1
|
Moldovan JB, Kopera HC, Liu Y, Garcia-Canadas M, Catalina P, Leone P, Sanchez L, Kitzman J, Kidd J, Garcia-Perez J, Moran J. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. Nucleic Acids Res 2024; 52:7761-7779. [PMID: 38850156 PMCID: PMC11260458 DOI: 10.1093/nar/gkae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024] Open
Abstract
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1) ORF2-encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 (Alu-permissive) strains, but not in HeLa-JVM or HeLa-H1 (Alu-nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA-derived SINEs and tRNA-derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR-Alu (SVA) element, and an L1 ORF1-containing mRNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu-permissive and Alu-nonpermissive HeLa strains, suggesting that 7SL- and tRNA-derived SINEs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1-containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu-permissive and Alu-nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu-nonpermissive HeLa strains.
Collapse
Affiliation(s)
- John B Moldovan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huira C Kopera
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Liu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marta Garcia-Canadas
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | | | - Paola E Leone
- Genetics and Genomics Laboratory, SOLCA Hospital, Quito, Ecuador
| | - Laura Sanchez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jose Luis Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | - John V Moran
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Moldovan JB, Kopera HC, Liu Y, Garcia-Canadas M, Catalina P, Leone PE, Sanchez L, Kitzman JO, Kidd JM, Garcia-Perez JL, Moran JV. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592410. [PMID: 38746229 PMCID: PMC11092746 DOI: 10.1101/2024.05.03.592410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1 or L1) ORF2 -encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 ( Alu -permissive) strains, but not in HeLa-JVM or HeLa-H1 ( Alu -nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA -derived SINEs and tRNA -derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR - Alu ( SVA ) element, and an L1 ORF1 -containing messenger RNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu -permissive and Alu -nonpermissive HeLa strains, suggesting that 7SL - and tRNA -derived SINE RNAs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1 -containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu -permissive and Alu -nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu -nonpermissive HeLa strains.
Collapse
|
3
|
Madissoon E, Damdimopoulos A, Katayama S, Krjutškov K, Einarsdottir E, Mamia K, De Groef B, Hovatta O, Kere J, Damdimopoulou P. Pleomorphic Adenoma Gene 1 Is Needed For Timely Zygotic Genome Activation and Early Embryo Development. Sci Rep 2019; 9:8411. [PMID: 31182756 PMCID: PMC6557853 DOI: 10.1038/s41598-019-44882-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023] Open
Abstract
Pleomorphic adenoma gene 1 (PLAG1) is a transcription factor involved in cancer and growth. We discovered a de novo DNA motif containing a PLAG1 binding site in the promoters of genes activated during zygotic genome activation (ZGA) in human embryos. This motif was located within an Alu element in a region that was conserved in the murine B1 element. We show that maternally provided Plag1 is needed for timely mouse preimplantation embryo development. Heterozygous mouse embryos lacking maternal Plag1 showed disrupted regulation of 1,089 genes, spent significantly longer time in the 2-cell stage, and started expressing Plag1 ectopically from the paternal allele. The de novo PLAG1 motif was enriched in the promoters of the genes whose activation was delayed in the absence of Plag1. Further, these mouse genes showed a significant overlap with genes upregulated during human ZGA that also contain the motif. By gene ontology, the mouse and human ZGA genes with de novo PLAG1 motifs were involved in ribosome biogenesis and protein synthesis. Collectively, our data suggest that PLAG1 affects embryo development in mice and humans through a conserved DNA motif within Alu/B1 elements located in the promoters of a subset of ZGA genes.
Collapse
Affiliation(s)
- Elo Madissoon
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14186, Stockholm, Sweden.
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis core facility, Department of Biosciences and Nutrition, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, 50410, Tartu, Estonia.,Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, 00014, Helsinki, Finland
| | - Elisabet Einarsdottir
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14186, Stockholm, Sweden.,Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, 00014, Helsinki, Finland
| | - Katariina Mamia
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Outi Hovatta
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14186, Stockholm, Sweden. .,Research Programs Unit, Molecular Neurology, University of Helsinki, and Folkhälsan Institute of Genetics, 00014, Helsinki, Finland. .,School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, WC2R 2LS, UK.
| | - Pauliina Damdimopoulou
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14186, Stockholm, Sweden. .,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186, Stockholm, Sweden.
| |
Collapse
|
4
|
Evaluating the applicability of mouse SINEs as an alternative normalization approach for RT-qPCR in brain tissue of the APP23 model for Alzheimer’s disease. J Neurosci Methods 2019; 320:128-137. [DOI: 10.1016/j.jneumeth.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 01/04/2023]
|
5
|
Zeng L, Pederson SM, Kortschak RD, Adelson DL. Transposable elements and gene expression during the evolution of amniotes. Mob DNA 2018; 9:17. [PMID: 29942365 PMCID: PMC5998507 DOI: 10.1186/s13100-018-0124-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/01/2018] [Indexed: 01/24/2023] Open
Abstract
Background Transposable elements (TEs) are primarily responsible for the DNA losses and gains in genome sequences that occur over time within and between species. TEs themselves evolve, with clade specific LTR/ERV, LINEs and SINEs responsible for the bulk of species-specific genomic features. Because TEs can contain regulatory motifs, they can be exapted as regulators of gene expression. While TE insertions can provide evolutionary novelty for the regulation of gene expression, their overall impact on the evolution of gene expression is unclear. Previous investigators have shown that tissue specific gene expression in amniotes is more similar across species than within species, supporting the existence of conserved developmental gene regulation. In order to understand how species-specific TE insertions might affect the evolution/conservation of gene expression, we have looked at the association of gene expression in six tissues with TE insertions in six representative amniote genomes. Results A novel bootstrapping approach has been used to minimise the conflation of effects of repeat types on gene expression. We compared the expression of orthologs containing recent TE insertions to orthologs that contained older TE insertions, and the expression of non-orthologs containing recent TE insertions to non-orthologs with older TE insertions. Both orthologs and non-orthologs showed significant differences in gene expression associated with TE insertions. TEs were found associated with species-specific changes in gene expression, and the magnitude and direction of expression changes were noteworthy. Overall, orthologs containing species-specific TEs were associated with lower gene expression, while in non-orthologs, non-species specific TEs were associated with higher gene expression. Exceptions were SINE elements in human and chicken, which had an opposite association with gene expression compared to other species. Conclusions Our observed species-specific associations of TEs with gene expression support a role for TEs in speciation/response to selection by species. TEs do not exhibit consistent associations with gene expression and observed associations can vary depending on the age of TE insertions. Based on these observations, it would be prudent to refrain from extrapolating these and previously reported associations to distantly related species.
Collapse
Affiliation(s)
- Lu Zeng
- 1School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, 5005 Australia
| | - Stephen M Pederson
- 2Bioinformatics Hub, The University of Adelaide, North Terrace, Adelaide, 5005 Australia
| | - R Daniel Kortschak
- 1School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, 5005 Australia
| | - David L Adelson
- 1School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, 5005 Australia
| |
Collapse
|
6
|
Abstract
Our genomes are dominated by repetitive elements. The majority of these elements derive from retrotransposons, which expand throughout the genome through a process of reverse transcription and integration. Short interspersed nuclear elements, or SINEs, are an abundant class of retrotransposons that are transcribed by RNA polymerase III, thus generating exclusively noncoding RNA (ncRNA) that must hijack the machinery required for their transposition. SINE loci are generally transcriptionally repressed in somatic cells but can be robustly induced upon infection with multiple DNA viruses. Recent research has focused on the gene expression and signaling events that are modulated by SINE ncRNAs, particularly during gammaherpesvirus infection. Here, we review the biology of these SINE ncRNAs, explore how DNA virus infection may lead to their induction, and describe how novel gene regulatory and immune-related functions of these ncRNAs may impact the viral life cycle.
