1
|
Li Y, Dai J, Wu S, Rong D, Huang J, Zhao M, Zhang J, Ye Q, Gu Q, Zhang Y, Wei X, Wu Q. The food application of a novel Staphylococcus aureus bacteriophage vB_SA_STAP152 and its endolysin LysP152 with high enzymatic activity under cold temperature. Food Microbiol 2025; 128:104710. [PMID: 39952757 DOI: 10.1016/j.fm.2024.104710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 02/17/2025]
Abstract
Staphylococcus aureus, a foodborne bacterial pathogen, poses a serious challenge due to antibiotic resistance, highlighting the urgent need for effective and alternative antimicrobial agents. Undoubtedly, bacteriophages and bacteriophage-encoded antibacterial proteins have been considered effective biopreservatives. Herein, we report the isolation and characterization of a novel lytic bacteriophage, vB_SA_STAP152, along with its endolysin LysP152. Morphological and genomic analysis revealed that vB_SA_STAP152 could be considered as a new species in the Rosenblumvirus genus. Stability tests demonstrated that vB_SA_STAP152 can withstand a range of temperatures (∼65 °C) and pH values (4-11). Moreover, we successfully cloned and expressed the bacteriophage-encoded protein, endolysin LysP152, which exhibited optimal activity at temperatures between 4 and 35 °C and within a broad pH range (4-11). The antibacterial spectrum experiments revealed that phage vB_SA_STAP152 effectively targeted 76.15% of S. aureus strains across 14 different sequence types (STs), particularly including community-associated methicillin-resistant S. aureus (CA-MRSA) ST59. Furthermore, endolysin LysP152 demonstrated complete lysis all tested S. aureus strains spanning 17 STs. Subsequently, the efficacy of vB_SA_STAP152 and LysP152 against MRSA in pork was evaluated, revealing a significant reduction of bacterial counts by 4.27-4.42 log10 CFU/mL with phage vB_SA_STAP152 at room temperature and by 3.31 log10 CFU/mL with endolysin LysP152 at refrigerator temperature. Overall, the in-vitro studies and favorable physical and chemical properties suggested that phage vB_SA_STAP152 and endolysin LysP152 have the potential to be developed as antimicrobial agents against S. aureus in the food industry.
Collapse
Affiliation(s)
- Yuanyu Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Jingsha Dai
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Shi Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China.
| | - Dongli Rong
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Jiahui Huang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Miao Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Qinghua Ye
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Qihui Gu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Youxiong Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Xianhu Wei
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China.
| |
Collapse
|
2
|
He H, Yi K, Yang L, Jing Y, Kang L, Gao Z, Xiang D, Tan G, Wang Y, Liu Q, Xie L, Jiang S, Liu T, Chen W. Development of a lytic Ralstonia phage cocktail and evaluation of its control efficacy against tobacco bacterial wilt. FRONTIERS IN PLANT SCIENCE 2025; 16:1554992. [PMID: 40182540 PMCID: PMC11966396 DOI: 10.3389/fpls.2025.1554992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/19/2025] [Indexed: 04/05/2025]
Abstract
Introduction Bacterial wilt (BW) caused by Ralstonia pseudosolanacearum is a devastating soil-borne disease. Bacteriophages are important biocontrol resources that rapidly and specifically lyse host bacteria, showing good application potential in agricultural production. Methods This study isolated nine phages (YL1-YL9) and, using host range and pot experiments, identified two broader host range phages (YL1 and YL4) and two higher control efficacy phages (YL2 and YL3), which were combined to obtain five cocktails (BPC-1-BPC-5). Results Pot experiments showed that BPC-1 (YL3 and YL4) had the highest control efficacy (99.25%). Biological characterization revealed that these four phages had substantial thermal stability and pH tolerance. Whole genome sequencing and analysis showed that YL1, YL2, YL3, and YL4 belonged to the genus Gervaisevirus. AlphaFold 3 predictions of tail fiber protein II structures showed that YL1 differed significantly from the other phages. Amino acid sequence alignment revealed that the ORF66 (YL1) "tip domain" of contained a higher proportion of aromatic and positively charged amino acids. However, the surface of the ORF69 (YL4) "tip domain" exhibited more positively charged residues than ORF66 (YL2) and ORF70 (YL3). These characteristics are hypothesized to confer a broader host range to YL1 and YL4. Discussion This study demonstrates that phages assembling a broad host range and high control efficacy have better biocontrol potential, providing high-quality resources for the biological control of BW.
Collapse
Affiliation(s)
- Haoxin He
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ke Yi
- Tobacco Leaf Raw Material Procurement Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, China
| | - Lei Yang
- Tobacco Leaf Raw Material Procurement Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, China
| | - Yongfeng Jing
- Tobacco Leaf Raw Material Procurement Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, China
| | - Lifu Kang
- Tobacco Leaf Raw Material Procurement Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, China
| | - Zhihao Gao
- Tobacco Leaf Raw Material Procurement Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, China
| | - Dong Xiang
- Tobacco Leaf Raw Material Procurement Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, China
| | - Ge Tan
- Tobacco Leaf Raw Material Procurement Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Qian Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Lin Xie
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shiya Jiang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Tianbo Liu
- Plant Protection Research Center, Hunan Tobacco Science Research Institute, Changsha, China
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
3
|
Son B, Kim Y, Yu B, Kong M. Isolation and Characterization of a Weizmannia coagulans Bacteriophage Youna2 and Its Endolysin PlyYouna2. J Microbiol Biotechnol 2023; 33:1050-1056. [PMID: 37218442 PMCID: PMC10468668 DOI: 10.4014/jmb.2303.03021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Weizmannia coagulans (formerly Bacillus coagulans) is Gram-positive, and spore-forming bacteria causing food spoilage, especially in acidic canned food products. To control W. coagulans, we isolated a bacteriophage Youna2 from a sewage sludge sample. Morphological analysis revealed that phage Youna2 belongs to the Siphoviridae family with a non-contractile and flexible tail. Youna2 has 52,903 bp double-stranded DNA containing 61 open reading frames. There are no lysogeny-related genes, suggesting that Youna2 is a virulent phage. plyYouna2, a putative endolysin gene was identified in the genome of Youna2 and predicted to be composed of a N-acetylmuramoyl-L-alanine amidase domain (PF01520) at the N-terminus and unknown function DUF5776 domain (PF19087) at the C-terminus. While phage Youna2 has a narrow host range, infecting only certain strains of W. coagulans, PlyYouna2 exhibited a broad antimicrobial spectrum beyond the Bacillus genus. Interestingly, PlyYouna2 can lyse Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica, Pseudomonas putida and Cronobacter sakazakii without other additives to destabilize bacterial outer membrane. To the best of our knowledge, Youna2 is the first W. coagulans-infecting phage and we speculate its endolysin PlyYouna2 can provide the basis for the development of a novel biocontrol agent against various foodborne pathogens.
