1
|
Scully KJ, Wolfsdorf J, Dedekian M. Acquired growth hormone deficiency in Fanconi-Bickel syndrome. BMJ Case Rep 2021; 14:e246212. [PMID: 34728514 PMCID: PMC8565550 DOI: 10.1136/bcr-2021-246212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 11/04/2022] Open
Abstract
Fanconi-Bickel syndrome (FBS) is a rare autosomal recessive disease, resulting from mutations in the SLC2A2 gene, causing impaired glucose transporter 2 protein transporter protein function, impaired glucose and galactose utilisation, hepatorenal glycogen accumulation and organ dysfunction. Clinical features include failure to thrive, hepatomegaly, rickets, short stature and delayed puberty. Therapy includes electrolyte supplementation and uncooked cornstarch. We present a 15-year-old boy diagnosed with FBS in infancy. Growth velocity was normal on standard treatment until age 8.5 years, at which time growth failure led to a diagnosis of acquired growth hormone (GH) deficiency. Initiation of recombinant human GH (rhGH) replacement of 0.25 μg/kg/week resulted in marked improvement in growth velocity and height. While short stature is expected in FBS, growth velocity that falls below the normal range despite adequate therapy should prompt further evaluation. Our case suggests that acquired GH deficiency can arise in FBS and benefits from rhGH therapy.
Collapse
Affiliation(s)
- Kevin J Scully
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Joseph Wolfsdorf
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Michael Dedekian
- Division of Pediatric Endocrinology, Maine Medical Center, Portland, Maine, USA
| |
Collapse
|
2
|
Xiong LJ, Jiang ML, Du LN, Yuan L, Xie XL. Fanconi-Bickel syndrome in an infant with cytomegalovirus infection: A case report and review of the literature. World J Clin Cases 2020; 8:5467-5473. [PMID: 33269285 PMCID: PMC7674741 DOI: 10.12998/wjcc.v8.i21.5467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/16/2020] [Accepted: 09/26/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Fanconi-Bickel syndrome (FBS) is a rare autosomal recessive disorder caused by mutation of the SLC2A2 gene, which encodes glucose transporter protein 2 (GLUT2). CASE SUMMARY We report a 7-mo-old girl with cytomegalovirus infection presenting hepatomegaly, jaundice, liver transaminase elevation, fasting hypoglycemia, hyperglycosuria, proteinuria, hypophosphatemia, rickets, and growth retardation. After prescription of ganciclovir, the levels of bilirubin and alanine aminotransferase decreased to normal, while she still had aggravating hepatomegaly and severe hyperglycosuria. Then, whole exome sequencing was conducted and revealed a homozygous c.416delC mutation in exon 4 of SLC2A2 inherited from her parents, which was predicted to change alanine 139 to valine (p.A139Vfs*3), indicating a diagnosis of FBS. During the follow-up, the entire laboratory test returned to normal with extra supplement of vitamin D and corn starch. Her weight increased to normal range at 3 years old without hepatomegaly. However, she still had short stature. Although there was heterogeneity between phenotype and genotype, Chinese children had typical clinical manifestations. No hot spot mutation or association between severity and mutations was found, but nonsense and missense mutations were more common. Data of long-term follow-up were rare, leading to insufficient assessment of the prognosis in Chinese children. CONCLUSION FBS is a rare genetic metabolic disease causing impaired glucose liver homeostasis and proximal renal tubular dysfunction. Results of urine and blood testing suggesting abnormal glucose metabolism could be the clues for FBS in neonates and infants. Genetic sequencing is indispensable for diagnosis. Since the diversity of disease severity, early identification and long-term follow-up could help improve patients' quality of life and decrease mortality.
Collapse
Affiliation(s)
- Li-Jing Xiong
- Department of Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610091, Sichuan Province, China
| | - Mao-Ling Jiang
- Department of Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610091, Sichuan Province, China
| | - Li-Na Du
- Department of Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610091, Sichuan Province, China
| | - Lan Yuan
- Department of Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610091, Sichuan Province, China
| | - Xiao-Li Xie
- Department of Gastroenterology, Hepatology and Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610091, Sichuan Province, China
| |
Collapse
|
3
|
Sharari S, Abou-Alloul M, Hussain K, Ahmad Khan F. Fanconi-Bickel Syndrome: A Review of the Mechanisms That Lead to Dysglycaemia. Int J Mol Sci 2020; 21:E6286. [PMID: 32877990 PMCID: PMC7504390 DOI: 10.3390/ijms21176286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
Accumulation of glycogen in the kidney and liver is the main feature of Fanconi-Bickel Syndrome (FBS), a rare disorder of carbohydrate metabolism inherited in an autosomal recessive manner due to SLC2A2 gene mutations. Missense, nonsense, frame-shift (fs), in-frame indels, splice site, and compound heterozygous variants have all been identified in SLC2A2 gene of FBS cases. Approximately 144 FBS cases with 70 different SLC2A2 gene variants have been reported so far. SLC2A2 encodes for glucose transporter 2 (GLUT2) a low affinity facilitative transporter of glucose mainly expressed in tissues playing important roles in glucose homeostasis, such as renal tubular cells, enterocytes, pancreatic β-cells, hepatocytes and discrete regions of the brain. Dysfunctional mutations and decreased GLUT2 expression leads to dysglycaemia (fasting hypoglycemia, postprandial hyperglycemia, glucose intolerance, and rarely diabetes mellitus), hepatomegaly, galactose intolerance, rickets, and poor growth. The molecular mechanisms of dysglycaemia in FBS are still not clearly understood. In this review, we discuss the physiological roles of GLUT2 and the pathophysiology of mutants, highlight all of the previously reported SLC2A2 mutations associated with dysglycaemia, and review the potential molecular mechanisms leading to dysglycaemia and diabetes mellitus in FBS patients.