Collapse
|
7
|
Yap MW, Colbeck E, Ellis SA, Stoye JP. Evolution of the retroviral restriction gene Fv1: inhibition of non-MLV retroviruses. PLoS Pathog 2014; 10:e1003968. [PMID: 24603659 PMCID: PMC3948346 DOI: 10.1371/journal.ppat.1003968] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
Fv1 is the prototypic restriction factor that protects against infection by the murine leukemia virus (MLV). It was first identified in cells that were derived from laboratory mice and was found to be homologous to the gag gene of an endogenous retrovirus (ERV). To understand the evolution of the host restriction gene from its retroviral origins, Fv1s from wild mice were isolated and characterized. Most of these possess intact open reading frames but not all restricted N-, B-, NR-or NB-tropic MLVs, suggesting that other viruses could have played a role in the selection of the gene. The Fv1s from Mus spretus and Mus caroli were found to restrict equine infectious anemia virus (EIAV) and feline foamy virus (FFV) respectively, indicating that Fv1 could have a broader target range than previously thought, including activity against lentiviruses and spumaviruses. Analyses of the Fv1 sequences revealed a number of residues in the C-terminal region that had evolved under positive selection. Four of these selected residues were found to be involved in the novel restriction by mapping studies. These results strengthen the similarities between the two capsid binding restriction factors, Fv1 and TRIM5α, which support the hypothesis that Fv1 defended mice against waves of retroviral infection possibly including non-MLVs as well as MLVs. We have followed the evolution of the retroviral restriction gene, Fv1, by functional analysis. We show that Fv1 can recognize and restrict a wider range of retroviruses than previously thought including examples from the gammaretrovirus, lentivirus and foamy virus genera. Nearly every Fv1 tested showed a different pattern of restriction activity. We also identify several hypervariable regions in the coding sequence containing positively selected amino acids that we show to be directly involved in determining restriction specificity. Our results strengthen the analogy between Fv1 and another capsid-binding, retrovirus restriction factor, TRIM5α. Although they share no sequence identity they appear to share a similar design and appear likely to recognise different targets by a mechanism involving multiple weak interactions between a virus-binding domain containing several variable regions and the surface of the viral capsid. We also describe a pattern of constant genetic change, implying that different species of Mus have evolved in the face of ever-changing retroviral threats by viruses of different kinds.
Collapse
Affiliation(s)
- Melvyn W. Yap
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Emily Colbeck
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Scott A. Ellis
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Jonathan P. Stoye
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Dridi S. Alu mobile elements: from junk DNA to genomic gems. SCIENTIFICA 2012; 2012:545328. [PMID: 24278713 PMCID: PMC3820591 DOI: 10.6064/2012/545328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/06/2012] [Indexed: 06/02/2023]
Abstract
Alus, the short interspersed repeated sequences (SINEs), are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.
Collapse
Affiliation(s)
- Sami Dridi
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA
| |
Collapse
|
9
|
Structural insights into transcriptional repression by noncoding RNAs that bind to human Pol II. J Mol Biol 2012; 425:3639-48. [PMID: 22954660 DOI: 10.1016/j.jmb.2012.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/14/2012] [Accepted: 08/28/2012] [Indexed: 11/22/2022]
Abstract
Gene transcription is regulated in response to environmental changes and developmental cues. In mammalian cells subjected to stress conditions such as heat shock, transcription of most protein-coding genes decreases, while the transcription of heat shock protein genes increases. Repression involves direct binding to RNA polymerase II (Pol II) of certain noncoding RNAs (ncRNAs) that are upregulated upon heat shock. Another class of ncRNAs is also upregulated and binds to Pol II but does not inhibit transcription. Incorporation of repressive ncRNAs into pre-initiation complexes prevents transcription initiation, while non-repressive ncRNAs are displaced from Pol II by TFIIF. Here, we present cryo-electron microscopy reconstructions of human Pol II in complex with six different ncRNAs from mouse and human. Our structures show that both repressive and non-repressive ncRNAs bind to a conserved binding site within the cleft of Pol II. The site, which is also shared with a previously characterized yeast aptamer, is close to the active center and, thus, in an ideal position to regulate transcription. Importantly, additional RNA elements extend flexibly beyond the docking site. We propose that the differences concerning the repressive activity of the ncRNAs analyzed must be due to the distinct character of these more unstructured, flexible segments of the RNA that emanate from the cleft.
Collapse
|
10
|
Vizirianakis IS, Tezias SS, Amanatiadou EP, Tsiftsoglou AS. Possible interaction between B1 retrotransposon-containing sequences and β majorglobin gene transcriptional activation during MEL cell erythroid differentiation. Cell Biol Int 2012; 36:47-55. [DOI: 10.1042/cbi20110236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
11
|
Abstract
Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements.
Collapse
|
12
|
Tashima S, Kaneko Y, Anezaki T, Baba M, Yachimori S, Abramov AV, Saveljev AP, Masuda R. Identification and Molecular Variations of CAN-SINEs from theZFYGene Final Intron of the Eurasian Badgers (GenusMeles). MAMMAL STUDY 2011. [DOI: 10.3106/041.036.0105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Walters RD, Kugel JF, Goodrich JA. InvAluable junk: the cellular impact and function of Alu and B2 RNAs. IUBMB Life 2009; 61:831-7. [PMID: 19621349 DOI: 10.1002/iub.227] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The short interspersed elements (SINEs) Alu and B2 are retrotransposons that litter the human and mouse genomes, respectively. Given their abundance, the manner in which these elements impact the host genome and what their biological functions might be is of significant interest. Finding that Alu and B2 SINEs are transcribed, both as distinct RNA polymerase III transcripts and as part of RNA polymerase II transcripts, and that these SINE encoded RNAs indeed have biological functions has refuted the historical notion that SINEs are merely "junk DNA." This article reviews currently known cellular functions of both RNA polymerase II and RNA polymerase III transcribed Alu and B2 RNAs. These RNAs, in different forms, control gene expression by participating in processes as diverse as mRNA transcriptional control, A-to-I editing, nuclear retention, and alternative splicing. Future studies will likely reveal additional contributions of Alu and B2 RNAs as regulators of gene expression.
Collapse
Affiliation(s)
- Ryan D Walters
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
14
|
Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF, Goodrich JA. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 2008; 29:499-509. [PMID: 18313387 DOI: 10.1016/j.molcel.2007.12.013] [Citation(s) in RCA: 361] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/24/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
Noncoding RNAs (ncRNAs) have recently been discovered to regulate mRNA transcription in trans, a role traditionally reserved for proteins. The breadth of ncRNAs as transacting transcriptional regulators and the diversity of signals to which they respond are only now becoming recognized. Here we show that human Alu RNA, transcribed from short interspersed elements (SINEs), is a transacting transcriptional repressor during the cellular heat shock response. Alu RNA blocks transcription by binding RNA polymerase II (Pol II) and entering complexes at promoters in vitro and in human cells. Transcriptional repression by Alu RNA involves two loosely structured domains that are modular, a property reminiscent of classical protein transcriptional regulators. Two other SINE RNAs, human scAlu RNA and mouse B1 RNA, also bind Pol II but do not repress transcription in vitro. These studies provide an explanation for why mouse cells harbor two major classes of SINEs, whereas human cells contain only one.
Collapse
Affiliation(s)
- Peter D Mariner
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, CO 80309-0215, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Umylny B, Presting G, Efird JT, Klimovitsky BI, Ward WS. Most human Alu and murine B1 repeats are unique. J Cell Biochem 2007; 102:110-21. [PMID: 17407136 DOI: 10.1002/jcb.21278] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alus and B1s are short interspersed repeat elements (SINEs) indirectly derived from the 7SL RNA gene. While most researchers recognize that there exists extensive variability between individual elements, the extent of this variability has never been systematically tested. We examined all Alu elements over 200 nucleotides and all B1 elements over 100 nucleotides in the human and mouse genomes, and analyzed the number of copies of each element at various stringencies from 22 nucleotides to full length. Over 98% of 923,277 Alus and 365,377 B1s examined were unique when queried at full length. When the criterion was reduced to half the length of the repeat, 97% of the Alus and 73% of the B1s were still found to be a single copy. All single and multi-copy sequences have been mapped and documented. Access to the data is possible using the AluPlus website http://www.ibr.hawaii.edu.
Collapse
Affiliation(s)
- Boris Umylny
- Institute of Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96822, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Alus and B1s are short interspersed repeat elements (SINEs) derived from the 7SL RNA gene. Alus and B1s exist in the cytoplasm as non-coding RNA indicating that they are actively transcribed, but their function, if any, is unknown. Transcription of individual SINEs is a prerequisite for retroposition, but it is also possible that individual Alu and B1 elements have some cellular functions. Previous studies suggest that transcription of Alu elements depends on the presence of an RNA polymerase-III bipartite promoter and the poly-A tail. Sequencing of small RNAs has demonstrated that the members of the Y and S subfamily are expressed. We analyzed almost one million Alu sequences longer than 200 nucleotides for the presence of RNA polymerase-III bipartite promoter sequences. More than half contained a promoter indicating some potential for expression. We searched 7.7 million human EST sequences in dbEST for the presence of Alu non-coding RNAs and found evidence for the expression of 452. Analysis of mouse spermatogenic dbEST libraries revealed an apparent relationship between the level of differentiation and the level of B1-related sequences in the EST library.
