1
|
Li S, Mu X, Ma S, Li X, Gao J, Liu X, Wang H, Wu J, Guo Y, Song C. Xiangshao Granules reduce the aggressive behavior and hippocampal injury of premenstrual irritability in rats by regulating JIK/JNK/p38 signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116061. [PMID: 36577489 DOI: 10.1016/j.jep.2022.116061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a typical prescription for soothing the liver, Xiangshao granule has a good effect on the symptoms of irritability and anxiety. Clinical evidence suggests that it has significant efficacy in the treatment of Premenstrual dysphoria disorder (PMDD). However, the underlying mechanism remains unclear. AIM OF THE STUDY PMDD is a common disease in women of childbearing age, seriously affecting their family, society, and daily work life. The registered herbal medicine, Xiangshao granules, is used for relieving PMDD dysphoria and irritability symptoms with excellent efficacy in China. This study was focused on the deep intervention mechanism of Xiangshao granules in treating PMDD. MATERIALS AND METHODS The vaginal smear and open field test were used to screen rats in nonreception phase of estrus cycle with similar macroscopic behaviors and regular estrus cycle. The rat model of PMDD irritability was established through social isolation and residential invasion, with which, the irritability symptoms of PMDD patients with menstrual cycle dependence was also well simulated. Elevated plus Maze Test and Social interaction activities were used to measure the anxiety-like behavior of rats. TUNEL Staining and Hematoxylin-Eosin staining were used to measure apoptosis of hippocampal neurons. RT-PCR, Western blot and immunofluorescence were used to measure the expression of GR, JIK, p-JIK, p38, P-P38, JNK, caspase 3, and caspase 12. RESULTS In this study, Xiangshao granules showed consistent therapeutic effects similar with those in clinic, significantly reducing aggressive and anxiety-like behaviors with improved social skills in PMDD rats. In mechanism, Xiangshao granules lowered the apoptosis of hippocampal neurons and weakened the morphological damage of the hippocampal brain evidenced by the decreased mRNA and protein expression of glucocorticoid receptor, caspase-3, and caspase-12. In addition, administration of Xiangshao granules led to the decreased expression of JIK in the PMDD irritability rat model which agreed well with the previous studies. The JNK/p38 mitogen-activated protein kinases (MAPKs) signaling pathway is abnormally activated in the hippocampal brain region of PMDD rats, while treated with Xiangshao granules could increase JIK expression and inhibit the abnormal activation of the JNK/p38 MAPK signaling pathway, effectively reducing the stress damage in the hippocampus. CONCLUSIONS Xiangshao Granules Reduce the Aggressive Behavior and Hippocampal Injury of Premenstrual Irritability in Rats by Regulating JIK/JNK/p38 Signal Pathway.
Collapse
Affiliation(s)
- Shujing Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xiangyu Mu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Sufen Ma
- Academic Administration, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xin Li
- Department of Pharmacology & Chemical Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Jie Gao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xiaoju Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Haijuan Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Junling Wu
- Department of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yinghui Guo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Chunhong Song
- Shandong Key Laboratory of Traditional Chinese Medicine and Stress Injury, Department of Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
2
|
Liu X, Wang H, Wang X, Ning Y, Liu W, Gao J. Baixiangdan capsule and Shuyu capsule regulate anger-out and anger-in, respectively: GB1–mediated GABA can regulate 5-HT levels in multiple brain regions. Aging (Albany NY) 2023; 15:2046-2065. [PMID: 36988497 PMCID: PMC10085605 DOI: 10.18632/aging.204589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/13/2023] [Indexed: 03/30/2023]
Abstract
The identity of the mechanism by which the Baixiangdan capsule (BXD) and the Shuyu capsule (SY) control anger-out (AO) and anger-in (AI) in rodents is unclear. The current study clarified the intervention role of BXD and SY on AO and AI male rats. We further explored the differences between BXD and SY in the treatment of AO and AI rats. Social isolation combined with the resident-intruder paradigm was used to establish the anger-out and AI rats models. On this basis, GABA content in the dorsal raphe nucleus (DRN) and serotonin (5-HT) contents in these brain regions were detected using ELISA after various time courses (0, 1, 3, 5, and 7 days) treated with BXD and SY. Co-expression of 5-HT and GB1 in the DRN was detected. GB1-specific agonist baclofen and GB1-specific inhibitor CGP35348 were injected into the DRN. Changes in 5-HT levels in these brain regions were then detected. After treatment, rats in the BXD group exhibited lower aggressive behavior scores, longer latencies of aggression, lower total distances in the open field test, and a higher sucrose preference coefficient. Meanwhile, rats in the SY group exhibited higher aggressive behavior scores, shorter latencies of aggression, higher total distances in the open field test, and higher sucrose preference coefficients. With increasing medication duration, 5-HT levels in these brain regions were increased gradually, whereas GABA levels in the DRN were decreased gradually, and all recovered to normal levels by the 7th day. A large number of 5-HT-positive cells could be found in the immunofluorescence section in the DRN containing GABABR1 (GB1)-positive cells, indicating that 5-HT neurons in the DRN co-expressed with GB1. Furthermore, after the drug intervention, the 5-HT level in the DRN was elevated to a normal level, and the GB1 level in the DRN was decreased to a normal level. After the microinjection of baclofen into the DRN, the 5-HT contents in these brain regions were decreased. By contrast, the 5-HT contents were increased after injection with CGP35348. BXD and SY could effectively improve the abnormal behavior changes of AO and AI rats, and the optimal duration of action was 7 days. The improvement way is as follows: Decreased abnormal increase of GABA and GB1 in the DRN further mediated synaptic inhibition and increased 5-HT level in the DRN, leading to increased 5-HT levels in the PFC, hypothalamus, and hippocampus. Therefore, GB1-mediated GABA in the DRN could regulate 5-HT levels in these brain regions, which may be one of the ways by which BXD and SY treat AO and AI, respectively.
Collapse
|
3
|
Cīrulis A, Hansson B, Abbott JK. Sex-limited chromosomes and non-reproductive traits. BMC Biol 2022; 20:156. [PMID: 35794589 PMCID: PMC9261002 DOI: 10.1186/s12915-022-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Sex chromosomes are typically viewed as having originated from a pair of autosomes, and differentiated as the sex-limited chromosome (e.g. Y) has degenerated by losing most genes through cessation of recombination. While often thought that degenerated sex-limited chromosomes primarily affect traits involved in sex determination and sex cell production, accumulating evidence suggests they also influence traits not sex-limited or directly involved in reproduction. Here, we provide an overview of the effects of sex-limited chromosomes on non-reproductive traits in XY, ZW or UV sex determination systems, and discuss evolutionary processes maintaining variation at sex-limited chromosomes and molecular mechanisms affecting non-reproductive traits.