Collapse
Affiliation(s)
- Sanaa Sharari
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar;
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar;
| | - Mohamad Abou-Alloul
- Department of Pediatric Medicine, Saida Governmental University Hospital, Beirut Arab University, Beirut 115020, Lebanon;
| | - Khalid Hussain
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar;
| | - Faiyaz Ahmad Khan
- Department of Pediatric Medicine, Division of Endocrinology, Sidra Medicine, Doha, Qatar;
| |
Collapse
|
4
|
Sullivan MA, Forbes JM. Glucose and glycogen in the diabetic kidney: Heroes or villains? EBioMedicine 2019; 47:590-597. [PMID: 31405756 PMCID: PMC6796499 DOI: 10.1016/j.ebiom.2019.07.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
Glucose metabolism in the kidney is currently foremost in the minds of nephrologists, diabetologists and researchers globally, as a result of the outstanding success of SGLT2 inhibitors in reducing renal and cardiovascular disease in individuals with diabetes. However, these exciting data have come with the puzzling but fascinating paradigm that many of the beneficial effects on the kidney and cardiovascular system seem to be independent of the systemic glucose lowering actions of these agents. This manuscript places into context an area of research highly relevant to renal glucose metabolism, that of glycogen accumulation and metabolism in the diabetic kidney. Whether the glycogen that abnormally accumulates is pathological (the villain), is somehow protective (the hero) or is inconsequential (the bystander) is a research question that may provide insight into the link between diabetes and diabetic kidney disease.
Collapse
Affiliation(s)
- Mitchell A Sullivan
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.
| | - Josephine M Forbes
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; Mater Clinical School, School of Medicine, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
5
|
Ion Transporters, Channelopathies, and Glucose Disorders. Int J Mol Sci 2019; 20:ijms20102590. [PMID: 31137773 PMCID: PMC6566632 DOI: 10.3390/ijms20102590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/19/2023] Open
Abstract
Ion channels and transporters play essential roles in excitable cells including cardiac, skeletal and smooth muscle cells, neurons, and endocrine cells. In pancreatic beta-cells, for example, potassium KATP channels link the metabolic signals generated inside the cell to changes in the beta-cell membrane potential, and ultimately regulate insulin secretion. Mutations in the genes encoding some ion transporter and channel proteins lead to disorders of glucose homeostasis (hyperinsulinaemic hypoglycaemia and different forms of diabetes mellitus). Pancreatic KATP, Non-KATP, and some calcium channelopathies and MCT1 transporter defects can lead to various forms of hyperinsulinaemic hypoglycaemia (HH). Mutations in the genes encoding the pancreatic KATP channels can also lead to different types of diabetes (including neonatal diabetes mellitus (NDM) and Maturity Onset Diabetes of the Young, MODY), and defects in the solute carrier family 2 member 2 (SLC2A2) leads to diabetes mellitus as part of the Fanconi–Bickel syndrome. Variants or polymorphisms in some ion channel genes and transporters have been reported in association with type 2 diabetes mellitus.
Collapse
|
6
|
Enogieru OJ, Ung PMU, Yee SW, Schlessinger A, Giacomini KM. Functional and structural analysis of rare SLC2A2 variants associated with Fanconi-Bickel syndrome and metabolic traits. Hum Mutat 2019; 40:983-995. [PMID: 30950137 DOI: 10.1002/humu.23758] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/01/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
Deleterious variants in SLC2A2 cause Fanconi-Bickel Syndrome (FBS), a glycogen storage disorder, whereas less common variants in SLC2A2 associate with numerous metabolic diseases. Phenotypic heterogeneity in FBS has been observed, but its causes remain unknown. Our goal was to functionally characterize rare SLC2A2 variants found in FBS and metabolic disease-associated variants to understand the impact of these variants on GLUT2 activity and expression and establish genotype-phenotype correlations. Complementary RNA-injected Xenopus laevis oocytes were used to study mutant transporter activity and membrane expression. GLUT2 homology models were constructed for mutation analysis using GLUT1, GLUT3, and XylE as templates. Seventeen FBS variants were characterized. Only c.457_462delCTTATA (p.Leu153_Ile154del) exhibited residual glucose uptake. Functional characterization revealed that only half of the variants were expressed on the plasma membrane. Most less common variants (except c.593 C>A (p.Thr198Lys) and c.1087 G>T (p.Ala363Ser)) exhibited similar GLUT2 transport activity as the wild type. Structural analysis of GLUT2 revealed that variants affect substrate-binding, steric hindrance, or overall transporter structure. The mutant transporter that is associated with a milder FBS phenotype, p.Leu153_Ile154del, retained transport activity. These results improve our overall understanding of the underlying causes of FBS and impact of GLUT2 function on various clinical phenotypes ranging from rare to common disease.