Collapse
Affiliation(s)
- Boris Umylny
- Asia Pacific Bioinformatics Research Institute, Honolulu, HI, USA
| | | | | |
Collapse
|
17
|
Veniaminova NA, Vassetzky NS, Lavrenchenko LA, Popov SV, Kramerov DA. Phylogeny of the order rodentia inferred from structural analysis of short retroposon B1. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407070071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Veniaminova NA, Vassetzky NS, Kramerov DA. B1 SINEs in different rodent families. Genomics 2007; 89:678-86. [PMID: 17433864 DOI: 10.1016/j.ygeno.2007.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/28/2007] [Accepted: 02/28/2007] [Indexed: 11/18/2022]
Abstract
B1 SINEs were studied in 22 families covering all major rodent lineages. The number of B1 copies considerably varies, from 1 x 10(4) in Geomyidae to 1 x 10(6) in Myodonta. B1 sequences can be divided into three main structural variants: B1 with a 20-bp tandem duplication (found in Gliridae, Sciuridae, and Aplodontidae), B1 with a 29-bp duplication (found in other families), and proto-B1 without duplication (pB1). These variants can be further subdivided according to their characters, including specific 7-, 9-, or 10-bp deletions. Different B1 subfamilies predominate in different rodent families. The analysis of B1 variants allowed us to propose possible pathways for the evolution of this SINE in the context of rodent evolution.
Collapse
Affiliation(s)
- Natalia A Veniaminova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | | |
Collapse
|
19
|
Desmarais E, Belkhir K, Garza JC, Bonhomme F. Local mutagenic impact of insertions of LTR retrotransposons on the mouse genome. J Mol Evol 2006; 63:662-75. [PMID: 17075698 DOI: 10.1007/s00239-005-0301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 07/26/2006] [Indexed: 11/24/2022]
Abstract
Solitary LTR loci are the predominant form of LTR retrotransposons in most eukaryotic genomes. They originate from recombination between the two LTRs of an ancestral retrovirus and are therefore incapable of transposition. Despite this inactivity, they appear to have a substantial impact on the host genome. Here we use the murine RMER10 LTR family as an example to describe how such elements can reshape regions of the genome through multiple mutations on an evolutionary time scale. Specifically, we use phylogenetic analysis of multiple copies of RMER10 in rodent species, as well as comparisons of orthologous pairs in mouse and rat, to argue that insertions of members of this family have locally induced the emergence of tandem repeat loci as well as many indels. Analysis of structural aspects of these sequences (secondary structures and transcription factors signals) may explain why RMER10 can become endogenous "mutagenic" factors through induction of replication fork blockages and/or error-prone repair of aberrant DNA structures. This hypothesis is also consistent with features of other interspersed repeated elements.
Collapse
Affiliation(s)
- Erick Desmarais
- Laboratoire Génome, Populations, Interactions, Adaptation, UMR5171 CNRS-IFREMER, Université Montpellier II, CC-G3 Montpellier Place E. Bataillon 34095, France.
| | | | | | | |
Collapse
|
20
|
Watanabe M, Nikaido M, Tsuda TT, Inoko H, Mindell DP, Murata K, Okada N. The rise and fall of the CR1 subfamily in the lineage leading to penguins. Gene 2005; 365:57-66. [PMID: 16368202 DOI: 10.1016/j.gene.2005.09.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 08/30/2005] [Accepted: 09/27/2005] [Indexed: 12/01/2022]
Abstract
The evolution of penguins has been investigated extensively, although inconclusively, by morphologists, biogeographers and molecular phylogeneticists. We investigated this issue using retroposon analysis of insertions of CR1, which is a member of the LINE (long interspersed element) family, in the genomes of penguins and penguin relatives. The retroposon method is a powerful tool for identifying monophyletic groups. Because retroposons often show different relative frequencies of retroposition during evolution, it is first necessary to identify a certain subgroup that was specifically active during the period when the species in question diverged. Hence, we systematically analyzed many CR1 members isolated from penguin and penguin-related genomes. These CR1s are divided into at least three distinct subgroups that share diagnostic nucleotide insertions and/or deletions, namely, penguin CR1 Sph I, Sph II type A and Sph II type B. The analysis of the inserted retroposons by PCR revealed that different CR1 subfamilies or types had amplified at different rates among different periods during penguin evolution. Namely, the penguin CR1 Sph I subfamily had higher rates of retroposition in a common ancestor of all orders examined in this study or at least in a common ancestor of all extant penguins, and the subfamily Sph II type A also had the same tendency. Therefore, these CR1 members can be used to elucidate the phylogenetic relationships of Sphenisciformes (penguins) among different avian orders. In contrast, the penguin CR1 Sph II type B subfamily had higher rates of retroposition just before and after the emergence of the extant genera in Spheniscidae, suggesting that they are useful for elucidating the intra-relationships among extant penguins. This is the first report for the characterization among the members of CR1 family in avian genomes excluding those of chickens. Hence, this work will be a cornerstone for elucidating the phylogenetic relationships in penguin evolution using the retroposon method.
Collapse
Affiliation(s)
- Maiko Watanabe
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Rinehart TA, Grahn RA, Wichman HA. SINE extinction preceded LINE extinction in sigmodontine rodents: implications for retrotranspositional dynamics and mechanisms. Cytogenet Genome Res 2005; 110:416-25. [PMID: 16093694 DOI: 10.1159/000084974] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 03/07/2004] [Indexed: 11/19/2022] Open
Abstract
Short Interspersed Nuclear Elements, or SINEs, retrotranspose despite lacking protein-coding capability. It has been proposed that SINEs utilize enzymes produced in trans by Long Interspersed Nuclear Elements, or LINEs. Strong support for this hypothesis is found in LINE and SINE pairs that share sequence homology; however, LINEs and SINEs in primates and rodents are only linked by an insertion site motif. We have now profiled L1 LINE and B1 SINE activity in 24 rodent species including candidate taxa for the first documented L1 extinction. As expected, there was no evidence for recent activity of B1s in species that also lack L1 activity. However, B1 silencing appears to have preceded L1 extinction, since B1 activity is also lacking in the genus most closely related to those lacking active L1s despite the presence of active L1s in this genus. A second genus with active L1s but inactive B1s was also identified.
Collapse
Affiliation(s)
- T A Rinehart
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | |
Collapse
|
22
|
Vizirianakis IS, Tsiftsoglou AS. Blockade of murine erythroleukemia cell differentiation by hypomethylating agents causes accumulation of discrete small poly(A)- RNAs hybridized to 3'-end flanking sequences of beta(major) globin gene. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:101-14. [PMID: 15777845 DOI: 10.1016/j.bbamcr.2004.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 09/02/2004] [Accepted: 09/03/2004] [Indexed: 11/26/2022]
Abstract
Induction of murine erythroleukemia (MEL) cell differentiation is accompanied by transcriptional activation of globin genes and biosynthesis of hemoglobin. In this study, we observed cytoplasmic accumulation of relatively small RNAs of different size (150-600 nt) hybridized to alpha1 and beta(major) globin DNA probes in MEL cells blocked to differentiate by hypomethylating agents (neplanocin A, 3-deazaneplanocin A and cycloleucine). These RNAs lack poly(A) tail and appear to be quite stable. Search within the 3'-end flanking sequences of beta(major) globin gene revealed the presence of a B1 repeat element, several ATG initiation codons, a GATA-1 consensus sequence and sequences recognized by AP-1/NF-E2 and erythroid Krüppel-like factor (EKLF) transcription factors. These data taken together indicate that exposure of MEL cells to hypomethylating agents promotes accumulation of relatively small discrete RNA transcripts lacking poly(A) tail regardless of the presence or absence of inducer dimethylsulfoxide (DMSO). However, the relative steady-state level of small RNAs was comparatively higher in cells co-exposed to inducer and each one of the hypomethylating agents. Although the orientation of these RNAs has not been established as yet, the possibility these small poly(A)- RNAs which are induced by hypomethylating agents may be involved in the blockade of MEL cell differentiation program is discussed.