Collapse
Affiliation(s)
- Bokyung Son
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Youna Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Booyoung Yu
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Minsuk Kong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
4
|
Improved bactericidal efficacy and thermostability of Staphylococcus aureus-specific bacteriophage SA3821 by repeated sodium pyrophosphate challenges. Sci Rep 2021; 11:22951. [PMID: 34824363 PMCID: PMC8616913 DOI: 10.1038/s41598-021-02446-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
As antibiotic resistance is being a threat to public health worldwide, bacteriophages are re-highlighted as alternative antimicrobials to fight with pathogens. Various wild-type phages isolated from diverse sources have been tested, but potential mutant phages generated by genome engineering or random mutagenesis are drawing increasing attention. Here, we applied a chelating agent, sodium pyrophosphate, to the staphylococcal temperate Siphoviridae phage SA3821 to introduce random mutations. Through 30 sequential sodium pyrophosphate challenges and random selections, the suspected mutant phage SA3821M was isolated. SA3821M maintained an intact virion morphology, but exhibited better bactericidal activity against its host Staphylococcous aureus CCARM 3821 for up to 17 h and thermostability than its parent, SA3821. Sodium pyrophosphate-mediated mutations in SA3821M were absent in lysogenic development genes but concentrated (83.9%) in genes related to the phage tail, particularly in the tail tape measure protein, indicating that changes in the tail module might have been responsible for the altered traits. This intentional random mutagenesis through controlled treatments with sodium pyrophosphate could be applied to other phages as a simple but potent method to improve their traits as alternative antimicrobials.
Collapse
|
5
|
Lee Y, Son B, Cha Y, Ryu S. Characterization and Genomic Analysis of PALS2, a Novel Staphylococcus Jumbo Bacteriophage. Front Microbiol 2021; 12:622755. [PMID: 33763042 PMCID: PMC7982418 DOI: 10.3389/fmicb.2021.622755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen that can be frequently encountered in clinical and food-processing surroundings. Among the various countermeasures, bacteriophages have been considered to be promising alternatives to antibiotics. In this study, the bacteriophage PALS2 was isolated from bird feces, and the genomic and biological characteristics of this phage were investigated. PALS2 was determined to belong to the Myoviridae family and exhibited extended host inhibition that persisted for up to 24 h with repeated bursts of 12 plaque-forming units/cell. The complete genome of PALS2 measured 268,746 base pairs (bp), indicating that PALS2 could be classified as a jumbo phage. The PALS2 genome contained 279 ORFs and 1 tRNA covering asparagine, and the majority of predicted PALS2 genes encoded hypothetical proteins. Additional genes involved in DNA replication and repair, nucleotide metabolism, and genes encoding multisubunit RNA polymerase were identified in the PALS2 genome, which is a common feature of typical jumbo phages. Comparative genomic analysis indicated that PALS2 is a phiKZ-related virus and is more similar to typical jumbo phages than to staphylococcal phages. Additionally, the effective antimicrobial activities of phage PALS2 suggest its possible use as a biocontrol agent in various clinical and food processing environments.
Collapse
Affiliation(s)
- Yoona Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Bokyung Son
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yoyeon Cha
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Cho JH, Kwon JG, O'Sullivan DJ, Ryu S, Lee JH. Development of an endolysin enzyme and its cell wall-binding domain protein and their applications for biocontrol and rapid detection of Clostridium perfringens in food. Food Chem 2020; 345:128562. [PMID: 33189482 DOI: 10.1016/j.foodchem.2020.128562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 01/10/2023]
Abstract
Clostridium perfringens is a well-known pathogen that causes food-borne illnesses. Although bacteriophages can be effective natural food preservatives, phage endolysin and cell wall-binding domain (CBD) provide useful materials for lysis of C. perfringens and rapid detection. The genome of phage CPAS-15 consists of 51.8-kb double-stranded circular DNA with 78 open reading frames, including an endolysin gene. The apparent absence of a virulence factor or toxin gene suggests its safety in food applications. C. perfringens endolysin (LysCPAS15) inhibits host cells by up to a 3-log reduction in 2 h, and enhanced green fluorescent protein (EGFP)-fused CBD protein (EGFP-LysCPAS15_CBD1) detects C. perfringens within 5 min. Both exhibit broader host range spectra and higher stabilities than a bacteriophage. Tests in milk show the same host lysis and specific detection activities, with no hindrance effect from food matrices, indicating that endolysin and its CBD can provide food extended protection from C. perfringens contamination.
Collapse
Affiliation(s)
- Jae-Hyun Cho
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Joon-Gi Kwon
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Daniel J O'Sullivan
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea.
| |
Collapse
|
7
|
Kim HJ, Kim YT, Kim HB, Choi SH, Lee JH. Characterization of bacteriophage VVP001 and its application for the inhibition of Vibrio vulnificus causing seafood-borne diseases. Food Microbiol 2020; 94:103630. [PMID: 33279062 DOI: 10.1016/j.fm.2020.103630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/08/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
Vibrio vulnificus is a major food-borne pathogen that causes septicemia and cellulitis with a mortality rate of >50%. However, there are no efficient natural food preservatives or biocontrol agents to control V. vulnificus in seafood. In this study, we isolated and characterized a novel bacteriophage VVP001. Host range and transmission electron microscopy morphology observations revealed that VVP001 belongs to the family Siphoviridae and specifically infects V. vulnificus. Phage stability tests showed that VVP001 is stable at a broad temperature range of -20 °C to 65 °C and a pH range from 3 to 11, which are conditions for food applications (processing, distribution, and storage). In vitro challenge assays revealed that VVP001 inhibited V. vulnificus MO6-24/O (a clinical isolate) growth up to a 3.87 log reduction. In addition, complete genome analysis revealed that the 76 kb VVP001 contains 102 open reading frames with 49.64% G + C content and no gene encoding toxins or other virulence factors, which is essential for food applications. Application of VVP001 to fresh abalone samples contaminated with V. vulnificus demonstrated its ability to inhibit V. vulnificus growth, and an in vivo mouse survival test showed that VVP001 protects mice against high mortality (survival rate >70% at a multiplicity of infection of 1000 for up to 7 days). Therefore, the bacteriophage VVP001 can be used as a good natural food preservative and biocontrol agent for food applications.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - You-Tae Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, And Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Sang Ho Choi
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, And Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, And Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Two Novel Bacteriophages Improve Survival in Galleria mellonella Infection and Mouse Acute Pneumonia Models Infected with Extensively Drug-Resistant Pseudomonas aeruginosa. Appl Environ Microbiol 2019; 85:AEM.02900-18. [PMID: 30824445 PMCID: PMC6495756 DOI: 10.1128/aem.02900-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
Abstract
In this study, two novel P. aeruginosa phages, Bϕ-R656 and Bϕ-R1836, were evaluated in vitro, in silico, and in vivo for therapeutic efficacy and safety as an alternative antibacterial agent to control XDR-PA strains collected from pneumonia patients. Both phages exhibited potent bacteriolytic activity and greatly improved survival in G. mellonella larva infection and a mouse acute pneumonia model. Based on these results, we strongly predict that these two new phages could be used as fast-acting and safe alternative biological weapons against XDR-PA infections. Extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) is a life-threatening pathogen that causes serious global problems. Here, we investigated two novel P. aeruginosa bacteriophages (phages), Bϕ-R656 and Bϕ-R1836, in vitro, in silico, and in vivo to evaluate the potential of phage therapy to control XDR-PA clinical strains. Bϕ-R656 and Bϕ-R1836 belong to the Siphoviridae family and exhibited broad host ranges which could lyse 18 (64%) and 14 (50%) of the 28 XDR-PA strains. In addition, the two phages showed strong bacteriolytic activity against XDR-PA host strains from pneumonia patients. The whole genomes of Bϕ-R656 and Bϕ-R1836 have linear double-stranded DNA of 60,919 and 37,714 bp, respectively. The complete sequence of Bϕ-R656 had very low similarity to the previously discovered P. aeruginosa phages in GenBank, but phage Bϕ-R1836 exhibited 98% and 91% nucleotide similarity to Pseudomonas phages YMC12/01/R24 and PA1/KOR/2010, respectively. In the two in vivo infection models, treatment with Bϕ-R656 and Bϕ-R1836 enhanced the survival of Galleria mellonella larvae (50% and 60%, respectively) at 72 h postinfection and pneumonia-model mice (66% and 83%, respectively) at 12 days postinfection compared with untreated controls. Treatment with Bϕ-R656 or Bϕ-R1836 also significantly decreased the bacterial load in the lungs of the mouse pneumonia model (>6 log10 CFU and >4 log10 CFU, respectively) on day 5. IMPORTANCE In this study, two novel P. aeruginosa phages, Bϕ-R656 and Bϕ-R1836, were evaluated in vitro, in silico, and in vivo for therapeutic efficacy and safety as an alternative antibacterial agent to control XDR-PA strains collected from pneumonia patients. Both phages exhibited potent bacteriolytic activity and greatly improved survival in G. mellonella larva infection and a mouse acute pneumonia model. Based on these results, we strongly predict that these two new phages could be used as fast-acting and safe alternative biological weapons against XDR-PA infections.
