1
|
Li HL, Nakano T, Hotta A. Genetic correction using engineered nucleases for gene therapy applications. Dev Growth Differ 2013; 56:63-77. [PMID: 24329887 DOI: 10.1111/dgd.12107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/20/2013] [Accepted: 10/20/2013] [Indexed: 12/24/2022]
Abstract
Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy.
Collapse
Affiliation(s)
- Hongmei Lisa Li
- Department of Reprogramming Science, Center for iPS cell Research and Applications (CiRA), Kyoto University, Kyoto, Japan; Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | | | | |
Collapse
|
2
|
Stephen SL, Sivanandam VG, Kochanek S. Homologous and heterologous recombination between adenovirus vector DNA and chromosomal DNA. J Gene Med 2008; 10:1176-89. [PMID: 18773501 DOI: 10.1002/jgm.1246] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Adenovirus vector DNA is perceived to remain as episome following gene transfer. We quantitatively and qualitatively analysed recombination between high capacity adenoviral vector (HC-AdV) and chromosomal DNA following gene transfer in vitro. METHODS We studied homologous and heterologous recombination with a single HC-AdV carrying (i) a large genomic HPRT fragment with the HPRT CHICAGO mutation causing translational stop upon homologous recombination with the HPRT locus and (ii) a selection marker to allow for clonal selection in the event of heterologous recombination. We analysed the sequences at the junctions between vector and chromosomal DNA. RESULTS In primary cells and in cell lines, the frequency of homologous recombination ranged from 2 x 10(-5) to 1.6 x 10(-6). Heterologous recombination occurred at rates between 5.5 x 10(-3) and 1.1 x 10(-4). HC-AdV DNA integrated via the termini mostly as intact molecules. Analysis of the junction sequences indicated vector integration in a relatively random manner without an obvious preference for particular chromosomal regions, but with a preference for integration into genes. Integration into protooncogenes or tumor suppressor genes was not observed. Patchy homologies between vector termini and chromosomal DNA were found at the site of integration. Although the majority of integrations had occurred without causing mutations in the chromosomal DNA, cases of nucleotide substitutions and insertions were observed. In several cases, deletions of even relative large chromosomal regions were likely. CONCLUSIONS These results extend previous information on the integration patterns of adenovirus vector DNA and contribute to a risk-benefit assessment of adenovirus-mediated gene transfer.
Collapse
|
3
|
Isman O, Roberts ML, Morgan JE, Graham IR, Goldring K, Lawrence-Watt DJ, Lu QL, Dunckley MG, Porter ACG, Partridge TA, Dickson G. Adenovirus-based targeting in myoblasts is hampered by nonhomologous vector integration. Hum Gene Ther 2008; 19:1000-8. [PMID: 18788904 DOI: 10.1089/hum.2008.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chromosomal correction of dystrophin gene mutations is a most desirable therapeutic solution for Duchenne muscular dystrophy, as it allows production of the full-length dystrophin under the control of locus-specific promoters. Here we explored gene targeting in conditionally immortal mouse dystrophin-deficient myoblasts. We constructed an adenoviral vector for the correction of the mdx mutation, containing 6.0 kb of sequence homologous to the target locus (partial intron 21 through to exon 24 with the normal sequence of exon 23) and a neomycin expression cassette inserted in intron 23. Adenovirus-based gene targeting was previously reported to be beneficial in mouse embryonic stem cells, resulting in one targeted integration per three integration events. However, we found no targeted integration events among 144 stably transduced G418-resistant myoblast clones, reflecting efficient random integration of the adenoviral vector in myogenic cells. We found that mouse myoblasts are capable of integrating recombinant adenoviral DNA with an efficiency approaching 1%. Interestingly, dermal fibroblasts integrate adenoviral DNA up to 100 times less efficiently than myoblasts from the same mice. We also show that the efficiency of recombinant adenoviral DNA integration is influenced by preinfection cell density, possibly indicating the importance of cellular DNA replication for adenoviral integration.