Collapse
Affiliation(s)
- Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece.
| | | |
Collapse
|
23
|
Zhang X, Wessler SR. BoS: A Large and Diverse Family of Short Interspersed Elements (SINEs) in Brassica oleracea. J Mol Evol 2005; 60:677-87. [PMID: 15983875 DOI: 10.1007/s00239-004-0259-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 10/11/2004] [Indexed: 10/25/2022]
Abstract
Short interspersed elements (SINEs) are nonautonomous non-LTR retrotransposons that populate eukaryotic genomes. Numerous SINE families have been identified in animals, whereas only a few have been described in plants. Here we describe a new family of SINEs, named BoS, that is widespread in Brassicaceae and present at approximately 2000 copies in Brassica oleracea. In addition to sharing a modular structure and target site preference with previously described SINEs, BoS elements have several unusual features. First, the head regions of BoS RNAs can adopt a distinct hairpin-like secondary structure. Second, with 15 distinct subfamilies, BoS represents one of the most diverse SINE families described to date. Third, several of the subfamilies have a mosaic structure that has arisen through the exchange of sequences between existing subfamilies, possibly during retrotransposition. Analysis of BoS subfamilies indicate that they were active during various time periods through the evolution of Brassicaceae and that active elements may still reside in some Brassica species. As such, BoS elements may be a valuable tool as phylogenetic makers for resolving outstanding issues in the evolution of species in the Brassicaceae family.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, 30602, USA
| | | |
Collapse
|
24
|
Dewannieux M, Heidmann T. L1-mediated retrotransposition of murine B1 and B2 SINEs recapitulated in cultured cells. J Mol Biol 2005; 349:241-7. [PMID: 15890192 DOI: 10.1016/j.jmb.2005.03.068] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/22/2005] [Accepted: 03/25/2005] [Indexed: 01/08/2023]
Abstract
SINEs are short interspersed nucleotide elements with transpositional activity, present at a high copy number (up to a million) in mammalian genomes. They are 80-400 bp long, non-coding sequences which derive either from the 7SL RNA (e.g. human Alus, murine B1s) or tRNA (e.g. murine B2s) polymerase III-driven genes. We have previously demonstrated that Alus very efficiently divert the enzymatic machinery of the autonomous L1 LINE (long interspersed nucleotide element) retrotransposons to transpose at a high rate. Here we show, using an ex vivo assay for transposition, that both B1 and B2 SINEs can be mobilized by murine LINEs, with the hallmarks of a bona fide retrotransposition process, including target site duplications of varying lengths and integrations into A-rich sequences. Despite different phylogenetic origins, transposition of the tRNA-derived B2 sequences is as efficient as that of the human Alus, whereas that of B1s is 20-100-fold lower despite a similar high copy number of these elements in the mouse genome. We provide evidence, via an appropriate nucleotide substitution within the B1 sequence in a domain essential for its intracellular targeting, that the current B1 SINEs are not optimal for transposition, a feature most probably selected for the host sake in the course of evolution.
Collapse
Affiliation(s)
- Marie Dewannieux
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | |
Collapse
|
25
|
Pélissier T, Bousquet-Antonelli C, Lavie L, Deragon JM. Synthesis and processing of tRNA-related SINE transcripts in Arabidopsis thaliana. Nucleic Acids Res 2004; 32:3957-66. [PMID: 15282328 PMCID: PMC506818 DOI: 10.1093/nar/gkh738] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the ubiquitous distribution of tRNA-related short interspersed elements (SINEs) in eukaryotic species, very little is known about the synthesis and processing of their RNAs. In this work, we have characterized in detail the different RNA populations resulting from the expression of a tRNA-related SINE S1 founder copy in Arabidopsis thaliana. The main population is composed of poly(A)-ending (pa) SINE RNAs, while two minor populations correspond to full-length (fl) or poly(A) minus [small cytoplasmic (sc)] SINE RNAs. Part of the poly(A) minus RNAs is modified by 3'-terminal addition of C or CA nucleotides. All three RNA populations accumulate in the cytoplasm. Using a mutagenesis approach, we show that the poly(A) region and the 3' end unique region, present at the founder locus, are both important for the maturation and the steady-state accumulation of the different S1 RNA populations. The observation that primary SINE transcripts can be post-transcriptionally processed in vivo into a poly(A)-ending species introduces the possibility that this paRNA is used as a retroposition intermediate.
Collapse
MESH Headings
- 3' Untranslated Regions
- Arabidopsis/genetics
- Base Sequence
- Cytoplasm/metabolism
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Polyadenylation
- RNA Processing, Post-Transcriptional
- RNA, Plant/biosynthesis
- RNA, Plant/chemistry
- RNA, Plant/metabolism
- RNA, Transfer/biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Regulatory Sequences, Ribonucleic Acid
- Short Interspersed Nucleotide Elements
- Transcription, Genetic
Collapse
Affiliation(s)
- Thierry Pélissier
- CNRS UMR 6547 BIOMOVE and GDR 2157, Université Blaise Pascal Clermont-Ferrand II, 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|
26
|
Kim H, Kwon YM, Kim JS, Lee H, Park JH, Shim YM, Han J, Park J, Kim DH. Tumor-Specific Methylation in Bronchial Lavage for the Early Detection of Non-Small-Cell Lung Cancer. J Clin Oncol 2004; 22:2363-70. [PMID: 15197197 DOI: 10.1200/jco.2004.10.077] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PurposeThe aim of this study was to identify tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer (NSCLC) by differentiating the age-related methylation from the tumor-specific methylation in NSCLC.Patients and MethodsEighty-five NSCLC patients and 127 cancer-free subjects participated in this study. Aberrant methylation at the promoters of the p16, Ras association domain family 1A (RASSF1A), fragile histidine triad (FHIT), H-cadherin, and retinoic acid receptor β (RARβ) genes were evaluated in the resected tumor tissues and bronchial lavage samples of NSCLC patients and in the bronchial lavage samples of cancer-free subjects by methylation-specific polymerase chain reaction.ResultsOf the 127 cancer-free samples, methylation was detected in 6% for p16, 13% for RARβ, 3% for H-cadherin, 4% for RASSF1A, and 28% for FHIT. Hypermethylation of the p16, RARβ, H-cadherin, and RASSF1A genes was not associated with patient age and smoking, whereas hypermethylation of the FHIT promoter occurred more frequently in older patients (P = .02) and was associated with exposure to tobacco smoke (P = .001). A strong correlation between age and smoking was found in patients with hypermethylation of the FHIT gene (r = 0.36; P = .03). A total of 68% of the bronchial lavage samples from the 85 NSCLC patients showed methylation of at least one of p16, RARβ, H-cadherin, and RASSF1A genes.ConclusionOur study suggests that tumor-specific methylation of the p16, RASSF1A, H-cadherin, and RARβ genes may be a valuable biomarker for the early detection of NSCLC in bronchial lavage, and that the age-related methylation of FHIT gene in the normal bronchial epithelium is related to the exposure to tobacco smoke.
Collapse
Affiliation(s)
- Hojoong Kim
- Department of Thoracic Surgery, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The effect that different regions of the Alu consensus sequence have upon the stability and accumulation of its RNA polymerase III (Pol III) directed transcripts was determined by transiently overexpressing Alu deletion and chimeric constructs in human 293 cells. Transcripts of the left Alu monomer are more stable than those of the full-length consensus sequence and any additional 3' sequence beyond the left monomer destabilizes the resulting transcript. Neither the middle A-rich region nor the 3' A-rich tail specifically affect the stability of Alu transcripts. However, the right monomer is inherently less stable than corresponding left monomer transcripts. Alu's dimeric structure and sequences peculiar to the right monomer each limit the stability and steady state accumulation of its transcripts. A host requirement to rapidly metabolize Alu RNA or restrict its abundance may have selected for these two features of the Alu consensus sequence.
Collapse
Affiliation(s)
- Tzu Huey Li
- Departments of Surgery and Genetics, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
28
|
Abstract
Although B1 and Alu were the first discovered Short Interspersed Elements (SINEs), the studies of these genomic repeats were mostly limited to mice and humans and little data on their presence in other animals were available. Here we report the presence of these SINEs in a wide range of rodents (in all 15 tested families) as well as primates and tree-shrews and their absence in other mammals. Distribution pattern of these SINEs in mammals supports close relationship between rodents and primates as well as tree-shrews. Sequence analysis of these elements, apparently descending from cellular 7SL RNA indicates their rearrangements such as dimerization (Alu), quasi-dimerization (B1), acquiring a tRNA-related unit (B1-dID), extended deletions, etc., preceding their active expansion in the genomes. The revealed common pattern of microenvironment of some rearrangement hot spots in SINEs (internal duplications and deletions) suggests involvement of short direct repeats in the mechanism of such rearrangements. This hypothesis allows us to explain short rearrangements in these and other short retroposons.
Collapse
Affiliation(s)
- Nikita S Vassetzky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991, Moscow, Russia
| | | | | |
Collapse
|
29
|
Gilbert N, Bomar JM, Burmeister M, Moran JV. Characterization of a mutagenic B1 retrotransposon insertion in the jittery mouse. Hum Mutat 2004; 24:9-13. [PMID: 15221784 DOI: 10.1002/humu.20060] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
B1 elements are an abundant class of short interspersed elements (SINEs) in the mouse genome and mobilize by a process known as retrotransposition. Here, we report the characterization of a mutagenic B1 insertion into exon 4 of the Atcay gene, which was previously shown to be responsible for the jittery mouse. Mutations in the human ortholog of this gene, ATCAY, are responsible for Cayman ataxia. The B1 insertion is approximately 150-bp long, ends in a 45-50-bp polyadenylic acid (poly A) tail, is flanked by a perfect 13-bp target-site duplication, and is inserted into a sequence that resembles a LINE-1 endonuclease consensus cleavage site. Computational analysis indicates that the mutagenic insertion is most closely related to elements of the B1-C subfamily, and we have identified two possible progenitor B1 sequences on mouse chromosome 19. Together, these data demonstrate that B1 retrotransposition is ongoing in the mouse genome and is consistent with the hypothesis that the reverse transcriptase and endonuclease encoded by LINE-1 elements mediate B1 mobility.
