats. Neurosci Lett 2002; 325:147-50. [PMID: 12044642 DOI: 10.1016/s0304-3940(02)00134-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We evaluated the potency of isoproterenol, carbachol, pilocarpine and calcitonin gene-related peptide (CGRP) in the rat right atria at 30, 60 and 90 days after neonatal capsaicin treatment. Neonatal rats were pretreated on the second day of life with capsaicin (50 mg/kg). The capsaicin pretreatment caused a five-fold rightward shift at the pEC(50) level on the concentration-response curves to isoproterenol in 30-day-old rats. Propranolol (10 mg/kg, given 15 min prior to capsaicin treatment) prevented this subsensitivity. No changes in the potency of isoproterenol were observed at 60 and 90 days after capsaicin pretreatment. The potency and maximal responses of CGRP in the right atria in 30-day-old rats were significantly higher than in 60- and 90-day-old rats; however, no differences were found between control and capsaicin groups. The potency and maximal responses to carbachol and pilocarpine were not changed in all groups. The neonatal capsaicin treatment reduced by about 74% the CGRP content in the heart in all groups. In summary, capsaicin treatment in newborn rats produces a desensitization of chronotropic response mediated by beta-adrenoceptors in isolated right atria from 30-day-old rats possibly due to a massive release of catecholamines.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Animals, Newborn
- Calcitonin Gene-Related Peptide/metabolism
- Calcitonin Gene-Related Peptide/pharmacology
- Capsaicin/pharmacology
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Dose-Response Relationship, Drug
- Heart Atria/drug effects
- Isoproterenol/pharmacology
- Muscarinic Agonists/pharmacology
- Myocardium/metabolism
- Pilocarpine/pharmacology
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Calcitonin Gene-Related Peptide/drug effects
- Receptors, Calcitonin Gene-Related Peptide/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Time Factors
Collapse
Affiliation(s)
- Alessandra L Gasparetti
- Department of Pharmacology, Faculty of Medical Sciences, UNICAMP, P.O. Box 6111, 13081-970, Campinas (SP), Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Jones JI, Hawkey CJ. Physiology and organ-related pathology of the elderly: stomach ulcers. Best Pract Res Clin Gastroenterol 2001; 15:943-61. [PMID: 11866486 DOI: 10.1053/bega.2001.0251] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Peptic ulcer disease, particularly as a result of its complications, is a burden that is focused on the elderly through their higher Helicobacter pylori prevalence and use of non-steroidal anti-inflammatory drugs (NSAIDs). In these patients, senescence may further increase ulcer susceptibility, particularly in the stomach, by the loss of mucosal protection and repair mechanisms. Age is mainly a marker for the increased prevalence of other complicated ulcer risk factors such as previous ulcer history and use of anti-coagulants, steroids and aspirin. The development of selective cyclo-oxygenase inhibitors (coxibs) has reduced the specific risk of NSAID ulceration, but the residual incidence in high risk patients remains substantially higher than that in young patients without other risk factors. The argument for early surgery versus endoscopic therapy in high risk patients with bleeding ulcers has not been resolved, both having a high mortality. There is still potential for the development of new strategies to prevent primary and secondary ulcers, either by new drug development or by expanding existing co-prescription strategies.
Collapse
Affiliation(s)
- J I Jones
- Divison of Gastroenterology, University Hospital, Nottingham NG7 2UH, UK
| | | |
Collapse
|
18
|
Ichikawa T, Ishihara K, Kusakabe T, Kawakami T, Hotta K. Age-related stimulation by tetragastrin of gastric mucin biosynthesis in rat. Eur J Pharmacol 1999; 366:87-92. [PMID: 10064156 DOI: 10.1016/s0014-2999(98)00863-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of tetragastrin on gastric mucin biosynthesis in middle-aged rats were compared with those in young rats. The incorporation of [3H]glucosamine and [35S]sulfate into mucin was stimulated by tetragastrin in cultured corpus mucosa from 7-week-old rats. In contrast, tetragastrin could not enhance mucin biosynthesis in stomachs from 52-week-old rats. The isosorbide dinitrate-induced stimulation of corpus mucin biosynthesis observed in middle-aged rats was essentially the same as that seen in young rats. Nitric oxide (NO) synthase activity of the corpus was significantly reduced in the middle-aged rats compared to the young rats. NO synthase-immunoreactivity was observed at surface mucous cells in the corpus mucosa of young, but not of middle-aged, rats. These results suggest that aging decreases the effect of gastrin on gastric mucin biosynthesis through the age-related loss of NO synthase function in the surface mucous cell layer of rat stomach.