Collapse
Affiliation(s)
- Aivars Cīrulis
- Department of Biology, Lund University, 223 62, Lund, Sweden.
| | - Bengt Hansson
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | | |
Collapse
|
4
|
Liu XJ, Wang HJ, Wang XY, Ning YX, Gao J. GABABR1 in DRN mediated GABA to regulate 5-HT expression in multiple brain regions in male rats with high and low aggressive behavior. Neurochem Int 2021; 150:105180. [PMID: 34509561 DOI: 10.1016/j.neuint.2021.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022]
Abstract
The identity of the mechanism that controls aggressive behavior in rodents is unclear. Serotonin (5-HT) and GABA are associated with aggressive behavior in rodents. However, the regulatory relationship between these chemicals in the different brain regions of rats has not been fully defined. This study aimed to clarify the role of GABABR1 in DRN-mediated GABA to regulate 5-HT expression in multiple brain regions in male rats with high and low aggressive behavior. Rat models of highly and less aggressive behavior were established through social isolation plus resident intruder. On this basis, GABA content in the DRN and 5-HT contents in the PFC, hypothalamus, hippocampus and DRN were detected using ELISA. Co-expression of 5-HT and GB1 in the DRN was detected by immunofluorescence and immunoelectron microscopy at the tissue and subcellular levels, respectively. GB1-specific agonist baclofen and GB1-specific inhibitor CGP35348 were injected into the DRN by stereotaxic injection. Changes in 5-HT levels in the PFC, hypothalamus and hippocampus were detected afterward. After modeling, rats with highly aggressive behavior exhibited higher aggressive behavior scores, shorter latencies of aggression, and higher total distances in the open field test than rats with less aggressive behavior. The contents of 5-HT in the PFC, hypothalamus and hippocampus of rats with high and low aggressive behavior (no difference between the two groups) were significantly decreased, but the change in GABA content in the DRN was the opposite. GB1 granules could be found on synaptic membranes containing 5-HT granules, which indicated that 5-HT neurons in the DRN co-expressed with GB1, which also occurred in double immunofluorescence results. At the same time, we found that the expression of GB1 in the DRN of rats with high and low aggressive behavior was significantly increased, and the expression of GB1 in the DRN of rats with low aggressive behavior was significantly higher than that in rats with high aggressive behavior. Nevertheless, the expression of 5-HT in DRN was opposite in these two groups. After microinjection of baclofen into the DRN, the 5-HT contents in the PFC, hypothalamus and hippocampus of rats in each group decreased significantly. In contrast, the 5-HT contents in the PFC, hypothalamus and hippocampus of rats in each group increased significantly after injection with CGP35348. The significant increase in GABA in the DRN combined with the significant increase in GB1 in the DRN further mediated the synaptic inhibition effect, which reduced the 5-HT level of 5-HT neurons in the DRN, resulting in a significant decrease in 5-HT levels in the PFC, hypothalamus and hippocampus. Therefore, GB1-mediated GABA regulation of 5-HT levels in the PFC, hypothalamus and hippocampus is one of the mechanisms of highly and less aggressive behavior originating in the DRN. The increased GB1 level in the DRN of LA-behavior rats exhibited a greater degree of change than in the HA-group rats, which indicated that differently decreased 5-HT levels in the DRN may be the internal mechanisms of high and low aggression behaviors.
Collapse
Affiliation(s)
- Xiao-Ju Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hai-Juan Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People's Republic of China
| | - Xiao-Yu Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Yin-Xia Ning
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jie Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
5
|
Bouchatta O, Ouhaz Z, Ba-Mhamed S, Kerekes N, Bennis M. Acute and chronic glue sniffing effects and consequences of withdrawal on aggressive behavior. Life Sci 2016; 152:14-20. [DOI: 10.1016/j.lfs.2016.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 01/23/2023]
|
6
|
Saunders PA, Franco T, Sottas C, Maurice T, Ganem G, Veyrunes F. Masculinised Behaviour of XY Females in a Mammal with Naturally Occuring Sex Reversal. Sci Rep 2016; 6:22881. [PMID: 26964761 PMCID: PMC4786791 DOI: 10.1038/srep22881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/23/2016] [Indexed: 11/29/2022] Open
Abstract
Most sex differences in phenotype are controlled by gonadal hormones, but recent work on laboratory strain mice that present discordant chromosomal and gonadal sex showed that sex chromosome complement can have a direct influence on the establishment of sex-specific behaviours, independently from gonads. In this study, we analyse the behaviour of a rodent with naturally occurring sex reversal: the African pygmy mouse Mus minutoides, in which all males are XY, while females are of three types: XX, XX* or X*Y (the asterisk represents an unknown X-linked mutation preventing masculinisation of X*Y embryos). X*Y females show typical female anatomy and, interestingly, have greater breeding performances. We investigate the link between sex chromosome complement, behaviour and reproductive success in females by analysing several behavioural features that could potentially influence their fitness: female attractiveness, aggressiveness and anxiety. Despite sex chromosome complement was not found to impact male mate preferences, it does influence some aspects of both aggressiveness and anxiety: X*Y females are more aggressive than the XX and XX*, and show lower anxiogenic response to novelty, like males. We discuss how these behavioural differences might impact the breeding performances of females, and how the sex chromosome complement could shape the differences observed.