Collapse
Affiliation(s)
- Nicolas Gilbert
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | | | | | |
Collapse
|
30
|
Rubin CM, Kimura RH, Schmid CW. Selective stimulation of translational expression by Alu RNA. Nucleic Acids Res 2002; 30:3253-61. [PMID: 12136107 PMCID: PMC135740 DOI: 10.1093/nar/gkf419] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human Alu and adenovirus VA1 RNAs each stimulate the translational expression of reporter genes in co-transient transfection assays without affecting either the rate of global protein synthesis or the abundance of the reporter mRNA. This selective, post-transcriptional stimulation of expression, which is observed in human and mouse cell lines and for three reporters, acts through a PKR- independent mechanism. The activity of Alu and VA1 RNAs in this assay is transient, causing a reduction in the lag time for the translational expression of the newly synthesized reporter mRNAs. The reduction in this lag time accounts for the relative selectivity of the effect upon the expression of the reporter and suggests novel roles for Alu and VA1 RNA in cell stress recovery and viral infection. Deletion analysis demonstrates that a specific region residing within the right monomer of the dimeric Alu consensus sequence is necessary for activity. Highly abundant left Alu monomer transcripts are inactive but the right Alu monomer is fully active, although its transcripts are scarce. Mouse B1 and B2 SINE RNAs stimulate reporter gene expression in mouse cells, suggesting that this activity is a general property of eucaryotic SINEs.
Collapse
Affiliation(s)
- Carol M Rubin
- Section of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
31
|
Heyer E, Zietkiewicz E, Rochowski A, Yotova V, Puymirat J, Labuda D. Phylogenetic and familial estimates of mitochondrial substitution rates: study of control region mutations in deep-rooting pedigrees. Am J Hum Genet 2001; 69:1113-26. [PMID: 11582570 PMCID: PMC1274355 DOI: 10.1086/324024] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Accepted: 08/23/2001] [Indexed: 11/03/2022] Open
Abstract
We studied mutations in the mtDNA control region (CR) using deep-rooting French-Canadian pedigrees. In 508 maternal transmissions, we observed four substitutions (0.0079 per generation per 673 bp, 95% CI 0.0023-0.186). Combined with other familial studies, our results add up to 18 substitutions in 1,729 transmissions (0.0104), confirming earlier findings of much greater mutation rates in families than those based on phylogenetic comparisons. Only 12 of these mutations occurred at independent sites, whereas three positions mutated twice each, suggesting that pedigree studies preferentially reveal a fraction of highly mutable sites. Fitting the data through use of a nonuniform rate model predicts the presence of 40 (95% CI 27-54) such fast sites in the whole CR, characterized by the mutation rate of 274 per site per million generations (95% CI 138-410). The corresponding values for hypervariable regions I (HVI; 1,729 transmissions) and II (HVII; 1,956 transmissions), are 19 and 22 fast sites, with rates of 224 and 274, respectively. Because of the high probability of recurrent mutations, such sites are expected to be of no or little informativity for the evaluation of mutational distances at the phylogenetic time scale. The analysis of substitution density in the alignment of 973 HVI and 650 HVII unrelated European sequences reveals that the bulk of the sites mutate at relatively moderate and slow rates. Assuming a star-like phylogeny and an average time depth of 250 generations, we estimate the rates for HVI and HVII at 23 and 24 for the moderate sites and 1.3 and 1.0 for the slow sites. The fast, moderate, and slow sites, at the ratio of 1:2:13, respectively, describe the mutation-rate heterogeneity in the CR. Our results reconcile the controversial rate estimates in the phylogenetic and familial studies; the fast sites prevail in the latter, whereas the slow and moderate sites dominate the phylogenetic-rate estimations.
Collapse
Affiliation(s)
- Evelyne Heyer
- Laboratoire d’Anthropologie Biologique (CNRS/Paris VII/MNHN), Musée de l’Homme, Paris; Centre de Recherche, Hôpital Sainte-Justine, and Département de Pédiatrie, Université de Montréal, Montréal; Instytut Genetyki Czlowieka, PAN, Poznan, Poland; and Centre de recherche du CHUL, Sainte-Foy, Québec, Canada
| | - Ewa Zietkiewicz
- Laboratoire d’Anthropologie Biologique (CNRS/Paris VII/MNHN), Musée de l’Homme, Paris; Centre de Recherche, Hôpital Sainte-Justine, and Département de Pédiatrie, Université de Montréal, Montréal; Instytut Genetyki Czlowieka, PAN, Poznan, Poland; and Centre de recherche du CHUL, Sainte-Foy, Québec, Canada
| | - Andrzej Rochowski
- Laboratoire d’Anthropologie Biologique (CNRS/Paris VII/MNHN), Musée de l’Homme, Paris; Centre de Recherche, Hôpital Sainte-Justine, and Département de Pédiatrie, Université de Montréal, Montréal; Instytut Genetyki Czlowieka, PAN, Poznan, Poland; and Centre de recherche du CHUL, Sainte-Foy, Québec, Canada
| | - Vania Yotova
- Laboratoire d’Anthropologie Biologique (CNRS/Paris VII/MNHN), Musée de l’Homme, Paris; Centre de Recherche, Hôpital Sainte-Justine, and Département de Pédiatrie, Université de Montréal, Montréal; Instytut Genetyki Czlowieka, PAN, Poznan, Poland; and Centre de recherche du CHUL, Sainte-Foy, Québec, Canada
| | - Jack Puymirat
- Laboratoire d’Anthropologie Biologique (CNRS/Paris VII/MNHN), Musée de l’Homme, Paris; Centre de Recherche, Hôpital Sainte-Justine, and Département de Pédiatrie, Université de Montréal, Montréal; Instytut Genetyki Czlowieka, PAN, Poznan, Poland; and Centre de recherche du CHUL, Sainte-Foy, Québec, Canada
| | - Damian Labuda
- Laboratoire d’Anthropologie Biologique (CNRS/Paris VII/MNHN), Musée de l’Homme, Paris; Centre de Recherche, Hôpital Sainte-Justine, and Département de Pédiatrie, Université de Montréal, Montréal; Instytut Genetyki Czlowieka, PAN, Poznan, Poland; and Centre de recherche du CHUL, Sainte-Foy, Québec, Canada
| |
Collapse
|
32
|
Myouga F, Tsuchimoto S, Noma K, Ohtsubo H, Ohtsubo E. Identification and structural analysis of SINE elements in the Arabidopsis thaliana genome. Genes Genet Syst 2001; 76:169-79. [PMID: 11569500 DOI: 10.1266/ggs.76.169] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An insertion sequence was found in a Mu homologue in the genome of Arabidopsis thaliana. The insertion sequence had poly(A) at the 3' end, and promoter motifs (A- and B-boxes) recognized by RNA polymerase III. The sequence was flanked by direct repeats of a 15-bp sequence of the Mu homologue, which appears to be a target-site sequence duplicated upon insertion. These findings indicate that the insertion sequence is a retroposon SINE, and it was therefore named AtSN (A. thaliana SINE). Many members of the AtSN family were identified through a computer-aided homology search of databases and classified into two subfamilies, AtSN1 and AtSN2, having consensus sequences 159 and 149 bp in length, respectively. These had no homology to SINEs in other organisms. About half of AtSN members were truncated through loss of a region at either end of the element. Most of them were truncated at the 5' end, and had a duplication of the target-site sequence. This suggests that the ones with 5' truncation retroposed by the same mechanism as those without truncation. Members of the AtSN1 or AtSN2 subfamilies had many base substitutions when compared with the consensus sequence. All of the members examined were present in three different ecotypes of A. thaliana (Columbia, Landsberg erecta, and Wassilewskija). These findings suggest that AtSN members had proliferatedbefore the A. thaliana ecotype strains diverged.