Collapse
Affiliation(s)
- Osatohanmwen J Enogieru
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California
| | - Peter M U Ung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California.,Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| |
Collapse
|
7
|
Wang L, Liu Z, Chen Z, Huang C, Liu X, Chen C, Liu X, Huang J, Liu L, Lin D. Metabonomic analysis of the therapeutic effect of exendin-4 for the treatment of tBHP-induced injury in mouse glomerulus mesangial cells. Free Radic Res 2018. [PMID: 29526117 DOI: 10.1080/10715762.2018.1449948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Although previous studies have reported the protective effect of glucagon-like peptide-1 (GLP-1) in diabetes nephropathy, the molecular mechanism such as nephroprotection remains elusive. In this study, we explored the molecular mechanism of exendin-4 as an GLP-1 receptor agonist for the treatment of tert-butyl hydroperoxide (t-BHP)-induced injury in mouse glomerulus mesangial cells (SV40 MES 13 cells) via an NMR-based metabonomic analysis. We found that exendin-4 protected mesangial cells from t-BHP-mediated toxicity, decreased the percentage of t-BHP-treated cells undergoing apoptosis, and restored glucose consumption in the t-BHP-treated group. A supervised partial least-squares discriminant analysis (PLS-DA) revealed that the metabolic profiles could be distinguished between the control, t-BHP-treated, and exendin-4-pretreated groups. Our findings indicate that exendin-4 pretreatment can cause distinct changes in energy, glycerol phospholipid, and amino acid metabolism. Our study provides novel insight into the metabolic mechanism of exendin-4-mediated nephroprotective effects.
Collapse
Affiliation(s)
- Linxi Wang
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Zhiqing Liu
- b Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , China
| | - Zhou Chen
- c Department of Pharmacology, College of Pharmacy , Fujian Medical University , Fuzhou , China
| | - Caihua Huang
- d Exercise and Health Laboratory , Xiamen University of Technology , Xiamen , China
| | - Xiaohong Liu
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Can Chen
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Xiaoyin Liu
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Jingze Huang
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Libin Liu
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Donghai Lin
- b Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , China
| |
Collapse
|
8
|
Fanconi syndrome and neonatal diabetes: phenotypic heterogeneity in patients with GLUT2 defects. CEN Case Rep 2017; 7:1-4. [PMID: 29116606 DOI: 10.1007/s13730-017-0278-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022] Open
Abstract
Fanconi-Bickel syndrome, caused by mutations in SLC2A2 encoding the glucose transporter 2 (GLUT2), is characterized by generalized proximal renal tubular dysfunction manifesting in late infancy. We describe phenotypic heterogeneity of Fanconi-Bickel syndrome in three siblings, including early and atypical presentation with transient neonatal diabetes mellitus in one. The second-born of a non-consanguineous couple, evaluated for polyuria and growth retardation, had rickets, hepatomegaly and proximal tubular dysfunction from 4 to 6 months of age. A male sibling, who expired at 4 months, also had hepatomegaly and growth retardation. The third sibling had polyuria, glucosuria and mild proteinuria on day 3 of life. Hyperglycemia was detected 2 weeks later, which required therapy with insulin for 3 months. Mild metabolic acidosis was present at 2 weeks; hypercalciuria, phosphaturia and aminoaciduria were seen at 6 months. Sanger sequencing showed a homozygous missense mutation in SLC2A2 (exon 7, c.952G > A), causing glycine to arginine substitution; both parents were heterozygous carriers. Patients with SLC2A2 mutations may present either with isolated neonatal diabetes or with hepatomegaly and the renal Fanconi syndrome. Fanconi-Bickel syndrome shows phenotypic heterogeneity and may manifest early with subtle or atypical features, mandating a high index of suspicion.