Collapse
Affiliation(s)
- Paul A Saunders
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS UMR 5554, IRD, EPHE, France
| | - Thomas Franco
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS UMR 5554, IRD, EPHE, France
| | - Camille Sottas
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS UMR 5554, IRD, EPHE, France
| | - Tangui Maurice
- INSERM U1198, Université de Montpellier, Inserm, EPHE, France
| | - Guila Ganem
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS UMR 5554, IRD, EPHE, France
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, CNRS UMR 5554, IRD, EPHE, France
| |
Collapse
|
7
|
Ehrhardt A, Wang B, Leung MJ, Schrader JW. Absence of M-Ras modulates social behavior in mice. BMC Neurosci 2015; 16:68. [PMID: 26490652 PMCID: PMC4618870 DOI: 10.1186/s12868-015-0209-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/08/2015] [Indexed: 12/23/2022] Open
Abstract
Background The molecular mechanisms that determine social behavior are poorly understood. Pheromones play a critical role in social recognition in most animals, including mice, but how these are converted into behavioral responses is largely unknown. Here, we report that the absence of the small GTPase M-Ras affects social behavior in mice. Results In their interactions with other males, Mras−/− males exhibited high levels of territorial aggression and social investigations, and increased fear-related behavior. They also showed increased mating behavior with females. Curiously, increased aggression and mating behaviors were only observed when Mras−/− males were paired with Mras−/− partners, but were significantly reduced when paired with wild-type (WT) mice. Since mice use pheromonal cues to identify other individuals, we explored the possibility that pheromone detection may be altered in Mras−/− mice. Unlike WT mice, Mras−/− did not show a preference for exploring unfamiliar urinary pheromones or unfamiliar isogenic mice. Although this could indicate that vomeronasal function and/or olfactory learning may be compromised in Mras−/− mice, these observations were not fully consistent with the differential behavioral responses to WT and Mras−/− interaction partners by Mras−/− males. In addition, induction of c-fos upon pheromone exposure or in response to mating was similar in WT and Mras−/− mice, as was the ex vivo expansion of neural progenitors with EGF. This indicated that acute pheromone detection and processing was likely intact. However, urinary metabolite profiles differed between Mras−/− and WT males. Conclusions The changes in behaviors displayed by Mras−/− mice are likely due to a complex combination of factors that may include an inherent predisposition to increased aggression and sexual behavior, and the production of distinct pheromones that could override the preference for unfamiliar social odors. Olfactory and/or social learning processes may thus be compromised in Mras−/− mice. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0209-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annette Ehrhardt
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| | - Bin Wang
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| | - Marie J Leung
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| | - John W Schrader
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
8
|
Roubertoux PL, Carlier M, Tordjman S. Deficit in Social Relationships and Reduced Field of Interest in Mice. ORGANISM MODELS OF AUTISM SPECTRUM DISORDERS 2015. [DOI: 10.1007/978-1-4939-2250-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Cox KH, Bonthuis PJ, Rissman EF. Mouse model systems to study sex chromosome genes and behavior: relevance to humans. Front Neuroendocrinol 2014; 35:405-19. [PMID: 24388960 PMCID: PMC4079771 DOI: 10.1016/j.yfrne.2013.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones.
Collapse
Affiliation(s)
- Kimberly H Cox
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Paul J Bonthuis
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Emilie F Rissman
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
10
|
Cox KH, So NLT, Rissman EF. Foster dams rear fighters: strain-specific effects of within-strain fostering on aggressive behavior in male mice. PLoS One 2013; 8:e75037. [PMID: 24040381 PMCID: PMC3769275 DOI: 10.1371/journal.pone.0075037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022] Open
Abstract
It is well known that genes and environment interact to produce behavioral phenotypes. One environmental factor with long-term effects on gene transcription and behavior is maternal care. A classic paradigm for examining maternal care and genetic interactions is to foster pups of one genetic strain to dams of a different strain ("between-strain fostering"). In addition, fostering to a dam of the same strain ("within-strain fostering") is used to reduce indirect effects, via behavioral changes in the dams, of gestation treatments on offspring. Using within-and between-strain fostering we examined the contributions of genetics/prenatal environment, maternal care, and the effects of fostering per se, on adult aggressive behavior in two inbred mouse strains, C57BL/6J (B6) and DBA/2J (DBA). We hypothesized that males reared by dams of the more aggressive DBA strain would attack intruders faster than those reared by B6 dams. Surprisingly, we found that both methods of fostering enhanced aggressive behavior, but only in B6 mice. Since all the B6 offspring are genetically identical, we asked if maternal behavior of B6 dams was affected by the relatedness of their pups. In fact, B6 dams caring for foster B6 pups displayed significantly reduced maternal behaviors. Finally, we measured vasopressin and corticotrophin releasing hormone mRNA in the amygdalae of adult B6 males reared by foster or biological dams. Both genes correlated with aggressive behavior in within-strain fostered B6 mice, but not in mice reared by their biological dams. In sum, we have demonstrated in inbred laboratory mice, that dams behave differently when rearing their own newborn pups versus pups from another dam of the same strain. These differences in maternal care affect aggression in the male offspring and transcription of Avp and Crh in the brain. It is likely that rearing by foster dams has additional effects and implications for other species.
Collapse
Affiliation(s)
- Kimberly H. Cox
- Department of Biochemistry and Molecular Genetics and Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| | - Nina L. T. So
- Department of Biochemistry and Molecular Genetics and Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Emilie F. Rissman
- Department of Biochemistry and Molecular Genetics and Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|
11
|
Abstract
A major weakness of most genome-wide association studies has been their inability to fully explain the heritable component of complex disease. Nearly all such studies consider the two parental alleles to be functionally equivalent. However, the existence of imprinted genes demonstrates that this assumption can be wrong. In this review, we describe a wide variety of different mechanisms that underlie many other parent of origin and trans-generational effects that are known to operate in both humans and model organisms, suggesting that these phenomena are perhaps not uncommon in the genome. We propose that the consideration of alternative models of inheritance will improve our understanding of the heritability and causes of human traits and could have significant impacts on the study of complex disorders.