Collapse
Affiliation(s)
- Olga Isman
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Cornu TI, Cathomen T. Targeted genome modifications using integrase-deficient lentiviral vectors. Mol Ther 2007; 15:2107-13. [PMID: 17998901 DOI: 10.1038/sj.mt.6300345] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gene correction aims at repairing a defective gene directly in the cellular genome, which warrants tissue-specific and sustained expression of the repaired gene through its endogenous promoter. We have developed a novel system based on integrase-deficient lentiviral vectors (IDLVs) that allows us to correct an endogenous mutation using a strategy based on homologous recombination (HR). In a proof-of-concept approach, an IDLV encoding a repair template was co-delivered with an I-SceI nuclease expression vector to rescue a defective enhanced green fluorescent protein (EGFP) gene. Expression of the nuclease created a double-strand break within the target locus, which was crucial for stimulating IDLV-based gene repair. Stable gene correction was realized in up to 12% of the cells, depending on the vector dose, the nuclease expression levels, and the cell type. Genotypic analyses confirmed that gene correction was the result of genuine HR between the target locus and the IDLV repair template. This study presents IDLVs as valuable tools for introducing precise and permanent genetic modifications in human cells.
Collapse
Affiliation(s)
- Tatjana I Cornu
- Charité Medical School, Institute of Virology (CBF), Berlin, Germany
| | | |
Collapse
|
5
|
Abstract
The type I glycogen storage diseases (GSD-I) are a group of related diseases caused by a deficiency in the glucose-6-phosphatase-alpha (G6Pase-alpha) system, a key enzyme complex that is essential for the maintenance of blood glucose homeostasis between meals. The complex consists of a glucose-6-phosphate transporter (G6PT) that translocates glucose-6-phosphate from the cytoplasm into the lumen of the endoplasmic reticulum, and a G6Pase-alpha catalytic unit that hydrolyses the glucose-6-phosphate into glucose and phosphate. A deficiency in G6Pase-alpha causes GSD type Ia (GSD-Ia) and a deficiency in G6PT causes GSD type Ib (GSD-Ib). Both GSD-Ia and GSD-Ib patients manifest a disturbed glucose homeostasis, while GSD-Ib patients also suffer symptoms of neutropenia and myeloid dysfunctions. G6Pase-alpha and G6PT are both hydrophobic endoplasmic reticulum-associated transmembrane proteins that can not expressed in soluble active forms. Therefore protein replacement therapy of GSD-I is not an option. Animal models of GSD-Ia and GSD-Ib that mimic the human disorders are available. Both adenovirus- and adeno-associated virus (AAV)-mediated gene therapies have been evaluated for GSD-Ia in these model systems. While adenoviral therapy produces only short term corrections and only impacts liver expression of the gene, AAV-mediated therapy delivers the transgene to both the liver and kidney, achieving longer term correction of the GSD-Ia disorder, although there are substantial differences in efficacy depending on the AAV serotype used. Gene therapy for GSD-Ib in the animal model is still in its infancy, although an adenoviral construct has improved the metabolic profile and myeloid function. Taken together further refinements in gene therapy may hold long term benefits for the treatment of type I GSD disorders.
Collapse
Affiliation(s)
- Janice Y Chou
- Section on Cellular Differentiation, Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
6
|
Yiu WH, Pan CJ, Allamarvdasht M, Kim SY, Chou JY. Glucose-6-phosphate transporter gene therapy corrects metabolic and myeloid abnormalities in glycogen storage disease type Ib mice. Gene Ther 2007; 14:219-26. [PMID: 17006547 PMCID: PMC2507880 DOI: 10.1038/sj.gt.3302869] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 07/26/2006] [Accepted: 08/08/2006] [Indexed: 11/10/2022]
Abstract
Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT), an endoplasmic reticulum-associated transmembrane protein that is ubiquitously expressed. GSD-Ib patients suffer from disturbed glucose homeostasis and myeloid dysfunctions. To evaluate the feasibility of gene replacement therapy for GSD-Ib, we have infused adenoviral (Ad) vector containing human G6PT (Ad-hG6PT) into G6PT-deficient (G6PT(-/-)) mice that manifest symptoms characteristics of the human disorder. Ad-hG6PT infusion restores significant levels of G6PT mRNA expression in the liver, bone marrow and spleen, and corrects metabolic as well as myeloid abnormalities in G6PT(-/-) mice. The G6PT(-/-) mice receiving gene therapy exhibit improved growth; normalized serum profiles for glucose, cholesterol, triglyceride, uric acid and lactic acid; and reduced hepatic glycogen deposition. The therapy also corrects neutropenia and lowers the elevated serum levels of granulocyte colony-stimulating factor. The development of bone and spleen in the infused G6PT(-/-) mice is improved and accompanied by increased cellularity and normalized myeloid progenitor cell frequencies in both tissues. This effective use of gene therapy to correct metabolic imbalances and myeloid dysfunctions in GSD-Ib mice holds promise for the future of gene therapy in humans.