Collapse
|
9
|
Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med 2015; 16:e1. [PMID: 25356975 DOI: 10.1038/gim.2014.128] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Glycogen storage disease type I (GSD I) is a rare disease of variable clinical severity that primarily affects the liver and kidney. It is caused by deficient activity of the glucose 6-phosphatase enzyme (GSD Ia) or a deficiency in the microsomal transport proteins for glucose 6-phosphate (GSD Ib), resulting in excessive accumulation of glycogen and fat in the liver, kidney, and intestinal mucosa. Patients with GSD I have a wide spectrum of clinical manifestations, including hepatomegaly, hypoglycemia, lactic acidemia, hyperlipidemia, hyperuricemia, and growth retardation. Individuals with GSD type Ia typically have symptoms related to hypoglycemia in infancy when the interval between feedings is extended to 3–4 hours. Other manifestations of the disease vary in age of onset, rate of disease progression, and severity. In addition, patients with type Ib have neutropenia, impaired neutrophil function, and inflammatory bowel disease. This guideline for the management of GSD I was developed as an educational resource for health-care providers to facilitate prompt, accurate diagnosis and appropriate management of patients. METHODS A national group of experts in various aspects of GSD I met to review the evidence base from the scientific literature and provided their expert opinions. Consensus was developed in each area of diagnosis, treatment, and management. RESULTS This management guideline specifically addresses evaluation and diagnosis across multiple organ systems (hepatic, kidney, gastrointestinal/nutrition, hematologic, cardiovascular, reproductive) involved in GSD I. Conditions to consider in the differential diagnosis stemming from presenting features and diagnostic algorithms are discussed. Aspects of diagnostic evaluation and nutritional and medical management, including care coordination, genetic counseling, hepatic and renal transplantation, and prenatal diagnosis, are also addressed. CONCLUSION A guideline that facilitates accurate diagnosis and optimal management of patients with GSD I was developed. This guideline helps health-care providers recognize patients with all forms of GSD I, expedite diagnosis, and minimize adverse sequelae from delayed diagnosis and inappropriate management. It also helps to identify gaps in scientific knowledge that exist today and suggests future studies.
Collapse
|
10
|
Over-expression of muscle glycogen synthase in human diabetic nephropathy. Histochem Cell Biol 2014; 143:313-24. [PMID: 25371328 DOI: 10.1007/s00418-014-1290-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 01/15/2023]
Abstract
Diabetic nephropathy (DN) is a major complication of diabetic patients and the leading cause of end-stage renal disease. Glomerular dysfunction plays a critical role in DN, but deterioration of renal function also correlates with tubular alterations. Human DN is characterized by glycogen accumulation in tubules. Although this pathological feature has long been recognized, little information exists about the triggering mechanism. In this study, we detected over-expression of muscle glycogen synthase (MGS) in diabetic human kidney. This enhanced expression suggests the participation of MGS in renal metabolic changes associated with diabetes. HK2 human renal cell line exhibited an intrinsic ability to synthesize glycogen, which was enhanced after over-expression of protein targeting to glycogen. A correlation between increased glycogen amount and cell death was observed. Based on a previous transcriptome study on human diabetic kidney disease, significant differences in the expression of genes involved in glycogen metabolism were analyzed. We propose that glucose, but not insulin, is the main modulator of MGS activity in HK2 cells, suggesting that blood glucose control is the best approach to modulate renal glycogen-induced damage during long-term diabetes.
Collapse
|
11
|
Abstract
Diabetes mellitus was originally conceived as a renal disorder. In the last decade, however, there has been renewed interest in role of the kidney in the development and maintenance of high glucose levels. This has led to the development of novel agents to inhibit sodium glucose transporter-2 (SGLT2) as a means to better control glucose levels and at the same time augment calorie wasting and lower insulin, blood pressure and uric acid levels. Such actions, indirectly, may also have benefits for the prevention of diabetic complications including renal disease. However, there are also data to support the potential for direct renoprotective actions arising from inhibition of SGLT2, including actions to attenuate diabetes-associated hyperfiltration and tubular hypertrophy, as well as reduce the tubular toxicity of glucose. Some studies have demonstrated significant reductions in albumin excretion in various experimental models, independent of its effects on blood pressure or glucose control. Although promising, such actions remain to be established by comprehensive clinical trials with a renal focus, many of which are currently in progress. This article reviews the clinical and experimental data pertaining to the renal effects of SGLT2 inhibition with a particular focus on dapaglifozin.
Collapse
Affiliation(s)
- Merlin C Thomas
- Baker IDI Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, 3004, Australia
| |
Collapse
|
12
|
Phenotypic variability in patients with fanconi-bickel syndrome with identical mutations. JIMD Rep 2014; 15:95-104. [PMID: 24718840 DOI: 10.1007/8904_2014_303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To describe the phenotypic features of an ethnically homogenous group of patients with Fanconi-Bickel syndrome harboring the p.R310X mutation. METHODS The study group consisted of eight patients from a single Bedouin family with clinically and molecularly diagnosed Fanconi-Bickel syndrome who had been followed at the same tertiary medical center for 8 years or more. All were homozygous for the p.R310X mutation. The medical files were reviewed for presenting signs and symptoms, laboratory and imaging findings, treatment regimens, and disease severity over time. RESULTS Seven patients were diagnosed at our center before age 1 year, and one transferred from another center at age 16 years. Most patients presented with failure to thrive and/or hepatomegaly. All had short stature and doll-like facies. Most had biochemical abnormalities. Evaluation of the long-term findings revealed a wide spectrum of disease severity according to the following parameters: growth patterns, maximal electrolyte replacement therapy, skeletal and renal complications, frequency of follow-up visits, and hospitalizations for disease exacerbations. There was no apparent association of the clinical picture at presentation and later disease severity. CONCLUSION Fanconi-Bickel syndrome has a broad phenotypic variability in patients harboring the same homozygous p.R301X mutation. This finding might be explained by genetic elements such as modifier genes and epigenetic factors, as well as the effects of still-undetermined environmental and nutritional factors.