Collapse
Affiliation(s)
- A Guilmatre
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
12
|
Botbol M, Roubertoux PL, Carlier M, Trabado S, Brailly-Tabard S, Perez-Diaz F, Bonnot O, Bronsard G, Tordjman S. Modulation of brain β-endorphin concentration by the specific part of the Y chromosome in mice. PLoS One 2011; 6:e16704. [PMID: 21408198 PMCID: PMC3050789 DOI: 10.1371/journal.pone.0016704] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/11/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Several studies in animal models suggest a possible effect of the specific part of the Y-chromosome (Y(NPAR)) on brain opioid, and more specifically on brain β-endorphin (BE). In humans, male prevalence is found in autistic disorder in which observation of abnormal peripheral or central BE levels are also reported. This suggests gender differences in BE associated with genetic factors and more precisely with Y(NPAR). METHODOLOGY/PRINCIPAL FINDINGS Brain BE levels and plasma testosterone concentrations were measured in two highly inbred strains of mice, NZB/BlNJ (N) and CBA/HGnc (H), and their consomic strains for the Y(NPAR). An indirect effect of the Y(NPAR) on brain BE level via plasma testosterone was also tested by studying the correlation between brain BE concentration and plasma testosterone concentration in eleven highly inbred strains. There was a significant and major effect (P<0.0001) of the Y(NPAR) in interaction with the genetic background on brain BE levels. Effect size calculated using Cohen's procedure was large (56% of the total variance). The variations of BE levels were not correlated with plasma testosterone which was also dependent of the Y(NPAR). CONCLUSIONS/SIGNIFICANCE The contribution of Y(NPAR) on brain BE concentration in interaction with the genetic background is the first demonstration of Y-chromosome mediated control of brain opioid. Given that none of the genes encompassed by the Y(NPAR) encodes for BE or its precursor, our results suggest a contribution of the sex-determining region (Sry, carried by Y(NPAR)) to brain BE concentration. Indeed, the transcription of the Melanocortin 2 receptor gene (Mc2R gene, identified as the proopiomelanocortin receptor gene) depends on the presence of Sry and BE is derived directly from proopiomelanocortin. The results shed light on the sex dependent differences in brain functioning and the role of Sry in the BE system might be related to the higher frequency of autistic disorder in males.
Collapse
Affiliation(s)
- Michel Botbol
- INSERM U 669, Troubles des Conduites Alimentaires à l'Adolescence, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dureje L, Bímová BV, Piálek J. No postnatal maternal effect on male aggressiveness in wild-derived strains of house mice. Aggress Behav 2011; 37:48-55. [PMID: 20954263 DOI: 10.1002/ab.20371] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 08/19/2010] [Indexed: 11/07/2022]
Abstract
Male aggressiveness is a complex behavior influenced by a number of genetic and non-genetic factors. Traditionally, the contribution of each of these factors has been established from experiments using artificially selected strains for high/low aggressive phenotypes. However, little is known about the factors underlying aggressive behavior in natural populations. In this study, we assess the influence of genetic background vs. postnatal maternal environment using a set of cross-fostering experiments between two wild-derived inbred strains, displaying high (STRA, derived from Mus musculus domesticus) and low (BUSNA, derived from Mus musculus musculus) levels of aggressiveness. The role of maternal environment was tested in males with the same genetic background (i.e. strain origin) reared under three different conditions: unfostered (weaned by mother), infostered (weaned by an unfamiliar dam from the same strain), and cross-fostered (weaned by a dam from a different strain). All males were tested against non-aggressive opponents from the A/J inbred strain. Resource-holding potential was assessed through body weight gains and territory ownership. The STRA males were shown to be aggressive in both neutral cage and resident-intruder tests. On the contrary, the BUSNA males were less aggressive in all tests. We did not find a significant effect of postnatal maternal environment; however, we detected significant maternal effect on body weight with differences between the strains, fostering type and interactions between these factors. We conclude that the aggressiveness preserved in the two strains has significant genetic component whose genetic basis can be dissected by quantitative trait loci analysis.
Collapse
Affiliation(s)
- Ludovít Dureje
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
14
|
Alexander G, Hanna A, Serna V, Younkin L, Younkin S, Janus C. Increased aggression in males in transgenic Tg2576 mouse model of Alzheimer's disease. Behav Brain Res 2010; 216:77-83. [PMID: 20655336 DOI: 10.1016/j.bbr.2010.07.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/08/2010] [Accepted: 07/13/2010] [Indexed: 11/17/2022]
Abstract
Behavioural and psychological signs and symptoms of dementia encompass a wide range of neuropsychiatric disturbances which coincide with progressing cognitive decline in Alzheimer's disease (AD). Physical aggression and agitation, which occurs in 20-65% of AD patients, is physically and emotionally stressful, not only to patients but also to immediate family and caregivers. The exact mechanisms underlying the increased aggressive behaviour in AD has yet to be elucidated. We used a transgenic mouse model, denoted Tg2576, which over-expresses a mutated human amyloid precursor protein (APP) gene implicated in familial AD, to investigate aggressive behaviour of males at the stage of amyloid beta pathology preceding overt amyloid plaque deposition in the brain. The aggressive behaviour of transgenic and non-transgenic littermate males was evaluated in a standard resident-intruder test in which an isolated resident male responded aggressively toward an experimentally naïve intruder male of A/J strain. We showed that 7-month-old Tg2576 resident males demonstrated significantly higher and unchanged level of aggression towards intruder males during 3 consecutive encounters as compared to their non-transgenic littermate counterparts. These results validate further the Tg2576 mouse model of AD underscoring its usefulness in studying non-mnemonic changes in behaviour related to the disease.
Collapse
|
15
|
Curley JP, Mashoodh R. Parent-of-origin and trans-generational germline influences on behavioral development: the interacting roles of mothers, fathers, and grandparents. Dev Psychobiol 2010; 52:312-30. [PMID: 20373326 DOI: 10.1002/dev.20430] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mothers and fathers do not contribute equally to the development of their offspring. In addition to the differential investment of mothers versus fathers in the rearing of offspring, there are also a number of germline factors that are transmitted unequally from one parent or the other that contribute significantly to offspring development. This article shall review four major sources of such parent-of-origin effects. Firstly, there is increasing evidence that genes inherited on the sex chromosomes including the nonpseudoautosomal part of the Y chromosome that is only inherited from fathers to sons, contribute to brain development and behavior independently of the organizing effects of sex hormones. Secondly, recent work has demonstrated that mitochondrial DNA that is primarily inherited only from mothers may play a much greater than anticipated role in neurobehavioral development. Thirdly, there exists a class of genes known as imprinted genes that are epigenetically silenced when passed on in a parent-of-origin specific manner and have been shown to regulate brain development and a variety of behaviors. Finally, there is converging evidence from several disciplines that environmental variations experienced by mothers and fathers may lead to plasticity in the development and behavior of offspring and that this phenotypic inheritance can be solely transmitted through the germline. Mechanistically, this may be achieved through altered programming within germ cells of the epigenetic status of particular genes such as retrotransposons and imprinted genes or potentially through altered expression of RNAs within gametes.