Collapse
Affiliation(s)
- W H Yiu
- Heritable Disorders Branch, Section on Cellular Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
7
|
Odom GL, Gregorevic P, Chamberlain JS. Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:243-62. [PMID: 17064882 PMCID: PMC1894910 DOI: 10.1016/j.bbadis.2006.09.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/16/2006] [Accepted: 09/20/2006] [Indexed: 02/07/2023]
Abstract
Much progress has been made over the past decade elucidating the molecular basis for a variety of muscular dystrophies (MDs). Accordingly, there are examples of mouse models of MD whose disease progression has been halted in large part with the use of viral vector technology. Even so, we must acknowledge significant limitations of present vector systems that must be overcome prior to successful treatment of humans with such approaches. This review will present a variety of viral-mediated therapeutic strategies aimed at counteracting the muscle-wasting symptoms associated with muscular dystrophy. We include viral vector systems used for muscle gene transfer, with a particular emphasis on adeno-associated virus. Findings of several encouraging studies focusing on repair of the mutant dystrophin gene are also included. Lastly, we present a discussion of muscle compensatory therapeutics being considered that include pathways involved in the up-regulation of utrophin, promotion of cellular adhesion, enhancement of muscle mass, and antagonism of the inflammatory response. Considering the complexity of the muscular dystrophies, it appears likely that a multilayered approach tailored to a patient sub-group may be warranted in order to effectively contest the progression of this devastating disease.
Collapse
Affiliation(s)
- Guy L. Odom
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| | - Paul Gregorevic
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| |
Collapse
|
8
|
Ino A, Naito Y, Mizuguchi H, Handa N, Hayakawa T, Kobayashi I. A trial of somatic gene targeting in vivo with an adenovirus vector. GENETIC VACCINES AND THERAPY 2005; 3:8. [PMID: 16219108 PMCID: PMC1277836 DOI: 10.1186/1479-0556-3-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 10/12/2005] [Indexed: 11/26/2022]
Abstract
Background Gene targeting in vivo provides a potentially powerful method for gene analysis and gene therapy. In order to sensitively detect and accurately measure designed sequence changes, we have used a transgenic mouse system, MutaMouse, which has been developed for detection of mutation in vivo. It carries bacteriophage lambda genome with lacZ+ gene, whose change to lacZ-negative allele is detected after in vitro packaging into bacteriophage particles. We have also demonstrated that gene transfer with a replication-defective adenovirus vector can achieve efficient and accurate gene targeting in vitro. Methods An 8 kb long DNA corresponding to the bacteriophage lambda transgene with one of two lacZ-negative single-base-pair-substitution mutant allele was inserted into a replication-defective adenovirus vector. This recombinant adenovirus was injected to the transgenic mice via tail-vein. Twenty-four hours later, genomic DNA was extracted from the liver tissue and the lambda::lacZ were recovered by in vitro packaging. The lacZ-negative phage was detected as a plaque former on agar with phenyl-beta-D-galactoside. Results The mutant frequency of the lacZ-negative recombinant adenovirus injected mice was at the same level with the control mouse (~1/10000). Our further restriction analysis did not detect any designed recombinant. Conclusion The frequency of gene targeting in the mouse liver by these recombinant adenoviruses was shown to be less than 1/20000 in our assay. However, these results will aid the development of a sensitive, reliable and PCR-independent assay for gene targeting in vivo mediated by virus vectors and other means.