Collapse
Affiliation(s)
- T Ichikawa
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
19
|
Tashima K, Korolkiewicz R, Kubomi M, Takeuchi K. Increased susceptibility of gastric mucosa to ulcerogenic stimulation in diabetic rats--role of capsaicin-sensitive sensory neurons. Br J Pharmacol 1998; 124:1395-402. [PMID: 9723950 PMCID: PMC1565532 DOI: 10.1038/sj.bjp.0701974] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We examined the gastric mucosal blood flow (GMBF) and ulcerogenic responses following barrier disruption induced by sodium taurocholate (TC) in diabetic rats and investigated the role of capsaicin-sensitive sensory neurons in these responses. 2. Animals were injected streptozotocin (STZ: 70 mg kg(-1), i.p.) and used after 5, 10 and 15 weeks of diabetes with blood glucose levels of > 350 mg dl(-1). The stomach was mounted on an ex-vivo chamber under urethane anaesthesia and exposed to 20 mM TC plus 50 mM HCl for 30 min in the presence of omeprazole. Gastric transmucosal potential difference (PD), GMBF, and luminal acid loss (H+ back-diffusion) were measured before and after exposure to 20 mM TC, and the mucosa was examined for lesions 90 min after TC treatment. 3. Mucosal application of TC caused PD reduction in all groups; the degree of PD reduction was similar between normal and diabetic rats, although basal PD values were lower in diabetic rats. In normal rats, TC treatment caused luminal acid loss, followed by an increase of GMBF, resulting in minimal damage in the mucosa. 4. The increased GMBF responses associated with H+ back-diffusion were mitigated in STZ-treated rats, depending on the duration of diabetes, and severe haemorrhagic lesions occurred in the stomach after 10 weeks of diabetes. 5. Intragastric application of capsaicin increased GMBF in normal rats, but such responses were mitigated in STZ diabetic rats. The amount of CGRP released in the isolated stomach in response to capsaicin was significantly lower in diabetic rats when compared to controls. 6. The deleterious influences on GMBF and mucosal ulcerogenic responses in STZ-diabetic rats were partially but significantly antagonized by daily insulin (4 units rat(-1)) treatment. 7. These results suggest that the gastric mucosa of diabetic rats is more vulnerable to acid injury following barrier disruption, and this change is insulin-sensitive and may be partly accounted for by the impairment of GMBF response associated with acid back-diffusion and mediated by capsaicin-sensitive sensory neurons.
Collapse
Affiliation(s)
- K Tashima
- Department of Pharmacology & Experimental Therapeutics, Kyoto Pharmaceutical University, Yamashina, Japan
| | | | | | | |
Collapse
|
20
|
Hirata T, Ukawa H, Yamakuni H, Kato S, Takeuchi K. Cyclo-oxygenase isozymes in mucosal ulcergenic and functional responses following barrier disruption in rat stomachs. Br J Pharmacol 1997; 122:447-54. [PMID: 9351500 PMCID: PMC1564958 DOI: 10.1038/sj.bjp.0701399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. We examined the effects of selective and nonselective cyclo-oxygenase (COX) inhibitors on various functional changes in the rat stomach induced by topical application of taurocholate (TC) and investigated the preferential role of COX isozymes in these responses. 2. Rat stomachs mounted in ex vivo chambers were perfused with 50 mM HCl and transmucosal potential difference (p.d.), mucosal blood flow (GMBF), luminal acid loss and luminal levels of prostaglandin E2 (PGE2) were measured before, during and after exposure to 20 mM TC. 3. Mucosal application of TC in control rats caused a reduction in p.d., followed by an increase of luminal acid loss and GMBF, and produced only minimal damage in the mucosa 2 h later. Pretreatment with indomethacin (10 mg kg[-1], s.c.), a nonselective COX-1 and COX-2 inhibitor, attenuated the gastric hyperaemic response caused by TC without affecting p.d. and acid loss, resulting in haemorrhagic lesions in the mucosa. In contrast, selective COX-2 inhibitors, such as NS-398 and nimesulide (10 mg kg[-1], s.c.), had no effect on any of the responses induced by TC and did not cause gross damage in the mucosa. 4. Luminal PGE2 levels were markedly increased during and after exposure to TC and this response was significantly inhibited by indomethacin but not by either NS-398 or nimesulide. The expression of COX-1-mRNA was consistently detected in the gastric mucosa before and after TC treatment, while a faint expression of COX-2-mRNA was detected only 2 h after TC treatment. 5. Both NS-398 and nimesulide significantly suppressed carrageenan-induced rat paw oedema, similar to indomethacin. 6. These results confirmed a mediator role for prostaglandins in the gastric hyperaemic response following TC-induced barrier disruption, and suggest that COX-1 but not COX-2 is a key enzyme in maintaining 'housekeeping' functions in the gastric mucosa under both normal and adverse conditions.
Collapse
Affiliation(s)
- T Hirata
- Department of Pharmacology & Experimental Therapeutics, Kyoto Pharmaceutical University, Yamashina, Japan
| | | | | | | | | |
Collapse
|
21
|
Akbulut H, Akbulut KG, Gönül B. Malondialdehyde and glutathione in rat gastric mucosa and effects of exogenous melatonin. Dig Dis Sci 1997; 42:1381-2. [PMID: 9246032 DOI: 10.1023/a:1018881703022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|