Collapse
|
13
|
Hadipour F, Sarkheil P, Noruzinia M, Hadipour Z, Baghdadi T, Shafeghati Y. Fanconi-Bickel syndrome versus osteogenesis imperfeeta: An Iranian case with a novel mutation in glucose transporter 2 gene, and review of literature. INDIAN JOURNAL OF HUMAN GENETICS 2013; 19:84-6. [PMID: 23901198 PMCID: PMC3722635 DOI: 10.4103/0971-6866.112906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fanconi-Bickel syndrome is an extremely rare hereditary metabolic disease, characterized by hepatomegaly due to glycogen storage, refractory hypophosphatemic rickets, marked growth retardation and proximal renal tubular acidosis. Recurrent bone fractures are one of the hallmark findings. It is a single gene disorder; the responsible gene belongs to the facilitative glucose transporters 2 (GLUT2) family gene or (SLC2A2) mapped to the q26.1-26.3 locus on chromosome 3, and encodes the GLUT protein 2. This protein is expressed in pancreatic ί-cells, hepatocytes, renal tubules, and intestinal mucosa. Several mutations in the GLUT2 gene have been reported in different ethnicities. Herein we report an Iranian girl with a missed diagnosis of osteogenesis imperfecta. She was referred with the history of frequent fractures, and severe motor delay and was suspected to osteogenesis imperfecta. Following the case we detected refractory rickets instead of OI, sever growth failure, proximal renal tubulopathy and RTA, and enlarged kidneys, progressive hepatomegaly, and GSD on liver biopsy. Glucose and galactose tolerance tests confirmed abnormal carbohydrate metabolism. Molecular analysis on GLUT2 gene revealed a homozygous novel mutation in exon 5; it was 15 nucleotide deletion and 7 nucleotide insertion and caused a frame shift mutation, produced a premature truncated protein (P.A229QFsX19). This mutation has not been reported before in the relevant literature.
Collapse
Affiliation(s)
- Fatemeh Hadipour
- Department of Medical Genetics, Sarem Cell Research Center, Sarem Women Hospital, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
14
|
Al-Haggar M. Fanconi-Bickel syndrome as an example of marked allelic heterogeneity. World J Nephrol 2012; 1:63-8. [PMID: 24175243 PMCID: PMC3782201 DOI: 10.5527/wjn.v1.i3.63] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 02/06/2023] Open
Abstract
Renal tubular acidosis (RTA) encompasses many renal tubular disorders characterized by hyperchloremic metabolic acidosis with a normal anion gap. Untreated patients usually complain of growth failure, osteoporosis, rickets, nephrolithiasis and eventually renal insufficiency. Fanconi-Bickel syndrome (FBS) is an example of proximal RTA due to a single gene disorder; it is caused by defects in the facilitative glucose transporter 2 gene that codes for the glucose transporter protein 2 expressed in hepatocytes, pancreatic β-cells, enterocytes and renal tubular cells. It is a rare inherited disorder of carbohydrate metabolism manifested by huge hepatomegaly [hence it is classified as glycogen storage disease (GSD) type XI; GSD XI], severe hypophosphatemic rickets and failure to thrive due to proximal renal tubular dysfunction leading to glucosuria, phosphaturia, generalized aminoaciduria, bicarbonate wasting and hypophosphatemia. The disorder has been reported from all parts of Europe, Turkey, Israel, Arabian countries, Japan and North America. Many mutant alleles have been described, its exact frequency is unknown and there is no single mutation found more frequently than the others. The presence of consanguinity in affected families suggests an autosomal recessive pattern of inheritance. New cases of FBS have been recently reported in the Middle and Far East in collaboration with specialized centers. Two novel mutations have been discovered in two unrelated Egyptian families. The first was two bases deletion, guanine and adenine, (c.253_254delGA) causing a frameshift mutation (p. Glu85fs) and the second is mutation in exon6 in splicing acceptor site with intron5 (c.776-1G>C or IVS5-1G>A). Moreover, a new different mutation was described in a 3 year old Indian boy.