Collapse
Affiliation(s)
- Asami Ino
- Department of Medical Genome Sciences, Graduate School of Frontier Science, University of Tokyo & Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science the University of Tokyo
| | - Yasuhiro Naito
- Department of Medical Genome Sciences, Graduate School of Frontier Science, University of Tokyo & Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Environmental Information, Keio University, 5322 Endo, Fujisawa, Kanagawa 252-8520, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Asagi 7-6-8, Saito, Ibaraki, Osaka 567-0085, Japan
| | - Naofumi Handa
- Department of Medical Genome Sciences, Graduate School of Frontier Science, University of Tokyo & Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takao Hayakawa
- Pharmaceuticals and Medical Devices Agency, Shin-Kasumigaseki Bldg. 3-3-2, Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Science, University of Tokyo & Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science the University of Tokyo
| |
Collapse
|
9
|
Ohbayashi F, Balamotis MA, Kishimoto A, Aizawa E, Diaz A, Hasty P, Graham FL, Caskey CT, Mitani K. Correction of chromosomal mutation and random integration in embryonic stem cells with helper-dependent adenoviral vectors. Proc Natl Acad Sci U S A 2005; 102:13628-33. [PMID: 16174752 PMCID: PMC1224662 DOI: 10.1073/pnas.0506598102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For gene therapy of inherited diseases, targeted integration/gene repair through homologous recombination (HR) between exogenous and chromosomal DNA would be an ideal strategy to avoid potentially serious problems of random integration such as cellular transformation and gene silencing. Efficient sequence-specific modification of chromosomes by HR would also advance both biological studies and therapeutic applications of a variety of stem cells. Toward these goals, we developed an improved strategy of adenoviral vector (AdV)-mediated HR and examined its ability to correct an insertional mutation in the hypoxanthine phosphoribosyl transferase (Hprt) locus in male mouse ES cells. The efficiency of HR was compared between four types of AdVs that contained various lengths of homologies at the Hprt locus and with various multiplicities of infections. The frequency of HR with helper-dependent AdVs (HD AdVs) with an 18.6-kb homology reached 0.2% per transduced cell at a multiplicity of infection of 10 genomes per cell. Detection of random integration at DNA levels by PCR revealed extremely high efficiency of 5% per cell. We also isolated and characterized chromosomal sites where HD AdVs integrated in a random manner. In contrast to retroviral, lentiviral, and adeno-associated viral vectors, which tend to integrate into genes, the integration sites of AdV was distributed randomly inside and outside genes. These findings suggest that HR mediated by HD AdVs is efficient and relatively safe and might be a new viable option for ex vivo gene therapy as well as a tool for chromosomal manipulation of a variety of stem cells.
Collapse
Affiliation(s)
- Fumi Ohbayashi
- Gene Therapy Division, Research Center for Genomic Medicine, Saitama Medical School, 1397-1 Yamane, Hidaka, Saitama 350-1241, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bosch P, Pratt SL, Stice SL. Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. Biol Reprod 2005; 74:46-57. [PMID: 16162872 DOI: 10.1095/biolreprod.105.045138] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) are adult pluripotent cells that are considered to be an important resource for human cell-based therapies. Understanding the clinical potential of MSCs may require their use in preclinical large-animal models, such as pigs. The objectives of the present study were 1) to establish porcine MSC (pMSC) cultures; 2) to optimize in vitro pMSC culture conditions, 3) to investigate whether pMSCs are amenable to genetic manipulation, and 4) to determine pMSC reprogramming potential using somatic cell nuclear transfer (SCNT). The pMSCs isolated from bone marrow grew, attached to plastic with a fibroblast-like morphology, and expressed the mesenchymal surface marker THY1 but not the hematopoietic marker ITGAM. Furthermore, pMSCs underwent lipogenic, chondrogenic, and osteogenic differentiation when exposed to specific inducing conditions. The pMSCs grew well in a variety of media, and proliferative capacity was enhanced by culture under low oxygen atmosphere. Transient transduction of pMSCs and isogenic skin fibroblasts (SFs) with a human adenovirus carrying the gene for green fluorescent protein (GFP; Ad5-F35eGFP) resulted in more pMSCs expressing GFP compared with SFs. Cell lines with stable genetic modifications and extended expression of transgene were obtained when pMSCs were transfected with a plasmid containing the GFP gene. Infection of pMSC and SF cell lines by an adeno-associated virus resulted in approximately 12% transgenic cells, which formed transgenic clonal lines after propagation as single cells. The pMSCs can be expanded in vitro and used as nuclear donors to produce SCNT embryos. Thus, pMSCs are an attractive cell type for large-animal autologous and allogenic cell therapy models and for SCNT transgenesis.
Collapse
Affiliation(s)
- Pablo Bosch
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602-2771, USA
| | | | | |
Collapse
|
11
|
Hendrie PC, Russell DW. Gene Targeting with Viral Vectors. Mol Ther 2005; 12:9-17. [PMID: 15932801 DOI: 10.1016/j.ymthe.2005.04.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/06/2005] [Accepted: 04/06/2005] [Indexed: 10/25/2022] Open
Abstract
Genetic manipulation of cells for scientific and therapeutic goals can be achieved by both gene-addition and gene-targeting methods. Gene targeting precisely alters a gene in its natural chromosome location, providing distinct advantages over gene-addition approaches. Classic gene-targeting delivery systems (microinjection, electroporation, or calcium phosphate transfection) have led to major scientific advances, but are too inefficient in their current state to be used for some applications, including gene therapy. This review describes the development of gene-targeting vectors based on three types of viruses (retrovirus, adenovirus, and adeno-associated virus) and discusses the design, possible mechanisms of action, and applications of gene-targeting vectors based on adeno-associated virus.