Collapse
Affiliation(s)
- F Myouga
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
33
|
Ueda Y, Chaudhuri G. Differential expression of B1-containing transcripts in Leishmania-exposed macrophages. J Biol Chem 2000; 275:19428-32. [PMID: 10781585 PMCID: PMC3086771 DOI: 10.1074/jbc.m001336200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
When the parasitic protozoan Leishmania infect host macrophage cells, establishment of the infection requires alteration in the expression of genes in both the parasite and the host cells. In the early phase of infection of macrophages in vitro, Leishmania exposure affects the expression of a group of mouse macrophage genes containing the repetitive transposable element designated B1 sequence. In Leishmania-exposed macrophages compared with unexposed macrophages, small (approximately 0.5 kilobase) B1-containing RNAs (small B1-RNAs) are down-regulated, and large (1-4 kilobases) B1-containing RNAs (large B1-RNA) are up-regulated. The down-regulation of small B1-RNAs precedes the up-regulation of large B1-RNAs in Leishmania-exposed macrophages. These differential B1-containing gene expressions in Leishmania-exposed macrophages were verified using individual small-B1-RNA and large B1-RNA. The differential expressions of the B1-containing RNAs at the early phase of Leishmania-macrophage interaction may associate the establishment of the leishmanial infection.
Collapse
Affiliation(s)
| | - Gautam Chaudhuri
- To whom correspondence should be addressed: Dept. of Microbiology, School of Medicine, Meharry Medical College, 1005 D. B. Todd Jr. Blvd., Nashville, TN 37208. Tel.: 615-327-6499; Fax: 615-327-5559;
| |
Collapse
|
34
|
Abstract
Several distinct families of endogenous retrovirus-like elements (ERVs) exist in the genomes of primates. Despite the important evolutionary consequences that carrying these intragenomic parasites may have for their hosts, our knowledge about their evolution is still scarce. A matter of particular interest is whether evolution of ERVs occurs via a master lineage or through several lineages coexisting over long periods of time. In this work, the paleogenomic approach has been applied to the study of the evolution of ERV9, one of the human endogenous retrovirus families mobilized during primate evolution. By searching the GenBank database with the first 676 bp of the ERV9 long terminal repeat, we identified 156 different element insertions into the human genome. These elements were grouped into 14 subfamilies based on several characteristic nucleotide differences. The age of each subfamily was roughly estimated based on the average sequence divergence of its members from the subfamily consensus sequence. Determination of the sequential order of diagnostic substitutions led to the identification of four distinct lineages, which retained their capacity of transposition over extended periods of evolution. Strong evidence for mosaic evolution of some of these lineages is presented. Taken altogether, the available data indicate that the possibility of ERV9 still being active in the human lineage can not be discarded.
Collapse
Affiliation(s)
- J Costas
- Departamento de Bioloxía Fundamental, Facultade de Bioloxía, Universidade de Santiago de Compostela, Spain.
| | | |
Collapse
|
35
|
Yates PA, Burman RW, Mummaneni P, Krussel S, Turker MS. Tandem B1 elements located in a mouse methylation center provide a target for de novo DNA methylation. J Biol Chem 1999; 274:36357-61. [PMID: 10593928 DOI: 10.1074/jbc.274.51.36357] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cis-acting methylation center that signals de novo DNA methylation is located upstream of the mouse Aprt gene. In the current study, two approaches were taken to determine if tandem B1 repetitive elements found at the 3' end of the methylation center contribute to the methylation signal. First, bisulfite genomic sequencing demonstrated that CpG sites within the B1 elements were methylated at relative levels of 43% in embryonal stem cells deficient for the maintenance DNA methyltransferase when compared with wild type embryonal stem cells. Second, the ability of the B1 elements to signal de novo methylation upon stable transfection into mouse embryonal carcinoma cells was examined. This approach demonstrated that the B1 elements were methylated de novo to a high level in the embryonal carcinoma cells and that the B1 elements acted synergistically. The results from these experiments provide strong evidence that the tandem B1 repetitive elements provide a significant fraction of the methylation center signal. By extension, they also support the hypothesis that one role for DNA methylation in mammals is to protect the genome from expression and transposition of parasitic elements.
Collapse
Affiliation(s)
- P A Yates
- Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
36
|
Gilbert N, Labuda D. CORE-SINEs: eukaryotic short interspersed retroposing elements with common sequence motifs. Proc Natl Acad Sci U S A 1999; 96:2869-74. [PMID: 10077603 PMCID: PMC15861 DOI: 10.1073/pnas.96.6.2869] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A 65-bp "core" sequence is dispersed in hundreds of thousands copies in the human genome. This sequence was found to constitute the central segment of a group of short interspersed elements (SINEs), referred to as mammalian-wide interspersed repeats, that proliferated before the radiation of placental mammals. Here, we propose that the core identifies an ancient tRNA-like SINE element, which survived in different lineages such as mammals, reptiles, birds, and fish, as well as mollusks, presumably for >550 million years. This element gave rise to a number of sequence families (CORE-SINEs), including mammalian-wide interspersed repeats, whose distinct 3' ends are shared with different families of long interspersed elements (LINEs). The evolutionary success of the generic CORE-SINE element can be related to the recruitment of the internal promoter from highly transcribed host RNA as well as to its capacity to adapt to changing retropositional opportunities by sequence exchange with actively amplifying LINEs. It reinforces the notion that the very existence of SINEs depends on the cohabitation with both LINEs and the host genome.
Collapse
Affiliation(s)
- N Gilbert
- Centre de Recherche de l'Hôpital Sainte-Justine, Centre de Cancérologie Charles Bruneau, Québec H3T 1C5, Canada
| | | |
Collapse
|
37
|
Abstract
Cytosine methylation in mammals is an epigenetic modification required for viability of the developing embryo. It has been suggested that DNA methylation plays important roles in X-chromosome inactivation, imprinting, protection of the genome from invasive DNA sequences, and compartmentalization of the genome into active and condensed regions. Despite the significance of DNA methylation in mammalian cells, the mechanisms used to establish methylation patterns during development are not understood. This review will summarize the current state of knowledge about potential roles for cis- and trans-acting factors in the formation of methylation patterns in the mammalian genome.
Collapse
Affiliation(s)
- M S Turker
- Department of Pathology, Markey Cancer Center, University of Kentucky, Lexington 40536, USA
| | | |
Collapse
|
38
|
Abstract
We have determined sequences of PCR-amplified B1 elements from hamster and rat (Myomorpha), chipmunk (Sciuromorpha), and guinea pig (Caviomorpha). Between three and six B1 subfamilies were found in these species. In the phylogenetic analysis B1 sequences of hamster, mouse, and rat clustered separately from those of chipmunk and those of guinea pig. This is consistent with an independent evolution of B1 elements in separate rodent lineages. We exclude the possibility of convergent mutations to explain certain diagnostic characters within the modern B1 quasi-dimers and view these elements as mosaic structures assembling preexisting mutations. Furthermore, the presence of Alu-like structural motifs supports the hypothesis of the monophyletic origin of Alu and B1 repeats, i.e., from a common 7SL RNA-derived retroposing monomeric element.
Collapse
Affiliation(s)
- E Zietkiewicz
- Centre de Cancérologie Charles Bruneau, Hôpital Sainte-Justine, Département de Pédiatrie, Université de Montreal, Québec, Canada
| | | |
Collapse
|
39
|
Hsu K, Chang DY, Maraia RJ. Human signal recognition particle (SRP) Alu-associated protein also binds Alu interspersed repeat sequence RNAs. Characterization of human SRP9. J Biol Chem 1995; 270:10179-86. [PMID: 7730321 DOI: 10.1074/jbc.270.17.10179] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nearly 1 million interspersed Alu elements reside in the human genome. Alu retrotransposition is presumably mediated by full-length Alu transcripts synthesized by RNA polymerase III, while some polymerase III-synthesized Alu transcripts undergo 3'-processing and accumulate as small cytoplasmic (sc) RNAs of unknown function. Interspersed Alu sequences also reside in the untranslated regions of some mRNAs. The Alu sequence is related to a portion of the 7SL RNA component of signal recognition particle (SRP). This region of 7SL RNA together with 9- and 14-kDa polypeptides (SRP9/14) regulates translational elongation of ribosomes engaged by SRP. Here we characterize human (h) SRP9 and show that it, together with hSRP14 (SRP9/14), forms the activity previously identified as Alu RNA-binding protein (RBP). The primate-specific C-terminal tail of hSRP14 does not appreciably affect binding to scAlu RNA. Kd values for three Alu-homologous scRNAs were determined using Alu RBP (SRP9/14) purified from HeLa cells. The Alu region of 7SL, scAlu, and scB1 RNAs exhibited Kd values of 203 pM, 318 pM, and 1.8 nM, respectively. Finally, Alu RBP can bind with high affinity to synthetic mRNAs that contain interspersed Alus in their untranslated regions.