Collapse
Affiliation(s)
- Mohammad Al-Haggar
- Mohammad Al-Haggar, Pediatrics and Genetics, Mansoura University Children's Hospital, 35516 Mansoura, Egypt
| |
Collapse
|
15
|
Fanconi- Bickel Syndrome: mutation in an Indian patient. Indian J Pediatr 2012; 79:810-2. [PMID: 21972075 DOI: 10.1007/s12098-011-0568-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 09/27/2011] [Indexed: 10/17/2022]
Abstract
Fanconi -Bickel Syndrome (FBS) is described as an autosomal recessive Glycogen Storage Disorder type XI. The underlying enzyme defect is unknown. The gene GLUT2 maps to 3q26.1-q26.3; encodes a facultative glucose transporter gene. A 6-y-old girl presented with the characteristic facial gestalt, glucose and galactose intolerance, proximal renal tubular dysfunction, hepatomegaly, and altered liver function. To confirm the diagnosis, mutation analysis was performed. Patient showed homozygous mutation in exon 9 of GLUT2 gene 1093 C>T, the mutation causing transition from arginine to stop codon at position 365 and causing premature termination of protein. The mutation was found to be causative as previously described. To the best of authors' knowledge this is first Indian patient ever reported with a mutation. Genetic testing can be employed as a method of confirming diagnosis, especially where definitive mutation can be useful for prenatal diagnosis and prognostication.
Collapse
|
16
|
Affiliation(s)
- Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | - Daisuke Koya
- Division of Diabetes and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa, Japan
- Corresponding author: Daisuke Koya,
| |
Collapse
|
17
|
Kędzierska K, Kwiatkowski S, Torbé A, Marchelek-Myśliwiec M, Marcinkiewicz O, Bobrek-Lesiakowska K, Gołembiewska E, Kwiatkowska E, Rzepka R, Ciechanowski K, Czajka R, Santer R. Successful pregnancy in the patient with Fanconi-Bickel syndrome undergoing daily hemodialysis. Am J Med Genet A 2011; 155A:2028-30. [DOI: 10.1002/ajmg.a.34099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/15/2011] [Indexed: 11/06/2022]
|
18
|
Glucose transport across the proximal tubule brush border membrane: Response to diabetes mellitus. Kidney Int 2008; 73:361-2; author reply 362. [DOI: 10.1038/sj.ki.5002670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Freitas HS, D'Agord Schaan B, da Silva RS, Okamoto MM, Oliveira-Souza M, Machado UF. Insulin but Not Phlorizin Treatment Induces a Transient Increase in GLUT2 Gene Expression in the Kidney of Diabetic Rats. ACTA ACUST UNITED AC 2007; 105:p42-51. [PMID: 17204838 DOI: 10.1159/000098442] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Accepted: 10/13/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Increases in the renal glucose transporter gene expression are involved in renal tubule-glomerular diseases. Here we investigate the GLUT2 gene expression changes in the kidney of diabetic rats, by using insulin or phlorizin treatment. METHODS Rats were rendered diabetic and studied 20 days later: 4-12 h after one single injection of insulin or phlorizin, and 1-6 days after insulin or phlorizin injection twice a day, comparing with diabetic rats injected with placebo. GLUT2 was investigated by Northern and Western analysis. RESULTS In 20-day diabetic rats, acute treatment with insulin lowered the plasma glucose and increased the GLUT2 mRNA ( approximately 100%, p < 0.001) without changes in the protein content, while phlorizin lowered the plasma glucose, but changed neither the GLUT2 mRNA nor the protein expression. Twenty-four hours of insulin treatment increased both GLUT2 mRNA ( approximately 100%, p < 0.001) and protein ( approximately 50%, p < 0.01), but no effects of phlorizin were observed. After 6 days, insulin and phlorizin similarly reduced glycemia, with opposite effects upon plasma insulin and urinary glucose, and both treatments decreased GLUT2 mRNA and protein (p < 0.05). CONCLUSION In kidney of diabetic rats, an initial and transient upregulation of GLUT2 was induced specifically by insulin only. The 6-day normalization of GLUT2, however, was induced by both insulin and phlorizin treatment, which seems to be related to the plasma glucose lowering.
Collapse
Affiliation(s)
- Helayne Soares Freitas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Goksen D, Darcan S, Coker M, Aksu G, Yildiz B, Kara S, Kültürsay N. Permanent neonatal diabetes with arthrogryposis multiplex congenita and neurogenic bladder - a new syndrome? Pediatr Diabetes 2006; 7:279-83. [PMID: 17054450 DOI: 10.1111/j.1399-5448.2006.00201.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neonatal diabetes mellitus is a rare (1/400 000 newborns) but potentially devastating condition, which may be transient or permanent; typical symptoms occur within the first 4 wk of life. The transient form is a developmental insulin production disorder that resolves postnatally. Fifty to 60% of cases can be seen as transient form. Cases that require lifelong insulin therapy can be described as permanent condition. This fraction of cases is less common than the transient form. There are no clinical features that can predict whether a neonate with diabetes mellitus but no other dysmorphology will eventually have permanent neonatal diabetes mellitus (PNDM) or transient neonatal diabetes mellitus. Some metabolic or genetic defects such as complete deficiency of glucokinase or heterozygous activating mutations of KCNJ11, encoding Kir6.2, were found in patients with PNDM. A preterm female infant with a gestational age of 36 wk was admitted to the neonatal intensive care unit in the first hours of life due to prematurity and intra-uterine growth retardation. She was diagnosed as having arthrogryposis multiplex congenita on the first day. Hyperglycemia was detected on the third day of life, and she required insulin treatment. The patient is now 6 yr old with PNDM, arthrogryposis multiplex, neurogenic bladder, immune deficiency, constipation, and ichthyosis. Is this a new form of neonatal diabetes mellitus?