Collapse
Affiliation(s)
- Paul C Hendrie
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
12
|
Fukazawa T, Maeda Y, Sladek FM, Owen-Schaub LB. Development of a cancer-targeted tissue-specific promoter system. Cancer Res 2004; 64:363-9. [PMID: 14729646 DOI: 10.1158/0008-5472.can-03-2507] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Present cancer gene therapy using proapoptotic genes has had limited success because the therapy is prone to cause side effects as a result of the lack of tissue and cancer specificity. To target cancer cells without damaging normal cells, we have designed a novel dual promoter system in which a tissue-specific transcription system under the control of a cancer-specific promoter drives expression of a therapeutic gene. The applicability of this system was demonstrated by adapting it to target lung cancer. We termed this lung cancer system TTS (TTF1 gene under the control of human telomerase reverse transcriptase promoter and human surfactant protein A1 promoter). The TTS system showed much higher promoter activity in lung cancer cells compared with other kinds of cancer and normal lung cells, including stem cells. Moreover, insertion of negative glucocorticoid responsive elements in the system allows it to be drug controllable. The approaches that we have used could be adapted to target other types of cancer. We report a novel cancer-targeted tissue-specific dual promoter system designed for gene therapy.
Collapse
Affiliation(s)
- Takuya Fukazawa
- Department of Biomedical Sciences, University of California, Riverside, California, USA.
| | | | | | | |
Collapse
|
13
|
Carlson CA, Shayakhmetov DM, Lieber A. Restoration of a functional open reading frame by homologous recombination between two adenoviral vectors. Mol Ther 2002; 6:99-105. [PMID: 12095309 DOI: 10.1006/mthe.2002.0635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the ability of adenoviral (Ad) vectors to undergo homologous recombination. The lacZ gene was divided between two parental, first-generation vectors such that neither encoded a functional product but both shared 494 bp in common. The open reading frame could only be restored by homologous recombination. We observed beta-galactosidase activity only upon co-infection of both parental vectors and after the onset of viral DNA replication, creating a delay in expression of 24-36 hours in HeLa cells. At peak efficiency, this recombination vector system resulted in beta-galactosidase activity levels 100x above background and just 18x less than a conventional, first-generation vector in HeLa cells. After recombination, the resultant progeny vector genomes containing reconstituted expression cassettes were devoid of all viral genes and contained two packaging signals. These progeny genomes were efficiently packaged, could be separated from their parental vectors based on their lighter buoyant densities in CsCl gradients, and were subsequently used as functional gene transfer vectors. This novel recombination vector system should be useful for transferring large transgenes (because the carrying capacity of two Ad vectors can be exploited) or expressing any cytotoxic or Ad replication inhibitory protein (because the parental vectors exhibit no background expression).
Collapse
Affiliation(s)
- Cheryl A Carlson
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
14
|
Carlson CA, Steinwaerder DS, Stecher H, Shayakhmetov DM, Lieber A. Rearrangements in adenoviral genomes mediated by inverted repeats. Methods Enzymol 2002; 346:277-92. [PMID: 11883073 DOI: 10.1016/s0076-6879(02)46061-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Cheryl A Carlson
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
15
|
Hillgenberg M, Tönnies H, Strauss M. Chromosomal integration pattern of a helper-dependent minimal adenovirus vector with a selectable marker inserted into a 27.4-kilobase genomic stuffer. J Virol 2001; 75:9896-908. [PMID: 11559822 PMCID: PMC114561 DOI: 10.1128/jvi.75.20.9896-9908.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helper-dependent minimal adenovirus vectors are promising tools for gene transfer and therapy because of their high capacity and the absence of immunostimulatory or cytotoxic viral genes. In order to characterize this new vector system with respect to its integrative properties, the integration pattern of a minimal adenovirus vector with a neo(r) gene inserted centrally into a noncoding 27.4-kb genomic stuffer element derived from the human X chromosome after infection of a sex chromosome aneuploid (X0) human glioblastoma cell line was studied. Our results indicate that even extensive homologies and abundant chromosomal repeat elements present in the vector did not lead to integration of the vector via homologous or homology-mediated mechanisms. Instead, integration occurred primarily by insertion of a monomer with no or little loss of sequences at the vector ends, apparently at random sites, which is very similar to E1 deletion adenovirus vectors. It is therefore unlikely that the incorporation of stuffer elements derived from human genomic DNA, which were shown to allow long-term transgene expression in vivo in a number of studies, leads to an enhanced risk of insertional mutagenesis. Furthermore, our findings indicate that the potential of minimal adenovirus vectors as tools for targeted insertion and gene targeting is limited despite the possibility of incorporating long stretches of homologous sequences. However, we found an enhanced efficiency of stable neo(r) transduction of the minimal adenovirus vector compared to an E1 deletion adenovirus vector, possibly caused by the absence of potential growth-inhibitory viral genes. Complete integration of the vector and tolerance of the integrated vector sequences by the cell might indicate a potential use of these vectors as tools for stable transfer of (large) genes.