Collapse
|
9
|
Jeon J, Park JH, Yong D. Efficacy of bacteriophage treatment against carbapenem-resistant Acinetobacter baumannii in Galleria mellonella larvae and a mouse model of acute pneumonia. BMC Microbiol 2019; 19:70. [PMID: 30940074 PMCID: PMC6444642 DOI: 10.1186/s12866-019-1443-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/25/2019] [Indexed: 01/21/2023] Open
Abstract
Background Acinetobacter baumannii is an opportunistic pathogen that causes serious nosocomial infection in intensive care units. In particular, carbapenem-resistant A. baumannii (CRAB) strains have been increasing in the past decade, and they have caused major medical problems worldwide. In this study, a novel A. baumannii lytic phage, the YMC 13/03/R2096 ABA BP (phage Βϕ-R2096), which specifically causes the lysis of CRAB strains, was characterized in detail in vitro and in silico, and the in vivo effectiveness of phage therapy was evaluated using Galleria mellonella and a mouse model of acute pneumonia. Results The A. baumannii phage Βϕ-R2096 was isolated from sewage water using CRAB clinical strains selected from patients at a university hospital in South Korea. The complete genome of the phage Βϕ-R2096, which belongs to the Myoviridae family, was analyzed. Phage Βϕ-R2096 inhibited bacterial growth in a dose-dependent manner and exhibited high bacteriolytic activity at MOI = 10. In the evaluation of its therapeutic potential against CRAB clinical isolates using two in vivo models, phage Βϕ-R2096 increased the survival rates of both G. mellonella larvae (from 0 to 50% at 24 h) and mice (from 30% with MOI = 0.1 to 100% with MOI = 10 for 12 days) in post-infection of CRAB. In particular, phage Βϕ-R2096 strongly ameliorated histologic damage to infected lungs, with bacterial clearance in the lungs observed on day 3 postinfection in the mouse acute pneumonia model. Moreover, in vivo studies revealed no mortality or serious side effects in phage-treated groups. Conclusion The results of this study strongly suggest that phage Βϕ-R2096, a novel A. baumannii lytic phage, could be an alternative antibacterial agent to control CRAB infections. This study is the first report to compare in vivo evaluations (G. mellonella larvae and a mouse acute pneumonia model) of the therapeutic efficacy of a phage against CRAB infections. Electronic supplementary material The online version of this article (10.1186/s12866-019-1443-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jongsoo Jeon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Y, Seoul, Republic of Korea.
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwang-ju, 61186, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Y, Seoul, Republic of Korea. .,Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
10
|
Chang Y, Bai J, Lee JH, Ryu S. Mutation of a Staphylococcus aureus temperate bacteriophage to a virulent one and evaluation of its application. Food Microbiol 2019; 82:523-532. [PMID: 31027814 DOI: 10.1016/j.fm.2019.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/21/2023]
Abstract
Bacteriophages have been suggested as alternative antimicrobial agents based on their host specificity and lytic activity. Therefore, it is necessary to obtain a virulent phage from a temperate one using molecular techniques to control Staphylococcus aureus efficiently. SA13, a novel temperate phage infecting S. aureus, was isolated and characterized. From this phage, mutant phages were generated by random deletion mutations, and a virulent mutant phage SA13m was selected. Comparative genome analysis revealed that the SA13m genome contains various nucleotide deletions in six genes encoding three hypothetical proteins and three lysogeny-associated proteins, including putative integrase, putative CI, and putative anti-repressor proteins. Mitomycin C induction of SA13m-resistant strains revealed that this mutant phage does not form lysogen, suggesting that SA13m is a virulent phage. In addition, SA13m showed rapid and long-lasting host cell growth inhibition activity. Furthermore, application of SA13m in sterilized milk showed that S. aureus was reduced to non-detectable levels both at refrigerator temperature (4 °C) and room temperature (25 °C), suggesting that SA13m can efficiently control the growth of S. aureus in foods. The virulent mutant phage SA13m could be used as a promising biocontrol agent against S. aureus without lysogen formation.
Collapse
Affiliation(s)
- Yoonjee Chang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaewoo Bai
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Bai J, Jeon B, Ryu S. Effective inhibition of Salmonella Typhimurium in fresh produce by a phage cocktail targeting multiple host receptors. Food Microbiol 2019; 77:52-60. [PMID: 30297056 DOI: 10.1016/j.fm.2018.08.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/13/2018] [Accepted: 08/21/2018] [Indexed: 01/12/2023]
Abstract
Salmonella contamination of fresh produce is the primary bacterial cause of a significant number of foodborne outbreaks and infections. Bacteriophages can be used as natural antibacterial agents to control foodborne pathogens. However, the rapid development of bacterial resistance to phage infection is a significant barrier to practical phage application. To overcome this problem, we developed a novel phage cocktail consisting of the three phages (BSPM4, BSP101 and BSP22A) that target different host receptors, including flagella, O-antigen and BtuB, respectively. Whole genome sequence analysis of the phages revealed that three phages do not harbor genes involved in lysogen formation or toxin production, suggesting they are safe for use as biocontrol agents in foods. In vitro treatment of the phage cocktail resulted in a significant reduction in the development of bacterial resistance. Phage cocktail treatments achieved 4.7-5.5 log CFU/cm2 reduction of viable cell number in iceberg lettuce and 4.8-5.8 log CFU/cm2 reduction in cucumber after 12 h at room temperature (25 °C). The phage cocktail exhibited good antimicrobial efficiency, suggesting that it could reduce S. Typhimurium contamination of fresh produce. The strategy of developing cocktails of phages that target multiple host receptors can be used to develop novel biocontrol agents of S. Typhimurium.