Collapse
Affiliation(s)
- J P Curley
- Department of Psychology, Columbia University, Room 406, Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027, USA.
| | | |
Collapse
|
16
|
Takahashi A, Tomihara K, Shiroishi T, Koide T. Genetic mapping of social interaction behavior in B6/MSM consomic mouse strains. Behav Genet 2009; 40:366-76. [PMID: 19936911 PMCID: PMC2853700 DOI: 10.1007/s10519-009-9312-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/02/2009] [Indexed: 11/27/2022]
Abstract
Genetic studies are indispensable for understanding the mechanisms by which individuals develop differences in social behavior. We report genetic mapping of social interaction behavior using inter-subspecific consomic strains established from MSM/Ms (MSM) and C57BL/6J (B6) mice. Two animals of the same strain and sex, aged 10 weeks, were introduced into a novel open-field for 10 min. Social contact was detected by an automated system when the distance between the centers of the two animals became less than ~12 cm. In addition, detailed behavioral observations were made of the males. The wild-derived mouse strain MSM showed significantly longer social contact as compared to B6. Analysis of the consomic panel identified two chromosomes (Chr 6 and Chr 17) with quantitative trait loci (QTL) responsible for lengthened social contact in MSM mice and two chromosomes (Chr 9 and Chr X) with QTL that inhibited social contact. Detailed behavioral analysis of males identified four additional chromosomes associated with social interaction behavior. B6 mice that contained Chr 13 from MSM showed more genital grooming and following than the parental B6 strain, whereas the presence of Chr 8 and Chr 12 from MSM resulted in a reduction of those behaviors. Longer social sniffing was observed in Chr 4 consomic strain than in B6 mice. Although the frequency was low, aggressive behavior was observed in a few pairs from consomic strains for Chrs 4, 13, 15 and 17, as well as from MSM. The social interaction test has been used as a model to measure anxiety, but genetic correlation analysis suggested that social interaction involves different aspects of anxiety than are measured by open-field test.
Collapse
Affiliation(s)
- Aki Takahashi
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
- Department of Genetics, SOKENDAI, Hayama, Kanagawa, 240-0193 Japan
- Present Address: Department of Psychology, Tufts University, 530 Boston Avenue (Bacon Hall), Medford, MA 02155 USA
| | - Kazuya Tomihara
- Department of Psychology, Faculty of Law, Economics and Humanities, Kagoshima University, Kohrimoto, Kagoshima, 890-0065 Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
- Department of Genetics, SOKENDAI, Hayama, Kanagawa, 240-0193 Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
- Department of Genetics, SOKENDAI, Hayama, Kanagawa, 240-0193 Japan
| |
Collapse
|
17
|
Maxson SC. Issues in the search for candidate genes in mice as potential animal models of human aggression. CIBA FOUNDATION SYMPOSIUM 2007; 194:21-30; discussion 30-5. [PMID: 8862868 DOI: 10.1002/9780470514825.ch2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Conceptual and methodological issues in the search for candidate genes for mouse aggression and for the development of animal models of human aggression are considered. First, the focus is on genetic and then behavioural aspects of the search for candidate genes in mice. For the genetic aspect, two approaches are presented. In mice, these are chromosome mapping of polymorphic genes and evaluation of gene (polymorphic or monomorphic) function using knockout mutants. For the behavioural aspect, several parameters, including the type of aggression, measure of aggression, test situation and opponent type can have effects on the obtained genetics. This is illustrated for the offence type of attack behaviour in mice. The current combination of sophisticated genetic and behavioural analyses will result in time in the identification of many of the genes with effects on variation and development of one or more types of murine aggression. Since mouse and humans have many homologous genes mapped to homologous chromosome regions, it is conceivable that individual genes identified for one or more types of mouse aggression may be developed as animal models for human aggression. Genetic, physiological and behavioural limitations and uses of such models are discussed.
Collapse
Affiliation(s)
- S C Maxson
- Department of Psychology, University of Connecticut, Stoirs 06269-4154, USA
| |
Collapse
|
18
|
Gatewood JD, Wills A, Shetty S, Xu J, Arnold AP, Burgoyne PS, Rissman EF. Sex chromosome complement and gonadal sex influence aggressive and parental behaviors in mice. J Neurosci 2006; 26:2335-42. [PMID: 16495461 PMCID: PMC6674813 DOI: 10.1523/jneurosci.3743-05.2006] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 12/11/2005] [Accepted: 01/10/2006] [Indexed: 11/21/2022] Open
Abstract
Across human cultures and mammalian species, sex differences can be found in the expression of aggression and parental nurturing behaviors: males are typically more aggressive and less parental than females. These sex differences are primarily attributed to steroid hormone differences during development and/or adulthood, especially the higher levels of androgens experienced by males, which are caused ultimately by the presence of the testis-determining gene Sry on the Y chromosome. The potential for sex differences arising from the different complements of sex-linked genes in male and female cells has received little research attention. To directly test the hypothesis that social behaviors are influenced by differences in sex chromosome complement other than Sry, we used a transgenic mouse model in which gonadal sex and sex chromosome complement are uncoupled. We find that latency to exhibit aggression and one form of parental behavior, pup retrieval, can be influenced by both gonadal sex and sex chromosome complement. For both behaviors, females but not males with XX sex chromosomes differ from XY. We also measured vasopressin immunoreactivity in the lateral septum, which was higher in gonadal males than females, but also differed according to sex chromosome complement. These results imply that a gene(s) on the sex chromosomes (other than Sry) affects sex differences in brain and behavior. Identifying the specific X and/or Y genes involved will increase our understanding of normal and abnormal aggression and parental behavior, including behavioral abnormalities associated with mental illness.
Collapse
|
19
|
Sex chromosomes. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1569-2558(03)34001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Dewing P, Shi T, Horvath S, Vilain E. Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. ACTA ACUST UNITED AC 2003; 118:82-90. [PMID: 14559357 DOI: 10.1016/s0169-328x(03)00339-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The classic view of brain sexual differentiation and behavior is that gonadal steroid hormones act directly to promote sex differences in neural and behavioral development. In particular, the actions of testosterone and its metabolites induce a masculine pattern of brain development, while inhibiting feminine neural and behavioral patterns of differentiation. However, recent evidence indicates that gonadal hormones may not solely be responsible for sex differences in brain development and behavior between males and females. Here we examine an alternative hypothesis that genes, by directly inducing sexually dimorphic patterns of neural development, can influence the sexual differences between male and female brains. Using microarrays and RT-PCR, we have detected over 50 candidate genes for differential sex expression, and confirmed at least seven murine genes which show differential expression between the developing brains of male and female mice at stage 10.5 days post coitum (dpc), before any gonadal hormone influence. The identification of genes differentially expressed between male and female brains prior to gonadal formation suggests that genetic factors may have roles in influencing brain sexual differentiation.