Collapse
Affiliation(s)
- Damla Goksen
- Department of Pediatric Endocrinology and Metabolism, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| | | | | | | | | | | | | |
Collapse
|
21
|
Ozdemir AM, Hopfer U, Erhard P, Monnier VM, Weiss MF. Processing Advanced Glycation End Product-Modified Albumin by the Renal Proximal Tubule and the Early Pathogenesis of Diabetic Nephropathy. Ann N Y Acad Sci 2006; 1043:625-36. [PMID: 16037286 DOI: 10.1196/annals.1338.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diabetes is characterized by increased quantities of circulating proteins modified by advanced glycation end products (AGEs). Proteins filtered at the glomerulus and presented to the renal proximal tubule are likely to be highly modified by AGEs. The proximal tubule binds, takes up, and catabolizes AGE-modified albumin by pathways different from those of unmodified albumin. These differences were examined in polarized, electrically resistant proximal tubular cells grown in monolayer culture. In patients with type 1 diabetes, urinary excretion of a lysosomal enzyme predicted the development of nephropathy.
Collapse
Affiliation(s)
- Aylin M Ozdemir
- Division of Nephrology, Department of Medicine, University Hospitals of Cleveland, 11100 Euclid Ave., Cleveland, OH 44106-5048, USA
| | | | | | | | | |
Collapse
|
22
|
Berry GT, Baynes JW, Wells-Knecht KJ, Szwergold BS, Santer R. Elements of diabetic nephropathy in a patient with GLUT 2 deficiency. Mol Genet Metab 2005; 86:473-7. [PMID: 16288895 DOI: 10.1016/j.ymgme.2005.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/15/2005] [Accepted: 09/15/2005] [Indexed: 11/20/2022]
Abstract
The Fanconi-Bickel syndrome is caused by homozygosity or compound heterozygosity for mutations of the facilitated glucose transporter 2 gene (GLUT2). Glycogen accumulates in renal tubular cells and they fail to reabsorb multiple filtered solutes because of impairment in GLUT2-mediated efflux of glucose. We describe a 10-year-old male child with GLUT2 deficiency who produced massive amounts of 3-deoxyfructose (3-DF) in the kidneys. Since 3-DF is a detoxification product of a potent glycating agent, 3-deoxyglucosone, a precursor of advanced glycation end-products, this suggests a massive accumulation of glucose within tubular cells probably as a consequence of GLUT2 deficiency. The level of 3-DF in the urine of this atypical patient, who also manifested renal glomerular hyperfiltration, microalbuminuria, and glomerular mesangial expansion, was higher than in any patient examined with diabetes mellitus. Elevated levels of glucose and/or its metabolites in renal tubular cells may be necessary but not sufficient for the development of both the renal tubulopathy and diabetic-like glomerular disease in GLUT2 deficiency.
Collapse
Affiliation(s)
- Gerard T Berry
- Department of Pediatrics, Divisions of Human Genetics and Molecular Biology and Endocrinology and Diabetes, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
23
|
Freitas HS, Schaan BD, Seraphim PM, Nunes MT, Machado UF. Acute and short-term insulin-induced molecular adaptations of GLUT2 gene expression in the renal cortex of diabetic rats. Mol Cell Endocrinol 2005; 237:49-57. [PMID: 15869838 DOI: 10.1016/j.mce.2005.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/18/2005] [Accepted: 03/29/2005] [Indexed: 11/28/2022]
Abstract
Increased GLUT2 gene expression in the renal proximal tubule of diabetic rats is an adaptive condition, which may be important in the diabetic nephropathy development. We investigated the effects of insulin treatment upon the renal GLUT2 overexpression of diabetic rats. Acute treatment, surprisingly, induced a rapid further increase in GLUT2 mRNA content. Twelve hours after insulin injection, GLUT2 mRNA was twice the value of saline-injected rats (P<0.001), when GLUT2 protein remained unchanged. In response to short-term treatment, both GLUT2 mRNA and protein were increased in 1-day treated rats (P<0.05 versus saline-injected), decreasing after that, and reaching, within 6 days, values close to those of non-diabetic rats. Concluding, insulin treatment induced: initially, an additional upregulation of GLUT2 gene expression, involving posttranscriptional modulation; thereafter, downregulation of GLUT2 expression, which returns to non-diabetic levels. The former may be related to increased insulin concentration, the latter may be due to glycemic control.