Collapse
Affiliation(s)
- Jaewoo Bai
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea.
| |
Collapse
|
12
|
Cha Y, Chun J, Son B, Ryu S. Characterization and Genome Analysis of Staphylococcus aureus Podovirus CSA13 and Its Anti-Biofilm Capacity. Viruses 2019; 11:v11010054. [PMID: 30642091 PMCID: PMC6356323 DOI: 10.3390/v11010054] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus is one of the notable human pathogens that can be easily encountered in both dietary and clinical surroundings. Among various countermeasures, bacteriophage therapy is recognized as an alternative method for resolving the issue of antibiotic resistance. In the current study, bacteriophage CSA13 was isolated from a chicken, and subsequently, its morphology, physiology, and genomics were characterized. This Podoviridae phage displayed an extended host inhibition effect of up to 23 h of persistence. Its broad host spectrum included methicillin susceptible S. aureus (MSSA), methicillin resistant S. aureus (MRSA), local S. aureus isolates, as well as non-aureus staphylococci strains. Moreover, phage CSA13 could successfully remove over 78% and 93% of MSSA and MRSA biofilms in an experimental setting, respectively. Genomic analysis revealed a 17,034 bp chromosome containing 18 predicted open reading frames (ORFs) without tRNAs, representing a typical chromosomal structure of the staphylococcal Podoviridae family. The results presented here suggest that phage CSA13 can be applicable as an effective biocontrol agent against S. aureus.
Collapse
Affiliation(s)
- Yoyeon Cha
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
| | - Jihwan Chun
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Bokyung Son
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Center for Food and Bioconvergence4, Seoul National University, Seoul 08826, Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Center for Food and Bioconvergence4, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
13
|
Genomic and biological characterization of the Vibrio alginolyticus-infecting “Podoviridae” bacteriophage, vB_ValP_IME271. Virus Genes 2019; 55:218-226. [DOI: 10.1007/s11262-018-1622-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
|
14
|
Yang C, Wang H, Ma H, Bao R, Liu H, Yang L, Liang B, Jia L, Xie J, Xiang Y, Dong N, Qiu S, Song H. Characterization and Genomic Analysis of SFPH2, a Novel T7virus Infecting Shigella. Front Microbiol 2018; 9:3027. [PMID: 30619123 PMCID: PMC6302001 DOI: 10.3389/fmicb.2018.03027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/22/2018] [Indexed: 11/13/2022] Open
Abstract
Shigellosis, caused by Shigella, is a major global health concern, with nearly 164.7 million cases and over a million deaths occurring annually worldwide. Shigella flexneri is one of the most common subgroups of Shigella with a high incidence of multidrug-resistance. The phage therapy approach is an effective method for controlling multidrug-resistant bacteria. However, only a few Shigella phages have been described to date. In this study, a novel lytic bacteriophage SFPH2 was isolated from a sewage sample obtained from a hospital in Beijing, China, using a multidrug-resistant S. flexneri 2a strain (SF2) isolated from the fecal sample of a dysentery patient. SFPH2 is a member of the Podoviridae virus family with an icosahedral capsid and a short, non-contractile tail. It was found to be stable over a wide range of temperatures (4–50°C) and pH values (pH 3–11). Moreover, SFPH2 could infect two other S. flexneri serotypes (serotypes 2 variant and Y). High-throughput sequencing revealed that SFPH2 has a linear double-stranded DNA genome of 40,387 bp with 50 open reading frames. No tRNA genes were identified in the genome. Comparative analysis of the genome revealed that the SFPH2 belongs to the subfamily Autographivirinae and genus T7virus. The genome shows high similarity with other enterobacterial T7virus bacteriophages such as Citrobacter phage SH4 (95% identity and 89% coverage) and Cronobacter phage Dev2 (94% identity and 92% coverage). A comparison of the fiber proteins showed that minor differences in the amino acid residues might specify different protein binding regions and determine host species. In conclusion, this is the first report of a T7virus that can infect Shigella; SFPH2 has a functional stability under a wide range of temperatures and pH values, showing the potential to be widely applied to control Shigella–associated clinical infections and reduce the transmission rates of S. flexneri serotype 2a and its variants in the environment.
Collapse
Affiliation(s)
- Chaojie Yang
- Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Haiying Wang
- Joint Service Academy, National Defence University of People's Liberation Army, Beijing, China
| | - Hui Ma
- The 6th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Renlong Bao
- Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Hongbo Liu
- Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Lang Yang
- Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Beibei Liang
- Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Leili Jia
- Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Jing Xie
- Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Ying Xiang
- Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Nian Dong
- Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Shaofu Qiu
- Institute of Disease Control and Prevention of PLA, Beijing, China
| | - Hongbin Song
- Institute of Disease Control and Prevention of PLA, Beijing, China
| |
Collapse
|
15
|
Genomic characterization of bacteriophage vB_PcaP_PP2 infecting Pectobacterium carotovorum subsp. carotovorum, a new member of a proposed genus in the subfamily Autographivirinae. Arch Virol 2017; 162:2441-2444. [PMID: 28409265 PMCID: PMC5506502 DOI: 10.1007/s00705-017-3349-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/16/2017] [Indexed: 11/23/2022]
Abstract
Bacteriophage vB_PcaP_PP2 (PP2) is a novel virulent phage that infects the plant-pathogenic bacterium Pectobacterium carotovorum subsp. carotovorum. PP2 phage has a 41,841-bp double-stranded DNA encoding 47 proteins, and it was identified as a member of the family Podoviridae by transmission electron microscopy. Nineteen of its open reading frames (ORFs) show homology to functional proteins, and 28 ORFs have been characterized as hypothetical proteins. PP2 phage is homologous to Cronobacter phage vB_CskP_GAP227 and Dev-CD-23823. Based on phylogenetic analysis, PP2 and its homologous bacteriophages form a new group within the subfamily Autographivirinae in the family Podoviridae, suggesting the need to establish a new genus. No lysogenic-cycle-related genes or bacterial toxins were identified.
Collapse
|
16
|
Lee H, Ku HJ, Lee DH, Kim YT, Shin H, Ryu S, Lee JH. Characterization and Genomic Study of the Novel Bacteriophage HY01 Infecting Both Escherichia coli O157:H7 and Shigella flexneri: Potential as a Biocontrol Agent in Food. PLoS One 2016; 11:e0168985. [PMID: 28036349 PMCID: PMC5201272 DOI: 10.1371/journal.pone.0168985] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/09/2016] [Indexed: 01/21/2023] Open
Abstract
Background Escherichia coli O157:H7 and Shigella flexneri are well-known food-borne pathogens causing severe food poisoning at low infectious doses. Bacteriophages have been approved for food applications by the US Food and Drug Administration (FDA) and have been suggested as natural food preservatives to control specific food-borne pathogens. To develop a novel natural food preservative against E. coli O157:H7 and S. flexneri, a new bacteriophage needs to be isolated and characterized. Methodology/Principal Findings Bacteriophage HY01 infecting both E. coli O157:H7 and S. flexneri was isolated from a swine fecal sample. HY01 belongs to the family Myoviridae and is stable under various temperature and pH conditions. One-step growth curve analysis showed relatively short eclipse and latent periods as well as large burst size. The 167-kb genome sequence of HY01 was sequenced, and a comparative genome analysis with T4 for non-O157:H7 E. coli suggests that the receptor recognition protein of HY01 plays an important role in determination of host recognition and specificity. In addition, food applications using edible cabbage were conducted with two E. coli O157:H7 strains (ATCC 43890 and ATCC 43895), showing that treatment with HY01 inhibits these clinical and food isolates with >2 log reductions in bacterial load during the first 2 h of incubation. Conclusions/Significance HY01 can inhibit both E. coli O157:H7 and S. flexneri with large burst size and stability under stress conditions. The ability of HY01 to infect both E. coli O157:H7 and S. flexneri may be derived from the presence of two different host specificity-associated tail genes in the genome. Food applications revealed the specific ability of HY01 to inhibit both pathogens in food, suggesting its potential as a novel biocontrol agent or novel natural food preservative against E. coli O157:H7 and potentially S. flexneri.