Collapse
Affiliation(s)
- Phoebe Dewing
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
21
|
Galfalvy HC, Erraji-Benchekroun L, Smyrniotopoulos P, Pavlidis P, Ellis SP, Mann JJ, Sibille E, Arango V. Sex genes for genomic analysis in human brain: internal controls for comparison of probe level data extraction. BMC Bioinformatics 2003; 4:37. [PMID: 12962547 PMCID: PMC212256 DOI: 10.1186/1471-2105-4-37] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Accepted: 09/08/2003] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Genomic studies of complex tissues pose unique analytical challenges for assessment of data quality, performance of statistical methods used for data extraction, and detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression analysis methods, one needs a set of genes which are known to be differentially expressed in the samples and which can be used as a "gold standard". We introduce the idea of using sex-chromosome genes as an alternative to spiked-in control genes or simulations for assessment of microarray data and analysis methods. RESULTS Expression of sex-chromosome genes were used as true internal biological controls to compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model Based Expression Index [MBEI] and Robust Multi-array Average [RMA]), to assess microarray data quality and to establish some statistical guidelines for analyzing large-scale gene expression. These approaches were implemented on a large new dataset of human brain samples. RMA-generated gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-derived values. A statistical technique controlling the false discovery rate was applied to adjust for multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes, displayed significant sex differences in brain prefrontal cortex gene expression. CONCLUSION In this study, we have demonstrated the use of sex genes as true biological internal controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical analysis of differentially expressed genes. Our results also provided evidence for sex differences in gene expression in the brain prefrontal cortex, supporting the notion of a putative direct role of sex-chromosome genes in differentiation and maintenance of sexual dimorphism of the central nervous system. Importantly, these analytical approaches are applicable to all microarray studies that include male and female human or animal subjects.
Collapse
Affiliation(s)
- Hanga C Galfalvy
- Department of Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Loubna Erraji-Benchekroun
- Department of Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Peggy Smyrniotopoulos
- Department of Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Paul Pavlidis
- Genome Center, Department of Biomedical Informatics, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Steven P Ellis
- Department of Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - J John Mann
- Department of Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Etienne Sibille
- Department of Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Victoria Arango
- Department of Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
22
|
Abstract
Currently, 36 genes have been reported to affect offensive behavior in male mice. Potentially, these genes could be used to analyze the mechanism of this behavior. But there are methodological flies in this conceptual ointment. The studies with these genes varied in the genetic background, the maternal environments, the postweaning housing, the strain or type of opponent, and the type of test. The effects of each of these on the genetics of offense are reviewed with examples. It is concluded that between-study variation in these environmental or experiential circumstances may make it difficult to impossible to relate the effect of one genetic variant to another and to use these to identify and relate the pathways for gene effects on offensive behaviors. For this reason, standardization of these conditions is recommended.
Collapse
Affiliation(s)
- Stephen C Maxson
- Department of Psychology, The University of Connecticut, Storrs, CT 06269-1020, USA.
| | | |
Collapse
|
23
|
A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J Neurosci 2002. [PMID: 12388607 DOI: 10.1523/jneurosci.22-20-09005.2002] [Citation(s) in RCA: 375] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We tested the hypothesis that genes encoded on the sex chromosomes play a direct role in sexual differentiation of brain and behavior. We used mice in which the testis-determining gene (Sry) was moved from the Y chromosome to an autosome (by deletion of Sry from the Y and subsequent insertion of an Sry transgene onto an autosome), so that the determination of testis development occurred independently of the complement of X or Y chromosomes. We compared XX and XY mice with ovaries (females) and XX and XY mice with testes (males). These comparisons allowed us to assess the effect of sex chromosome complement (XX vs XY) independent of gonadal status (testes vs ovaries) on sexually dimorphic neural and behavioral phenotypes. The phenotypes included measures of male copulatory behavior, social exploration behavior, and sexually dimorphic neuroanatomical structures in the septum, hypothalamus, and lumbar spinal cord. Most of the sexually dimorphic phenotypes correlated with the presence of ovaries or testes and therefore reflect the hormonal output of the gonads. We found, however, that both male and female mice with XY sex chromosomes were more masculine than XX mice in the density of vasopressin-immunoreactive fibers in the lateral septum. Moreover, two male groups differing only in the form of their Sry gene showed differences in behavior. The results show that sex chromosome genes contribute directly to the development of a sex difference in the brain.
Collapse
|
24
|
Abstract
Despite the previous development of single-gene knock-out mice that exhibit alterations in aggressive behavior, very little progress has been made toward identifying the natural gene variants (alleles) that contribute to individual or strain differences in aggression. Whereas most inbred mouse strains show an intermediate level of inter-male aggression in the resident-intruder or dangler behavioral tests, NZB/B1NJ mice are extremely aggressive and A/J mice are extremely unaggressive. We took advantage of the large phenotypic difference between these strains and used an outcross-backcross breeding protocol and a genome-wide scan to identify aggression quantitative trait loci (QTLs) on distal chromosome 10 (Aggr1; p = 6 x 10(-7)) and proximal chromosome X (Aggr2; p = 2.14 x 10(-5)). Candidate genes for Aggr1 and Aggr2, respectively, include the diacylglycerol kinase alpha subunit gene (Dagk1) and the glutamate receptor subunit AMPA3 gene (Gria3). This is the first report of significant aggression QTLs established through a genome-wide scan in any mammal. The mapping of these QTLs is a step toward the definitive identification of mouse alleles that affect aggression and may lead, ultimately, to the discovery of homologous alleles that affect individual differences in aggression within other mammalian species.