Collapse
|
16
|
Affiliation(s)
- C Fraefel
- Institute of Virology, University of Zurich, Switzerland
| | | | | |
Collapse
|
17
|
Shean MK, Baskin G, Sullivan D, Schurr J, Cavender DE, Shellito JE, Schwarzenberger PO, Kolls JK. Immunomodulation and adenoviral gene transfer to the lungs of nonhuman primates. Hum Gene Ther 2000; 11:1047-55. [PMID: 10811233 DOI: 10.1089/10430340050015356] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous data from our laboratory and others have demonstrated a critical role for the CD4+ T lymphocyte in in vivo immune responses to recombinant adenoviral vectors. In rodent models, this subset of T cells is required for T cell proliferation, subsequent cytotoxic T cell generation, and production of anti-adenoviral antibodies by B cells. Both depleting and nondepleting anti-CD4 antibodies can attenuate these immune responses to recombinant adenovirus. On the basis of these data, we hypothesized that a nondepleting CDR-engrafted anti-human CD4 antibody (OKT4A) with cross-reactivity to rhesus macaques would attenuate both T and B cell responses to intrapulmonary administration of recombinant adenovirus and permit prolonged reporter gene expression and permit secondary gene transfer. Juvenile rhesus macaques were treated with PBS or OKT4A antibody (10 mg/kg) daily beginning 1 day prior to and up to 11 days after gene transfer. OKT4A resulted in significant attenuation of lymphocyte recruitment into the lung, lymphocyte-proliferative responses to both adenovirus capsid proteins and transgene protein, and adenovirus-induced interferon-gamma elaboration in whole blood and hilar lymph nodes. However, OKT4A was ineffective in attenuating adenovirus-induced IL-4 production in whole blood or hilar lymph nodes, generating neutralizing anti-adenoviral antibodies, or permitting secondary gene transfer. As all the monkeys in this protocol had baseline-detectable anti-adenoviral antibodies by ELISA that were nonneutralizing, analogous to most patients with cystic fibrosis, we postulate that anti-CD4 did not block the proliferation of memory B cells. Moreover, these data suggest that for transient immunomodulation to be successful, strategies need to focus specifically on B cell activation independent of CD4+ T cell help.
Collapse
Affiliation(s)
- M K Shean
- LSU Gene Therapy Program, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bernstein A. Have you used an adeno vector...lately? Nat Genet 1998; 18:305-6. [PMID: 9537408 DOI: 10.1038/ng0198-306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Have you used an adeno vector... lately? Nat Genet 1998. [DOI: 10.1038/ng0498-305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Abstract
Stable transduction of mammalian cells typically involves random integration of viral vectors by non-homologous recombination. Here we report that vectors based on adeno-associated virus (AAV) can efficiently modify homologous human chromosomal target sequences. Both integrated neomycin phosphotransferase genes and the hypoxanthine phosphoribosyltransferase gene were targeted by AAV vectors. Site-specific genetic modifications could be introduced into approximately 1% of cells, with the highest targeting rates occurring in normal human fibroblasts. These results suggest that AAV vectors could be used to introduce specific genetic changes into the genomic DNA of a wide variety of mammalian cells, including therapeutic gene targeting applications.
Collapse
Affiliation(s)
- D W Russell
- Markey Molecular Medicine Center, Department of Medicine, University of Washington School of Medicine, Seattle 98195-7720, USA.
| | | |
Collapse
|
21
|
Hitt MM, Addison CL, Graham FL. Human adenovirus vectors for gene transfer into mammalian cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 40:137-206. [PMID: 9217926 DOI: 10.1016/s1054-3589(08)60140-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M M Hitt
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|