Collapse
Affiliation(s)
- Heyn Lee
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Hye-Jin Ku
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Dong-Hoon Lee
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Republic of Korea
| | - You-Tae Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Republic of Korea
| | - Hakdong Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Faculty of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Park EA, Kim YT, Cho JH, Ryu S, Lee JH. Characterization and genome analysis of novel bacteriophages infecting the opportunistic human pathogens Klebsiella oxytoca and K. pneumoniae. Arch Virol 2016; 162:1129-1139. [PMID: 28028618 DOI: 10.1007/s00705-016-3202-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 12/11/2016] [Indexed: 11/27/2022]
Abstract
Klebsiella is a genus of well-known opportunistic human pathogens that are associated with diabetes mellitus and chronic pulmonary obstruction; however, this pathogen is often resistant to multiple drugs. To control this pathogen, two Klebsiella-infecting phages, K. oxytoca phage PKO111 and K. pneumoniae phage PKP126, were isolated from a sewage sample. Analysis of their host range revealed that they infect K. pneumoniae and K. oxytoca, suggesting host specificity for members of the genus Klebsiella. Stability tests confirmed that the phages are stable under various temperature (4 to 60 °C) and pH (3 to 11) conditions. A challenge assay showed that PKO111 and PKP126 inhibit growth of their host strains by 2 log and 4 log, respectively. Complete genome sequencing of the phages revealed that their genome sizes are quite different (168,758 bp for PKO111 and 50,934 bp for PKP126). Their genome annotation results showed that they have no human virulence-related genes, an important safety consideration. In addition, no lysogen-formation gene cluster was detected in either phage genome, suggesting that they are both virulent phages in their bacterial hosts. Based on these results, PKO111 and PKP126 may be good candidates for development of biocontrol agents against members of the genus Klebsiella for therapeutic purposes. A comparative analysis of tail-associated gene clusters of PKO111 and PKP126 revealed relatively low homology, suggesting that they might differ in the way they recognize and infect their specific hosts.
Collapse
Affiliation(s)
- Eun-Ah Park
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, 446-701, Korea
| | - You-Tae Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, 446-701, Korea
| | - Jae-Hyun Cho
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, 446-701, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agriculture Biotechnology, Research Institute of Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, 446-701, Korea.
| |
Collapse
|
18
|
In Vivo Application of Bacteriophage as a Potential Therapeutic Agent To Control OXA-66-Like Carbapenemase-Producing Acinetobacter baumannii Strains Belonging to Sequence Type 357. Appl Environ Microbiol 2016; 82:4200-4208. [PMID: 27208124 DOI: 10.1128/aem.00526-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/29/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED The increasing prevalence of carbapenem-resistant Acinetobacter baumannii (CRAB) strains in intensive care units has caused major problems in public health worldwide. Our aim was to determine whether this phage could be used as an alternative therapeutic agent against multidrug-resistant bacterial strains, specifically CRAB clinical isolates, using a mouse model. Ten bacteriophages that caused lysis in CRAB strains, including blaOXA-66-like genes, were isolated. YMC13/01/C62 ABA BP (phage Bϕ-C62), which showed the strongest lysis activity, was chosen for further study by transmission electron microscopy (TEM), host range test, one-step growth and phage adsorption rate, thermal and pH stability, bacteriolytic activity test, genome sequencing and bioinformatics analysis, and therapeutic effect of phage using a mouse intranasal infection model. The phage Bϕ-C62 displayed high stability at various temperatures and pH values and strong cell lysis activity in vitro The phage Bϕ-C62 genome has a double-stranded linear DNA with a length of 44,844 bp, and known virulence genes were not identified in silico. In vivo study showed that all mice treated with phage Bϕ-C62 survived after intranasal bacterial challenge. Bacterial clearance in the lung was observed within 3 days after bacterial challenge, and histologic damage also improved significantly; moreover, no side effects were observed. IMPORTANCE In our study, the novel A. baumannii phage Bϕ-C62 was characterized and evaluated in vitro, in silico, and in vivo These results, including strong lytic activities and the improvement of survival rates, showed the therapeutic potential of the phage Bϕ-C62 as an antimicrobial agent. This study reports the potential of a novel phage as a therapeutic candidate or nontoxic disinfectant against CRAB clinical isolates in vitro and in vivo.
Collapse
|
19
|
Jeon J, D'Souza R, Pinto N, Ryu C, Park J, Yong D, Lee K. Characterization and complete genome sequence analysis of two
Myoviral
bacteriophages infecting clinical carbapenem‐resistant
Acinetobacter baumannii
isolates. J Appl Microbiol 2016; 121:68-77. [DOI: 10.1111/jam.13134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/16/2016] [Accepted: 03/03/2016] [Indexed: 12/25/2022]
Affiliation(s)
- J. Jeon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance Yonsei University College of Medicine Seoul Korea
| | - R. D'Souza
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance Yonsei University College of Medicine Seoul Korea
| | - N. Pinto
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance Yonsei University College of Medicine Seoul Korea
| | - C.‐M. Ryu
- Molecular Phytobacteriology Laboratory KRIBB Daejeon Korea
- Biosystems and Bioengineering Program School of Science University of Science and Technology (UST) Daejeon Korea
| | - J. Park
- Laboratory Animal Medicine College of Veterinary Medicine Chonnam National University Gwang‐ju Korea
| | - D. Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance Yonsei University College of Medicine Seoul Korea
| | - K. Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance Yonsei University College of Medicine Seoul Korea
| |
Collapse
|
20
|
A Novel Bacteriophage Targeting Cronobacter sakazakii Is a Potential Biocontrol Agent in Foods. Appl Environ Microbiol 2015; 82:192-201. [PMID: 26497465 DOI: 10.1128/aem.01827-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/09/2015] [Indexed: 01/10/2023] Open
Abstract
Cronobacter sakazakii is an important pathogen that causes high mortality in infants. Due to its occasional antibiotic resistance, a bacteriophage approach might be an alternative effective method for the control of this pathogen. To develop a novel biocontrol agent using bacteriophages, the C. sakazakii-infecting phage CR5 was newly isolated and characterized. Interestingly, this phage exhibited efficient and relatively durable host lysis activity. In addition, a specific gene knockout study and subsequent complementation experiment revealed that this phage infected the host strain using the bacterial flagella. The complete genome sequence analysis of phage CR5 showed that its genome contains 223,989 bp of DNA, including 231 predicted open reading frames (ORFs), and it has a G+C content of 50.06%. The annotated ORFs were classified into six functional groups (structure, packaging, host lysis, DNA manipulation, transcription, and additional functions); no gene was found to be related to virulence or toxin or lysogen formation, but >80% of the predicted ORFs are unknown. In addition, a phage proteomic analysis using SDS-PAGE and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revealed that seven phage structural proteins are indeed present, supporting the ORF predictions. To verify the potential of this phage as a biocontrol agent against C. sakazakii, it was added to infant formula milk contaminated with a C. sakazakii clinical isolate or food isolate, revealing complete growth inhibition of the isolates by the addition of phage CR5 when the multiplicity of infection (MOI) was 10(5).