Collapse
Affiliation(s)
- K Hsu
- Laboratory of Molecular Growth Regulation, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | |
Collapse
|
40
|
Chang DY, Sasaki-Tozawa N, Green LK, Maraia RJ. A trinucleotide repeat-associated increase in the level of Alu RNA-binding protein occurred during the same period as the major Alu amplification that accompanied anthropoid evolution. Mol Cell Biol 1995; 15:2109-16. [PMID: 7534378 PMCID: PMC230438 DOI: 10.1128/mcb.15.4.2109] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nearly 1 million Alu elements in human DNA were inserted by an RNA-mediated retroposition-amplification process that clearly decelerated about 30 million years ago. Since then, Alu sequences have proliferated at a lower rate, including within the human genome, in which Alu mobility continues to generate genetic variability. Initially derived from 7SL RNA of the signal recognition particle (SRP), Alu became a dominant retroposon while retaining secondary structures found in 7SL RNA. We previously identified a human Alu RNA-binding protein as a homolog of the 14-kDa Alu-specific protein of SRP and have shown that its expression is associated with accumulation of 3'-processed Alu RNA. Here, we show that in early anthropoids, the gene encoding SRP14 Alu RNA-binding protein was duplicated and that SRP14-homologous sequences currently reside on different human chromosomes. In anthropoids, the active SRP14 gene acquired a GCA trinucleotide repeat in its 3'-coding region that produces SRP14 polypeptides with extended C-terminal tails. A C-->G substitution in this region converted the mouse sequence CCA GCA to GCA GCA in prosimians, which presumably predisposed this locus to GCA expansion in anthropoids and provides a model for other triplet expansions. Moreover, the presence of the trinucleotide repeat in SRP14 DNA and the corresponding C-terminal tail in SRP14 are associated with a significant increase in SRP14 polypeptide and Alu RNA-binding activity. These genetic events occurred during the period in which an acceleration in Alu retroposition was followed by a sharp deceleration, suggesting that Alu repeats coevolved with C-terminal variants of SRP14 in higher primates.
Collapse
Affiliation(s)
- D Y Chang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753
| | | | | | | |
Collapse
|
41
|
Zietkiewicz E, Richer C, Makalowski W, Jurka J, Labuda D. A young Alu subfamily amplified independently in human and African great apes lineages. Nucleic Acids Res 1994; 22:5608-12. [PMID: 7838713 PMCID: PMC310123 DOI: 10.1093/nar/22.25.5608] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A variety of Alu subfamilies amplified in primate genomes at different evolutionary time periods. Alu Sb2 belongs to a group of young subfamilies with a characteristic two-nucleotide deletion at positions 65/66. It consists of repeats having a 7-nucleotide duplication of a sequence segment involving positions 246 through 252. The presence of Sb2 inserts was examined in five genomic loci in 120 human DNA samples as well as in DNAs of higher primates. The lack of the insertional polymorphism seen at four human loci and the absence of orthologous inserts in apes indicated that the examined repeats retroposed early in the human lineage, but following the divergence of great apes. On the other hand, similar analysis of the fifth locus (butyrylcholinesterase gene) suggested contemporary retropositional activity of this subfamily. By a semi-quantitative PCR, using a primer pair specific for Sb2 repeats, we estimated their copy number at about 1500 per human haploid genome; the corresponding numbers in chimpanzee and gorilla were two orders of magnitude lower, while in orangutan and gibbon the presence of Sb2 Alu was hardly detectable. Sequence analysis of PCR-amplified Sb2 repeats from human and African great apes is consistent with the model in which the founding of Sb2 subfamily variants occurred independently in chimpanzee, gorilla and human lineages.
Collapse
Affiliation(s)
- E Zietkiewicz
- Hôpital Ste-Justine, Département de Pédiatrie, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
42
|
A human Alu RNA-binding protein whose expression is associated with accumulation of small cytoplasmic Alu RNA. Mol Cell Biol 1994. [PMID: 8196634 DOI: 10.1128/mcb.14.6.3949] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human Alu sequences are short interspersed DNA elements which have been greatly amplified by retrotransposition. Although initially derived from the 7SL RNA component of signal recognition particle (SRP), the Alu sequence has evolved into a dominant transposon while retaining a specific secondary structure found in 7SL RNA. We previously characterized a set of Alu sequences which are expressed as small cytoplasmic RNAs and isolated a protein that binds to these transcripts. Here we report that biochemical purification of this protein revealed it as the human homolog of the SRP 14 polypeptide which binds the Alu-homologous region of 7SL RNA. The human cDNA predicts an alanine-rich C-terminal tail translated from a trinucleotide repeat not found in the rodent homolog, which accounts for why the human protein-RNA complex migrates more slowly than its rodent counterpart in RNA mobility shift assays. The human Alu RNA-binding protein (RBP) is expressed after transfection of this cDNA into mouse cells. Expression of human RBP in rodent x human somatic cell hybrids is associated with substantial increase in endogenous small cytoplasmic Alu and scB1 transcripts but not other small RNAs. These studies provide evidence that this RBP associates with Alu transcripts in vivo and affects their metabolism and suggests a role for Alu transcripts in translation in an SRP-like manner. Analysis of hybrid lines indicated that the Alu RBP gene maps to human chromosome 15q22, which was confirmed by Southern blotting. The possibility that the primate-specific structure of this protein may have contributed to Alu evolution is considered.
Collapse
|
43
|
Chang DY, Nelson B, Bilyeu T, Hsu K, Darlington GJ, Maraia RJ. A human Alu RNA-binding protein whose expression is associated with accumulation of small cytoplasmic Alu RNA. Mol Cell Biol 1994; 14:3949-59. [PMID: 8196634 PMCID: PMC358761 DOI: 10.1128/mcb.14.6.3949-3959.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Human Alu sequences are short interspersed DNA elements which have been greatly amplified by retrotransposition. Although initially derived from the 7SL RNA component of signal recognition particle (SRP), the Alu sequence has evolved into a dominant transposon while retaining a specific secondary structure found in 7SL RNA. We previously characterized a set of Alu sequences which are expressed as small cytoplasmic RNAs and isolated a protein that binds to these transcripts. Here we report that biochemical purification of this protein revealed it as the human homolog of the SRP 14 polypeptide which binds the Alu-homologous region of 7SL RNA. The human cDNA predicts an alanine-rich C-terminal tail translated from a trinucleotide repeat not found in the rodent homolog, which accounts for why the human protein-RNA complex migrates more slowly than its rodent counterpart in RNA mobility shift assays. The human Alu RNA-binding protein (RBP) is expressed after transfection of this cDNA into mouse cells. Expression of human RBP in rodent x human somatic cell hybrids is associated with substantial increase in endogenous small cytoplasmic Alu and scB1 transcripts but not other small RNAs. These studies provide evidence that this RBP associates with Alu transcripts in vivo and affects their metabolism and suggests a role for Alu transcripts in translation in an SRP-like manner. Analysis of hybrid lines indicated that the Alu RBP gene maps to human chromosome 15q22, which was confirmed by Southern blotting. The possibility that the primate-specific structure of this protein may have contributed to Alu evolution is considered.
Collapse
Affiliation(s)
- D Y Chang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | | | |
Collapse
|
44
|
Kim J, Martignetti JA, Shen MR, Brosius J, Deininger P. Rodent BC1 RNA gene as a master gene for ID element amplification. Proc Natl Acad Sci U S A 1994; 91:3607-11. [PMID: 8170955 PMCID: PMC43629 DOI: 10.1073/pnas.91.9.3607] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
ID elements are short interspersed repetitive DNA elements (SINEs) which have amplified in rodent genomes via retroposition, a process involving an RNA intermediate. BC1, an abundant ID-related transcript, is transcribed from a conserved, single-copy gene in rodents. The gene encoding BC1 RNA represents one of the earliest and possibly the first ID-containing sequence. Comparison of consensus sequences of each rodent ID with its corresponding BC1 RNA gene showed that the variations of BC1 RNA within rodents corresponded to specific changes within the ID consensus sequence for each rodent species. This supports the hypothesis that the BC1 gene is a master gene responsible for the amplification and evolution of ID elements. The rat ID family consists of at least four subfamilies, with the oldest subfamily having been derived from the BC1 RNA. The other three subfamilies appear to have been derived from a new master gene(s), which has been responsible for the large increase in ID element copy number within the rat genome. We have found that the guinea pig genome contains two copies of the BC1 gene, apparently the result of a DNA-mediated duplication event. Both of these guinea pig BC1 genes have a conserved TATA-like element in the 5' flanking region and have contributed to guinea pig ID amplifications.