Collapse
|
25
|
Abstract
Aggressive behavior in male and female mice occurs in conflicts with intruding rivals, most often for the purpose of suppressing the reproductive success of the opponent. The behavioral repertoire of fighting is composed of intricately sequenced bursts of species-typical elements, with the resident displaying offensive and the intruder defensive acts and postures. The probability of occurrence as well as the frequency, duration, temporal and sequential patterns of aggressive behavior can be quantified with ethological methods. Classic selection and strain comparisons show the heritability of aggressive behavior, and point to the influence of several genes, including some of them on the Y chromosome. However, genetic effects on aggressive behavior critically depend upon the background strain, maternal environment and the intruder. These factors are equally important in determining changes in aggressive behavior in mice with a specific gene deletion. While changes in aggression characterize mutant mice involving a variety of genes, no pattern has emerged that links particular gene products (i.e. enzyme, peptide, receptor) to either an increase or a decrease in aggressive behavior, but rather emphasizes polygenic influences. A potentially common mechanism may be some components of the serotonin system, since alterations in 5-HT neurotransmission have been found in several of the KO mice that display unusual aggressive behavior.
Collapse
Affiliation(s)
- K A Miczek
- Department of Psychology, Bacon Hall, Tufts University, 530 Boston Avenue, Medford, MA 02155, USA.
| | | | | | | |
Collapse
|
26
|
Stavnezer AJ, McDowell CS, Hyde LA, Bimonte HA, Balogh SA, Hoplight BJ, Denenberg VH. Spatial ability of XY sex-reversed female mice. Behav Brain Res 2000; 112:135-43. [PMID: 10862944 DOI: 10.1016/s0166-4328(00)00174-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Perinatal gonadal hormones significantly affect subsequent sex differences in reproductive and non-reproductive behaviors in rodents. However, the influence of the sex chromosomes on these behaviors has been largely ignored. To assess the influence of the non-pseudoautosomal region of the Y chromosome, C57BL/JEi male and female mice and mice from the C57BL/6JEi-Y(POS) consomic strain were given behavioral tests known to distinguish males from females. The C57BL/6JEi-Y(POS) strain contains sex-reversed XY-females which, when compared to their XX-female siblings, allow assessment of the influence of the Y chromosome in a female phenotype. XX-females and XY-females did not differ on open-field activity, the Lashley maze, or active avoidance learning, but XY-females were significantly better than XX-females on the Morris hidden platform spatial maze. These findings suggest that males may have both a genetic and a hormonal mechanism to ensure visuospatial superiority.
Collapse
Affiliation(s)
- A J Stavnezer
- Biobehavioral Sciences Graduate Degree Program, U-154, University of Connecticut, 3107 Horsebarn Hill Road, Storrs, CT 06269-4154, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Kittles RA, Long JC, Bergen AW, Eggert M, Virkkunen M, Linnoila M, Goldman D. Cladistic association analysis of Y chromosome effects on alcohol dependence and related personality traits. Proc Natl Acad Sci U S A 1999; 96:4204-9. [PMID: 10097188 PMCID: PMC22445 DOI: 10.1073/pnas.96.7.4204] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Association between Y chromosome haplotype variation and alcohol dependence and related personality traits was investigated in a large sample of psychiatrically diagnosed Finnish males. Haplotypes were constructed for 359 individuals using alleles at eight loci (seven microsatellite loci and a nucleotide substitution in the DYZ3 alphoid satellite locus). A cladogram linking the 102 observed haplotype configurations was constructed by using parsimony with a single-step mutation model. Then, a series of contingency tables nested according to the cladogram hierarchy were used to test for association between Y haplotype and alcohol dependence. Finally, using only alcohol-dependent subjects, we tested for association between Y haplotype and personality variables postulated to define subtypes of alcoholism-antisocial personality disorder, novelty seeking, harm avoidance, and reward dependence. Significant association with alcohol dependence was observed at three Y haplotype clades, with significance levels of P = 0.002, P = 0.020, and P = 0.010. Within alcohol-dependent subjects, no relationship was revealed between Y haplotype and antisocial personality disorder, novelty seeking, harm avoidance, or reward dependence. These results demonstrate, by using a fully objective association design, that differences among Y chromosomes contribute to variation in vulnerability to alcohol dependence. However, they do not demonstrate an association between Y haplotype and the personality variables thought to underlie the subtypes of alcoholism.
Collapse
Affiliation(s)
- R A Kittles
- Section on Population Genetics and Linkage, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD. 20852, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
As traditional behavioral genetics analysis merges with neurogenetics, the field of neurobehavioral genetics, focusing on single-gene effects, comes into being. New biotechnology has greatly accelerated gene discovery and the study of gene function in relation to brain and behavior. More than 7,000 genes in mice and 10,000 in humans have now been documented, and extensive information about the genetics of several species is readily available on the World Wide Web. Based on knowledge of the DNA sequence of a gene, a targeted mutation with the capacity to disable it can be created. These knockouts--also called null mutants--are employed in the study of a wide range of phenotypes, including learning and memory, appetite and obesity, and circadian rhythms. The era of examining single-gene effects from a reductionistic perspective is waning, and research with interacting arrays of genes in various environmental contexts is demonstrating a need for systems-oriented theory.
Collapse
Affiliation(s)
- D Wahlsten
- Department of Psychology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
29
|
Monahan EJ, Maxson SC. Y chromosome, urinary chemosignals, and an agonistic behavior (offense) of mice. Physiol Behav 1998; 64:123-32. [PMID: 9662075 DOI: 10.1016/s0031-9384(98)00041-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mice, offense is one type of agonistic behavior associated with attacks. Offense of male mice was measured in a panel of testers design. The mice were DBA1 (D1) and DBA1.C57BL10-Y (D1.B10-Y). These are congenic for the male-specific, nonrecombining part of the Y chromosome. For the behavioral experiments, urine from D1 or D1.B10-Y mice was daubed on gonadectomized opponents. The opponents were of two genotypes, D1 or D1.B10-Y. The experimental subjects were of the same two genotypes. There were main effects for strain of experimental subject and strain of urine donor as well as interactions for strain of experimental subject x strain of gonadectomized opponent, strain of gonadectomized opponent x strain of urine donor, and strain of experimental subject x strain of gonadectomized opponent x strain of urine donor. These findings are consistent with a model in which this part of the Y chromosome affects testosterone-dependent pheromones and non-testosterone-dependent odor types acting as motivating stimuli, the olfactory perception of motivating stimuli for offense, and the motivational mechanism for offense.