Collapse
|
21
|
Complete genome sequence of a giant Vibrio bacteriophage VH7D. Mar Genomics 2015; 24 Pt 3:293-5. [PMID: 26476690 DOI: 10.1016/j.margen.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 11/21/2022]
Abstract
A Vibrio sp. lytic phage VH7D was isolated from seawater of an abalone farm in Xiamen, China. The phage was capable of lysing Vibrio rotiferianus DSM 17186(T) and Vibrio harveyi DSM 19623(T). The complete genome of this phage consists of 246,964 nucleotides with a GC content of 41.31%, which characterized it as a giant vibriophage. Here we report the complete genome sequence and major findings from the genomic annotation.
Collapse
|
22
|
Isolation and Genome Characterization of the Virulent Staphylococcus aureus Bacteriophage SA97. Viruses 2015; 7:5225-42. [PMID: 26437428 PMCID: PMC4632378 DOI: 10.3390/v7102870] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/31/2015] [Accepted: 09/22/2015] [Indexed: 12/24/2022] Open
Abstract
A novel bacteriophage that infects S. aureus, SA97, was isolated and characterized. The phage SA97 belongs to the Siphoviridae family, and the cell wall teichoic acid (WTA) was found to be a host receptor of the phage SA97. Genome analysis revealed that SA97 contains 40,592 bp of DNA encoding 54 predicted open reading frames (ORFs), and none of these genes were related to virulence or drug resistance. Although a few genes associated with lysogen formation were detected in the phage SA97 genome, the phage SA97 produced neither lysogen nor transductant in S. aureus. These results suggest that the phage SA97 may be a promising candidate for controlling S. aureus.
Collapse
|
23
|
Complete genome sequence of the siphoviral bacteriophage Βϕ-R3177, which lyses an OXA-66-producing carbapenem-resistant Acinetobacter baumannii isolate. Arch Virol 2015; 160:3157-60. [PMID: 26427378 DOI: 10.1007/s00705-015-2604-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
In recent years, antimicrobial resistance has become a major medical threat worldwide. Among these threats, the rapid increase in carbapenem-resistant Acinetobacter baumannii (CRAB) is a particularly challenging global issue in the health care setting. In this study, a novel lytic A. baumannii phage, Βϕ-R3177, infecting carbapenem-resistant A. baumannii strains was isolated from sewage samples at a hospital. The morphology of the phage as assessed by transmission electron microscopy (TEM) indicated that it belongs to the family Siphoviridae within the order Caudovirales. It has a linear double-stranded DNA genome of 47,575 bp with a G+C content of 39.83%. Eighty open reading frames (ORFs) were predicted; however, only 14 ORFs were annotated as encoding functional proteins, while most of the ORFs encoded hypothetical proteins. Among the total ORFs of the phage genome, no toxin-related genes were detected. A bioinformatics analysis showed that the whole genome sequence of phage Βϕ-R3177 exhibited 62% sequence similarity to that of Acinetobacter phage Βϕ-B1252, but there was no homology seen with other phages. Physiological characteristics, such as one-step growth properties, pH and temperature stability, and host cell lysis activity showed this phage has high stability and lytic activity against host bacteria and therefore has potential applicability as an antibacterial agent to control pathogens in the hospital environment.
Collapse
|
24
|
Lim JA, Lee DH, Heu S. Isolation and Genomic Characterization of the T4-Like Bacteriophage PM2 Infecting Pectobacterium carotovorum subsp. carotovorum. THE PLANT PATHOLOGY JOURNAL 2015; 31:83-89. [PMID: 25774115 PMCID: PMC4356610 DOI: 10.5423/ppj.nt.09.2014.0099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
In order to control Pectobacterium carotovorum subsp. carotovorum, a novel virulent bacteriophage PM2 was isolated. Bacteriophage PM2 can infect 48% of P. carotovorum subsp. carotovorum and 78% of P. carotovorum subsp. brasilliensis but none of atrosepticum, betavasculorum, odoriferum and wasabiae isolates had been infected with PM2. PM2 phage belongs to the family Myoviridae, and contains a large head and contractile tail. It has a 170,286 base pair genome that encodes 291 open reading frames (ORFs) and 12 tRNAs. Most ORFs in bacteriophage PM2 share a high level of homology with T4-like phages including IME08, RB69, and JS98. Phylogenetic analysis based on the amino acid sequence of terminase large subunits confirmed that PM2 is classified as a T4-like phage. It contains no integrase- or no repressor-coding genes related to the lysogenic cycle, and lifestyle prediction using PHACT software suggested that PM2 is a virulent bacteriophage.
Collapse
Affiliation(s)
| | | | - Sunggi Heu
- Corresponding author. Phone) +82-63-238-3403, FAX) +82-63-238-3840, E-mail)
| |
Collapse
|
25
|
Zhang L, Bao H, Wei C, Zhang H, Zhou Y, Wang R. Characterization and partial genomic analysis of a lytic Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis in Mid-east of China. Virus Genes 2014; 50:111-7. [PMID: 25328045 DOI: 10.1007/s11262-014-1130-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/11/2014] [Indexed: 10/24/2022]
Abstract
Using bacteriophages as a tool to the control of pathogens is a complementary to antibiotic therapy. We have isolated a lytic bacteriophage, designated vB_SauM_JS25, from sewage effluent on a dairy farm in Jiangsu, Mid-east of China for use as a biocontrol agent against Staphylococcus aureus infections. Phage vB_SauM_JS25 was morphologically classified as Myoviridae. The phage showed broad host ranges within S. aureus strains, lysing 51 of 56 strains (91.1 %). Its latent period and burst size were approximately 20 min and 21 PFU/cell, respectively. Phage vB_SauM_JS25 was able to survive in a pH range between 6 and 9. However, a treatment of 70 or 80 °C for 10 min completely inactivated the phage. Moreover, morphologic analysis of vB_SauM_JS25 revealed that it was closely related to other Myoviridae phages infecting Staphylococcus species. The bacteriolytic activity of phage vB_SauM_JS25 at a multiplicity infection (MOI) 1 indicted its efficiency for reducing bacterial growth. These findings suggest that phage vB_SauM_JS25 could be considered a potential therapeutic or prophylactic candidate against S. aureus infection.