Collapse
Affiliation(s)
- J Kim
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisana State University Medical Center, New Orleans 70112
| | | | | | | | | |
Collapse
|
45
|
Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol Cell Biol 1994. [PMID: 8114745 DOI: 10.1128/mcb.14.3.2147] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ample evidence indicates that Alu family interspersed elements retrotranspose via primary transcripts synthesized by RNA polymerase III (pol III) and that this transposition sometimes results in genetic disorders in humans. However, Alu primary transcripts can be processed posttranscriptionally, diverting them away from the transposition pathway. The pol III termination signal of a well-characterized murine B1 (Alu-equivalent) element inhibits RNA 3' processing, thereby stabilizing the putative transposition intermediary. We used an immobilized template-based assay to examine transcription termination by VA1, 7SL, and Alu class III templates and the role of transcript release in the pol III terminator-dependent inhibition of processing of B1-Alu transcripts. We found that the RNA-binding protein La confers this terminator-dependent 3' processing inhibition on transcripts released from the B1-Alu template. Using pure recombinant La protein and affinity-purified transcription complexes, we also demonstrate that La facilitates multiple rounds of transcription reinitiation by pol III. These results illustrate an important role for La in RNA production by demonstrating its ability to clear the termination sites of class III templates, thereby promoting efficient use of transcription complexes by pol III. The role of La as a potential regulatory factor in transcript maturation and how this might apply to Alu interspersed elements is discussed.
Collapse
|
46
|
Maraia RJ, Kenan DJ, Keene JD. Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol Cell Biol 1994; 14:2147-58. [PMID: 8114745 PMCID: PMC358575 DOI: 10.1128/mcb.14.3.2147-2158.1994] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ample evidence indicates that Alu family interspersed elements retrotranspose via primary transcripts synthesized by RNA polymerase III (pol III) and that this transposition sometimes results in genetic disorders in humans. However, Alu primary transcripts can be processed posttranscriptionally, diverting them away from the transposition pathway. The pol III termination signal of a well-characterized murine B1 (Alu-equivalent) element inhibits RNA 3' processing, thereby stabilizing the putative transposition intermediary. We used an immobilized template-based assay to examine transcription termination by VA1, 7SL, and Alu class III templates and the role of transcript release in the pol III terminator-dependent inhibition of processing of B1-Alu transcripts. We found that the RNA-binding protein La confers this terminator-dependent 3' processing inhibition on transcripts released from the B1-Alu template. Using pure recombinant La protein and affinity-purified transcription complexes, we also demonstrate that La facilitates multiple rounds of transcription reinitiation by pol III. These results illustrate an important role for La in RNA production by demonstrating its ability to clear the termination sites of class III templates, thereby promoting efficient use of transcription complexes by pol III. The role of La as a potential regulatory factor in transcript maturation and how this might apply to Alu interspersed elements is discussed.
Collapse
Affiliation(s)
- R J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | |
Collapse
|
47
|
Abstract
The past few years have brought new insight into the evolution of families of retroposons. These are composed of a very small number of master sequences able to duplicate, and a large majority of copies that are inactive for retroposition. During the course of time, successive replacements of master sequences have produced waves of amplification that are recognizable as subfamilies. In the Alu and the B1 families, one can distinguish two evolutionary periods. The first involves only monomeric elements that are now extinguished (fossil elements) and is characterized by deep remodeling of the sequences. This period ends, in primates, with the fusion of a free left and a free right Alu monomer, producing the first modern Alu dimeric element; in rodents it ends with a tandem duplication of 29 bp to create the first modern B1 element. The second period is characterized by a great stability of the master sequences. The observed turn-over of master sequences is still an enigma. However, analysis of the contemporary master sequences and of the oldest master sequences provide some clues. Here, we review the very first stages of the appearance of the Alu and the B1 families in mammalian genomes.
Collapse
Affiliation(s)
- Y Quentin
- CNRS-LCB, UPR 7221, Marseille, France
| |
Collapse
|
48
|
Abstract
Alu repeats are short interspersed elements (SINEs) of dimeric structure whose transposition sometimes leads to heritable disorders in humans. Human cells contain a poly(A)- small cytoplasmic transcript of -120 nucleotides (nt) homologous to the left Alu monomer. Although its monomeric size indicates that small cytoplasmic Alu (scAlu) RNA is not an intermediary of human Alu transpositions, a less abundant poly(A)-containing Alu transcript of dimeric size and specificity expected of a transposition intermediary is also detectable in HeLa cells (A. G. Matera, U. Hellmann, M. F. Hintz, and C. W. Schmid, Mol. Cell. Biol. 10:5424-5432, 1990). Although its function is unknown, the accumulation of Alu RNA and its ability to interact with a conserved protein suggest a role in cell biology (D.-Y. Chang and R. J. Maraia, J. Biol. Chem. 268:6423-28, 1993). The relationship between the -120- and -300-nt Alu transcripts had not been determined. However, a B1 SINE produces scB1 RNA by posttranscriptional processing, suggesting a similar pathway for scAlu. An Alu SINE which recently transposed into the neurofibromatosis 1 locus was expressed in microinjected frog oocytes. This neurofibromatosis 1 Alu produced a primary transcript followed by the appearance of the scAlu species. 3' processing of a synthetic -300-nt Alu RNA by HeLa nuclear extract in vitro also produced scAlu RNA. Primer extension of scAlu RNA indicates synthesis by RNA polymerase III. HeLa-derived scAlu cDNAs were cloned so as to preserve their 5'-terminal sequences and were found to correspond to polymerase III transcripts of the left monomeric components of three previously identified Alu SINE subfamilies. Rodent x human somatic cell hybrids express Alu RNAs whose size, heterogeneous length, and chromosomal distribution indicate their derivation from SINEs. The coexpression of dimeric and monomeric Alu RNA in several hybrids suggests a precursor-product relationship.
Collapse
|
49
|
Maraia RJ, Driscoll CT, Bilyeu T, Hsu K, Darlington GJ. Multiple dispersed loci produce small cytoplasmic Alu RNA. Mol Cell Biol 1993; 13:4233-41. [PMID: 7686619 PMCID: PMC359973 DOI: 10.1128/mcb.13.7.4233-4241.1993] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Alu repeats are short interspersed elements (SINEs) of dimeric structure whose transposition sometimes leads to heritable disorders in humans. Human cells contain a poly(A)- small cytoplasmic transcript of -120 nucleotides (nt) homologous to the left Alu monomer. Although its monomeric size indicates that small cytoplasmic Alu (scAlu) RNA is not an intermediary of human Alu transpositions, a less abundant poly(A)-containing Alu transcript of dimeric size and specificity expected of a transposition intermediary is also detectable in HeLa cells (A. G. Matera, U. Hellmann, M. F. Hintz, and C. W. Schmid, Mol. Cell. Biol. 10:5424-5432, 1990). Although its function is unknown, the accumulation of Alu RNA and its ability to interact with a conserved protein suggest a role in cell biology (D.-Y. Chang and R. J. Maraia, J. Biol. Chem. 268:6423-28, 1993). The relationship between the -120- and -300-nt Alu transcripts had not been determined. However, a B1 SINE produces scB1 RNA by posttranscriptional processing, suggesting a similar pathway for scAlu. An Alu SINE which recently transposed into the neurofibromatosis 1 locus was expressed in microinjected frog oocytes. This neurofibromatosis 1 Alu produced a primary transcript followed by the appearance of the scAlu species. 3' processing of a synthetic -300-nt Alu RNA by HeLa nuclear extract in vitro also produced scAlu RNA. Primer extension of scAlu RNA indicates synthesis by RNA polymerase III. HeLa-derived scAlu cDNAs were cloned so as to preserve their 5'-terminal sequences and were found to correspond to polymerase III transcripts of the left monomeric components of three previously identified Alu SINE subfamilies. Rodent x human somatic cell hybrids express Alu RNAs whose size, heterogeneous length, and chromosomal distribution indicate their derivation from SINEs. The coexpression of dimeric and monomeric Alu RNA in several hybrids suggests a precursor-product relationship.
Collapse
Affiliation(s)
- R J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
50
|
Kawamoto S, Amaya Y, Hattori S, Miyagi Y, Onishi H, Okuda K. Structural analysis of an extremely long 5'-noncoding region of rat brain argininosuccinate lyase mRNA: presence of multiple B1 repeats and multiple upstream AUG codons, and a possibility of translational control. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1173:111-4. [PMID: 8485149 DOI: 10.1016/0167-4781(93)90255-c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present detailed analysis of the sequence of the extremely long (967 bp) 5'-noncoding region of a rat brain argininosuccinate lyase cDNA clone, reveals several features of interest. Multiple copies of partial and inverted (antisense) B1 repeats and multiple upstream ATG codons are present in the region, which suggests a possibility of translational control of the argininosuccinate lyase gene expression in rat brain.
Collapse
Affiliation(s)
- S Kawamoto
- Department of Bacteriology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|