Collapse
Affiliation(s)
- Helayne Soares Freitas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, 05505-900 Sao Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
24
|
Abstract
Far from being bystanders in diabetic nephropathy, changes in the proximal tubule are important for the development of progressive diabetic kidney disease. The proximal tubule is uniquely susceptible to a variety of metabolic and hemodynamic factors associated with diabetes. Renal function and prognosis correlate better with structural lesions in the tubuli and cortical interstitium than with classical glomerular changes of diabetic nephropathy. The proximal tubules show a variety of poorly characterized changes, which have led to the notion that tubular damage represents a "final common pathway" for proteinuric renal injury. However, tubular hypertrophy, reduced organic ion transport, and other tubular changes reviewed in this paper, are already apparent before the onset of proteinuria in diabetes. Indeed, increased tubuloglomerular feedback and defective uptake and lysosomal processing may independently contribute to hyperfiltration and urinary protein loss, respectively. This finding does not mean that glomerular or vascular dysfunction do not contribute to progressive nephropathy. However, although subdividing the nephron for the purposes of analysis and scientific discovery may be useful, the interactions between tubule, glomerulus, and interstitium are likely key to the understanding of complex disorders such as diabetic nephropathy. From this "holonephric" point of view, an understanding of the changes in the diabetic tubule forms an important component to the understanding of kidney disease in diabetes.
Collapse
Affiliation(s)
- M C Thomas
- Danielle Alberti Memorial Centre for Diabetes Complications, Baker Medical Research Institute, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
25
|
Scholl-Bürgi S, Santer R, Ehrich JHH. Long-term outcome of renal glucosuria type 0: the original patient and his natural history. Nephrol Dial Transplant 2004; 19:2394-6. [PMID: 15299100 DOI: 10.1093/ndt/gfh366] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Marks J, Carvou NJC, Debnam ES, Srai SK, Unwin RJ. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J Physiol 2003; 553:137-45. [PMID: 12963802 PMCID: PMC2343472 DOI: 10.1113/jphysiol.2003.046268] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mechanism of renal glucose transport involves the reabsorption of filtered glucose from the proximal tubule lumen across the brush border membrane (BBM) via a sodium-dependent transporter, SGLT, and exit across the basolateral membrane via facilitative, GLUT-mediated, transport. The aim of the present study was to determine the effect of streptozotocin-induced diabetes on BBM glucose transport. We found that diabetes increased facilitative glucose transport at the BBM by 67.5 % (P < 0.05)--an effect that was abolished by overnight fasting. Western blotting and immunohistochemistry demonstrated GLUT2 expression at the BBM during diabetes, but the protein was undetectable at the BBM of control animals or diabetic animals that had been fasted overnight. Our findings indicate that streptozotocin-induced diabetes causes the insertion of GLUT2 into the BBM and this may provide a low affinity/high capacity route of entry into proximal tubule cells during hyperglycaemia.
Collapse
Affiliation(s)
- Joanne Marks
- Department of Physiology and Centre for Nephrology, Royal Free and University College Medical School, London, UK.
| | | | | | | | | |
Collapse
|
27
|
Abstract
OBJECTIVES To quantify urinary citrate and calcium excretion and systemic acid-base status in patients with type 1a glycogen storage disease (GSD1a) and to investigate their relationship to renal complications. STUDY DESIGN Fifteen patients (7 male and 8 female; age range, 3--28 years) were studied during annual evaluations of metabolic control. All were treated with intermittent doses of uncooked cornstarch. Hourly blood sampling and a 24-hour urine collection were obtained while subjects followed their usual home dietary regimen. RESULTS All but the youngest subject had low levels of citrate excretion (mean 2.4 +/- 1.8 mg/kg/d; 129 +/- 21 mg citrate/g creatinine). Normally, urinary citrate excretion increases with age; however, in patients with GSD1a, a strong inverse exponential relationship was found between age and citrate excretion (r = -0.84, P <.0001). Urinary citrate excretion was unrelated to markers of metabolic control. Hypercalciuria occurred in 9 of 15 patients (mean urinary calcium/creatinine ratio, 0.27 +/- 0.15) and was also inversely correlated with age (r = -0.62, P =.001). CONCLUSIONS Hypocitraturia that worsens with age occurs in metabolically compensated patients with GSD1a. The combination of low citrate excretion and hypercalciuria appears to be important in the pathogenesis of nephrocalcinosis and nephrolithiasis. Citrate supplementation may be beneficial in preventing or ameliorating nephrocalcinosis and the development of urinary calculi in GSD1a.
Collapse
Affiliation(s)
- D A Weinstein
- Division of Endocrinology, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
28
|
Debnam ES, Unwin RJ. Hyperglycemia and intestinal and renal glucose transport: implications for diabetic renal injury. Kidney Int 1996; 50:1101-9. [PMID: 8887266 DOI: 10.1038/ki.1996.416] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|