Collapse
Affiliation(s)
- Lili Zhang
- Key Open Laboratory of Edible Agricultural Products Safe Monitoring and Control, Ministry of Agriculture, Nanjing, 210014, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Jeon J, D'Souza R, Hong SK, Lee Y, Yong D, Choi J, Lee K, Chong Y. Complete Genome Sequence of the Siphoviral Bacteriophage YMC/09/04/R1988 MRSA BP: A lytic phage from a methicillin-resistant Staphylococcus aureus isolate. FEMS Microbiol Lett 2014; 359:144-146. [PMID: 25123965 DOI: 10.1111/1574-6968.12580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/12/2014] [Indexed: 01/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an increasing cause of serious infection, both in the community and hospital settings. Despite sophisticated strategies and efforts, the antibiotic options for treating MRSA infection have been narrowed due to the limited number of newly developed antimicrobials. Herein, we analyze the completely sequenced genome of a novel virulent phage YMC/09/04/R1988 MRSA BP as a potential alternative anti-MRSA agent, which lysed clinical isolates from a patient admitted to the hospital due to hip disarticulation. The phage contains a linear double-stranded DNA genome of 44,459 bp in length, with 33.37% GC content, 62 predicted open reading frames (ORFs), and annotated functions of only 23 ORFs that are associated with structural assembly, host lysis, DNA replication, and modification. It showed a broad host range (17 of 30 strains) against MRSA strains in clinical isolates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jongsoo Jeon
- Department of Laboratory Medicine and Research Institute of Antimicrobial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang Y, Wang W, Lv Y, Zheng W, Mi Z, Pei G, An X, Xu X, Han C, Liu J, Zhou C, Tong Y. Characterization and complete genome sequence analysis of novel bacteriophage IME-EFm1 infecting Enterococcus faecium. J Gen Virol 2014; 95:2565-2575. [PMID: 25078302 DOI: 10.1099/vir.0.067553-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We isolated and characterized a novel virulent bacteriophage, IME-EFm1, specifically infecting multidrug-resistant Enterococcus faecium. IME-EFm1 is morphologically similar to members of the family Siphoviridae. It was found capable of lysing a wide range of our E. faecium collections, including two strains resistant to vancomycin. One-step growth tests revealed the host lysis activity of phage IME-EFm1, with a latent time of 30 min and a large burst size of 116 p.f.u. per cell. These biological characteristics suggested that IME-EFm1 has the potential to be used as a therapeutic agent. The complete genome of IME-EFm1 was 42 597 bp, and was linear, with terminally non-redundant dsDNA and a G+C content of 35.2 mol%. The termini of the phage genome were determined with next-generation sequencing and were further confirmed by nuclease digestion analysis. To our knowledge, this is the first report of a complete genome sequence of a bacteriophage infecting E. faecium. IME-EFm1 exhibited a low similarity to other phages in terms of genome organization and structural protein amino acid sequences. The coding region corresponded to 90.7 % of the genome; 70 putative ORFs were deduced and, of these, 29 could be functionally identified based on their homology to previously characterized proteins. A predicted metallo-β-lactamase gene was detected in the genome sequence. The identification of an antibiotic resistance gene emphasizes the necessity for complete genome sequencing of a phage to ensure it is free of any undesirable genes before use as a therapeutic agent against bacterial pathogens.
Collapse
Affiliation(s)
- Yahui Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.,School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Wei Wang
- Anhui Medical University, Hefei 230032, PR China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yongqiang Lv
- Department of Laboratory, Dalian Beihai Hospital, Dalian Liaoning 116021, PR China
| | - Wangliang Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Guangqian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Xiaoping An
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Xiaomeng Xu
- Anhui Medical University, Hefei 230032, PR China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Chuanyin Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Jie Liu
- The General Hospital of Beijing Military Command, Beijing 100041, PR China
| | - Changlin Zhou
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| |
Collapse
|
28
|
Complete genome sequence of the Pectobacterium carotovorum subsp. carotovorum virulent bacteriophage PM1. Arch Virol 2014; 159:2185-7. [DOI: 10.1007/s00705-014-2005-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/23/2014] [Indexed: 11/26/2022]
|
29
|
Complete Genome Sequence of Staphylococcus aureus Siphovirus Phage JS01. GENOME ANNOUNCEMENTS 2013; 1:1/6/e00797-13. [PMID: 24233583 PMCID: PMC3828307 DOI: 10.1128/genomea.00797-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staphylococcus aureus is the most prevalent and economically significant pathogen causing bovine mastitis. We isolated and characterized one staphylophage from the milk of mastitis-affected cattle and sequenced its genome. Transmission electron microscopy (TEM) observation shows that it belongs to the family Siphovirus. We announce here its complete genome sequence and report major findings from the genomic analysis.
Collapse
|
30
|
Yoon H, Yun J, Lim JA, Roh E, Jung KS, Chang Y, Ryu S, Heu S. Characterization and genomic analysis of two Staphylococcus aureus bacteriophages isolated from poultry/livestock farms. J Gen Virol 2013; 94:2569-2576. [PMID: 23973965 PMCID: PMC3809110 DOI: 10.1099/vir.0.053991-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/21/2013] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus aureus is one of the most important pathogens, causing various diseases in humans and animals. As methicillin-resistant S. aureus (MRSA) has become increasingly prevalent, controlling this pathogen with standard antibiotic treatment has become challenging. Bacteriophages (phages) have attracted interest as alternative antibacterial agents to control MRSA. In this study, we isolated six S. aureus phages from soils of poultry/livestock farms. Based on the results of host range determination with 150 S. aureus strains and restriction enzyme treatment of phage DNA, two phages, designated SP5 and SP6, were selected for further characterization and genome sequencing. Both SP5 and SP6 were classified as members of the family Siphoviridae. The genome of SP5 comprises 43 305 bp and contains 63 ORFs, while the SP6 genome comprises 42 902 bp and contains 61 ORFs. Although they have different host spectra, the phage genomes exhibit high nucleotide similarity to each other. Adsorption assay results suggested that the host range determinants of the two phages are involved in both adsorption and infection. Comparative genomic analyses of the two phages provided evidence that the lysogenic/lytic control module and tail proteins may be important for host specificity.
Collapse
Affiliation(s)
- Hyunjin Yoon
- Department of Food Technology and Services, College of Health Industry, Eulji university, Seongnam 461-713, Korea
| | - Jiae Yun
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Korea
| | - Jeong-A Lim
- Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Eunjung Roh
- Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Kyu-Seok Jung
- Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Yoonjee Chang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Korea
| | - Sunggi Heu
- Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| |
Collapse
|
31
|
Shin H, Lee JH, Ahn CS, Ryu S, Cho BC. Complete genome sequence of marine bacterium Pseudoalteromonas phenolica bacteriophage TW1. Arch Virol 2013; 159:159-62. [PMID: 23851651 DOI: 10.1007/s00705-013-1776-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/24/2013] [Indexed: 11/24/2022]
Abstract
For molecular study of marine bacteria Pseudoalteromonas phenolica using bacteriophage, a novel bacteriophage, TW1, belonging to the family Siphoviridae, was isolated, and its genome was completely sequenced and analyzed. The phage TW1 genome consists of 39,940-bp-length double-stranded DNA with a GC content of 40.19 %, and it was predicted to have 62 open reading frames (ORFs), which were classified into functional groups, including phage structure, packaging, DNA metabolism, regulation, and additional function. The phage life style prediction using PHACTS showed that it may be a temperate phage. However, genes related to lysogeny and host lysis were not detected in the phage TW1 genome, indicating that annotation information about P. phenolica phages in the genome databases may not be sufficient for the functional prediction of their encoded proteins. This is the first report of a P. phenolica-infecting phage, and this phage genome study will provide useful information for further molecular research on P. phenolica and its phage, as well as their interactions.