Collapse
Affiliation(s)
- E J Monahan
- Department of Psychology, University of Connecticut, Storrs 06269-4154, USA
| | | |
Collapse
|
30
|
Guillot PV, Chapouthier G. Intermale aggression, GAD activity in the olfactory bulbs and Y chromosome effect in seven inbred mouse strains. Behav Brain Res 1998; 90:203-6. [PMID: 9521552 DOI: 10.1016/s0166-4328(97)00110-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The capacity to attack a passive standard opponent in a resident-intruder test and the GAD activity in the olfactory bulbs were measured in 140 male mice from seven different inbred mouse strains. The effect of the non-pseudo autosomal region of the Y-chromosome (YNPAR) on these two phenotypes has also been investigated using a quartet of reciprocal strains congenic for the YNPAR. A strong negative correlation was found between the two variables but the YNPAR is not involved. This result suggests that males of more attacking strains have a lower olfactory threshold, making the olfactory discrimination of the opponent easier and its identification as a stranger more efficient.
Collapse
Affiliation(s)
- P V Guillot
- Mammalian Genetics Unit, Medical Research Council, Harwell, Didcot, Oxfordshire, UK.
| | | |
Collapse
|
31
|
Balaban E, Alper JS, Kasamon YL. Mean genes and the biology of aggression: a critical review of recent animal and human research. J Neurogenet 1996; 11:1-43. [PMID: 10876648 DOI: 10.3109/01677069609107061] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent genetic work has suggested that abnormalities in serotonin biochemistry are directly causally linked to aggressive behavior, and there appears to be a consensus in the psychiatric literature that low levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in cerebrospinal fluid are specifically associated with impulsive violent behavior. We review the limitations of the genetic studies and conduct a meta-analysis of 39 studies linking 5-HIAA to aggression in humans. No differences in mean 5-HIAA levels were found between groups of violent impulsive psychiatric patients and groups of subjects diagnosed with other psychiatric or medical conditions not considered to involve violence once these levels had been corrected for three nonpsychiatric sources of variation (age, sex and height). However, mean 5-HIAA levels in both of these groups were lower than the mean corrected level in groups of normal healthy volunteers. The results confirm an association between low 5-HIAA levels and psychiatric disorders, but fail to support any specific relationship between low 5-HIAA levels and impulsive aggression or criminality. It is premature and misleading to speak of "mean genes" (Hen 1996) or a specific neurochemistry of aggressive behavior.
Collapse
Affiliation(s)
- E Balaban
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
32
|
Maxson SC. Searching for candidate genes with effects on an agonistic behavior, offense, in mice. Behav Genet 1996; 26:471-6. [PMID: 8917945 DOI: 10.1007/bf02359751] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It is well established that the agonistic behavior of offense in mice is heritable. However, few genes have been identified or mapped for offense. For segments of chromosomes with effects on offense, a positional candidate strategy can be used to find such genes. This approach is illustrated for the effect of the male specific part (nonpseudoautosomal region; NPAR) of the mouse Y chromosome on offense. It is proposed that a positional candidate for this effect is Sry. The Sry protein is a transcription factor. Its mRNA is expressed in fetal and adult brain. Its protein binds to response elements in the 5' end of the aromatase and the Fra1 genes. Each of these genes has potential effects on several brain neurotransmitter systems involved in offense. The NPAR Y chromosomes of several pairs of inbred strains have differential effects on offense. This hypothesis would be tested by sequencing Sry for some of these pairs of strains.
Collapse
Affiliation(s)
- S C Maxson
- Department of Psychology, University of Connecticut, Storrs 06269-4154, USA.
| |
Collapse
|
33
|
Guillot PV, Chapouthier G. Olfaction, GABAergic neurotransmission in the olfactory bulb, and intermale aggression in mice: modulation by steroids. Behav Genet 1996; 26:497-504. [PMID: 8917948 DOI: 10.1007/bf02359754] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A model to explain individual differences in mice for the propensity to attack male conspecifics is proposed. In the first part of the paper, the relation between olfaction and intermale aggression is discussed emphasizing the importance of olfactory cues provided by the opponent and their subsequent processing by the attacking male. The physiological role of GABA in the olfactory pathway is presented in the second part of the paper. The third part investigates the possible modulating action of steroids on the GABA-A receptor complex, intermale aggression, and olfaction. We hypothesize that at least part of the individual differences in the propensity to attack may be explained by a differential olfactory recognition and discrimination of the opponent as a stranger through a differential processing threshold of the olfactory cues provided by the urine of the opponent. A possible modulation of this threshold by steroids, especially testosterone, is also discussed.
Collapse
Affiliation(s)
- P V Guillot
- URA 1294, CNRS, UFR Biomédicale, Université Paris V René Descartes, France.
| | | |
Collapse
|
34
|
Affiliation(s)
- W E Crusio
- Génétique, Neurogénétique et Comportement, URA 1294, CNRS, Université de Paris V, France.
| |
Collapse
|
35
|
Sluyter F, van Oortmerssen GA, de Ruiter AJ, Koolhaas JM. Aggression in wild house mice: current state of affairs. Behav Genet 1996; 26:489-96. [PMID: 8917947 DOI: 10.1007/bf02359753] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This paper reviews our present state of knowledge of genetic variation in (offensive) aggression in wild house mice. The basic tools in this research were lines bidirectionally selected for attack latency (fast attacking SAL and slow attacking LAL males), descended from a feral population. Using congenic lines for the nonpseudoautosomal region of the Y chromosome (YNPAR), reciprocal crosses between (parental) SAL and LAL, and crosses between parentals and congenics, an autosomally dependent Y chromosomal effect on aggression has been found. Both the pseudoautosomal (YPAK) region and the YNPAR play a role. As for environmental sources of variation, prenatal and postnatal maternal effects are of minor importance for the development of aggression differences. One of the physiological factors by which genetic effects may be mediated is testosterone (T). Besides quantitative aspects, the timing of T release seems crucial. Two important time frames are discussed: the perinatal and pubertal time periods. Finally, neurochemical and neuroanatomical correlates are considered. Differences in neostriatal dopaminergic activity, and sizes of the intra- and infrapyramidal mossy fiber terminal fields, as well as Y chromosomal effects on the latter two, are discussed.
Collapse
Affiliation(s)
- F Sluyter
- URA 1294 CNRS, Université Paris V, UFR Biomédicale, France.
| | | | | | | |
Collapse
|
36
|
A guide to the literature on aggressive behavior. Aggress Behav 1996. [DOI: 10.1002/1098-2337(1996)22:1<71::aid-ab2480220102>3.0.co;2-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|