Collapse
Affiliation(s)
- Hakdong Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul, 151-921, Korea
| | | | | | | | | |
Collapse
|
32
|
Lee JH, Shin H, Son B, Heu S, Ryu S. Characterization and complete genome sequence of a virulent bacteriophage B4 infecting food-borne pathogenic Bacillus cereus. Arch Virol 2013; 158:2101-8. [PMID: 23649177 DOI: 10.1007/s00705-013-1719-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/04/2013] [Indexed: 11/25/2022]
Abstract
Bacillus cereus causes food poisoning, resulting in vomiting and diarrhea, due to production of enterotoxins. As a means of controlling this food-borne pathogen, the virulent bacteriophage B4 was isolated and characterized. Bacterial challenge assays showed that phage B4 effectively inhibited growth of members of the B. cereus group as well as B. subtilis, and growth inhibition persisted for over 20 h. One-step growth analysis also revealed the host lysis activity of phage B4, with relatively short eclipse/latent times (10/15 min) and a large burst size (>200 PFU). The complete genome of phage B4, containing a 162-kb DNA with 277 ORFs, was analyzed. The endolysin encoded by the phage B4 genome accounts for the cell lysis activity of this phage. These results suggest that phage B4 has potential as a biological agent to control B. cereus propagation.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 446-701, Korea
| | | | | | | | | |
Collapse
|
33
|
Lee JH, Shin H, Choi Y, Ryu S. Complete genome sequence analysis of bacterial-flagellum-targeting bacteriophage chi. Arch Virol 2013; 158:2179-83. [DOI: 10.1007/s00705-013-1700-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/19/2013] [Indexed: 10/26/2022]
|
34
|
Complete genome sequence of the bacteriophage YMC01/01/P52 PAE BP, which causes lysis of verona integron-encoded metallo-β-lactamase-producing, carbapenem-resistant Pseudomonas aeruginosa. J Virol 2013; 86:13876-7. [PMID: 23166271 DOI: 10.1128/jvi.02730-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa commonly causes serious nosocomial infections. In this study, a novel lytic bacteriophage belonging to a member of the family Podoviridae, YMC01/01/P52 PAE BP, which infects carbapenem-resistant Pseudomonas aeruginosa, was isolated and characterized. YMC01/01/P52 PAE BP genome was analyzed by whole-genome sequencing and putative function identification. The bacteriophage genome consists of a double-stranded linear DNA genome of 49,381 bp with a GC content of 62.16%.
Collapse
|
35
|
Complete genome sequence of the podoviral bacteriophage YMC/09/02/B1251 ABA BP, which causes the lysis of an OXA-23-producing carbapenem-resistant Acinetobacter baumannii isolate from a septic patient. J Virol 2013; 86:12437-8. [PMID: 23087105 DOI: 10.1128/jvi.02132-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of carbapenem-resistant Acinetobacter baumannii, responsible for causing nosocomial infections, has been becoming a significant global health issue. In this article, we report the complete genome sequence of bacteriophage B-B1251 (YMC/09/02/B1251 ABA BP), which causes lysis of a carbapenem-resistant A. baumannii strain. The bacteriophage belongs to the family Podoviridae and has a double-stranded circular DNA genome with a length of 45,364 bp and a 39.05% G+C content. Genome analysis showed that it had no similarity to other previously reported bacteriophages capable of infecting A. baumannii.
Collapse
|
36
|
Complete genome sequence of Pectobacterium carotovorum subsp. carotovorum bacteriophage My1. J Virol 2012; 86:11410-1. [PMID: 22997426 DOI: 10.1128/jvi.01987-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum, a member of the Enterobacteriaceae family, is an important plant-pathogenic bacterium causing significant economic losses worldwide. P. carotovorum subsp. carotovorum bacteriophage My1 was isolated from a soil sample. Its genome was completely sequenced and analyzed for the development of an effective biological control agent. Sequence and morphological analyses revealed that phage My1 is a T5-like bacteriophage and belongs to the family Siphoviridae. To date, there is no report of a Pectobacterium-targeting siphovirus genome sequence. Here, we announce the complete genome sequence of phage My1 and report the results of our analysis.
Collapse
|
37
|
Abstract
Aeromonas hydrophila is one of the major pathogenic bacteria for fish and people. To develop an effective antimicrobial agent, we isolated a bacteriophage from sewage, named CC2, and sequenced its genome. Comparative genome analysis of phage CC2 with its relatives revealed that phage CC2 has higher sequence homology to A. salmonicida phage 65 than to A. hydrophila phage Aeh1. Here, we announce the complete genome sequence of CC2 and report major findings from the genomic analysis.
Collapse
|
38
|
Complete genome sequence of phytopathogenic Pectobacterium carotovorum subsp. carotovorum bacteriophage PP1. J Virol 2012; 86:8899-900. [PMID: 22843859 DOI: 10.1128/jvi.01283-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum is a phytopathogen causing soft rot disease on diverse plant species. To control this plant pathogen, P. carotovorum subsp. carotovorum-targeting bacteriophage PP1 was isolated and its genome was completely sequenced to develop a novel biocontrol agent. Interestingly, the 44,400-bp genome sequence does not encode any gene involved in the formation of lysogen, suggesting that this phage may be very useful as a biocontrol agent because it does not make lysogen after host infection. This is the first report on the complete genome sequence of the P. carotovorum subsp. carotovorum-targeting bacteriophage, and it will enhance our understanding of the interaction between phytopathogens and their targeting bacteriophages.
Collapse
|
39
|
Abstract
Vibrio vulnificus phages are abundant in coastal marine environments, shellfish, clams, and oysters. SSP002, a V. vulnificus-specific bacteriophage, was isolated from oysters from the west coast of South Korea. In this study, the complete genome of SSP002 was sequenced and analyzed for the first time among the V. vulnificus-specific bacteriophages.
Collapse
|
40
|
Abstract
Due to the high risk of Cronobacter sakazakii infection in infants fed powdered milk formula and the emergence of antibiotic-resistant strains, an alternative biocontrol agent using bacteriophage is needed to control this pathogen. To further the development of such an agent, the C. sakazakii-targeting bacteriophage CR3 was isolated and its genome was completely sequenced. Here, we announce the genomic analysis results of the largest C. sakazakii phage known to date and report the major findings from the genome annotation.
Collapse
|
41
|
Complete genome sequence of Salmonella enterica serovar Typhimurium bacteriophage SPN3UB. J Virol 2012; 86:3404-5. [PMID: 22354944 DOI: 10.1128/jvi.07226-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella is one of the major pathogenic bacteria that cause food poisoning. To elucidate the host infection mechanism of Salmonella enterica serovar Typhimurium-targeting phages, the bacteriophage SPN3UB was isolated from a chicken fecal sample. This phage belongs morphologically to the Siphoviridae family and infects the host via the O antigen of lipopolysaccharide (LPS). To further understand its infection mechanism, we completely sequenced and analyzed the genome. Here, we announce its complete genome sequence and report major findings from the genomic analysis results.
Collapse
|
42
|
Complete genome sequence of Salmonella enterica serovar typhimurium bacteriophage SPN1S. J Virol 2012; 86:1284-5. [PMID: 22205721 DOI: 10.1128/jvi.06696-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the interaction between the host of pathogenic Salmonella enterica serovar Typhimurium and its bacteriophage, we isolated the bacteriophage SPN1S. It is a lysogenic phage in the Podoviridae family and uses the O-antigen of lipopolysaccharides (LPS) as a host receptor. Comparative genomic analysis of phage SPN1S and the S. enterica serovar Anatum-specific phage ε15 revealed different host specificities, probably due to the low homology of host specificity-related genes. Here we report the complete circular genome sequence of S. Typhimurium-specific bacteriophage SPN1S and show the results of our analysis.
Collapse
|
43
|
Abstract
Bacillus cereus is generally found in soil habitats, and it contaminates a wide variety of foods, causing food poisoning with symptoms such as vomiting and diarrhea. To develop a novel biocontrol agent to inhibit this pathogen, bacteriophage BCP78 belonging to the Siphoviridae family was isolated from a fermented food sample. Here we announce the complete genome sequence of BCP78, which may be useful for understanding its inhibition mechanism against B. cereus, and describe major findings from the genome annotation.
Collapse
|
44
|
Abstract
Salmonella bacteriophage SPN3US was isolated from a chicken fecal sample. It is a virulent phage belonging to the Myoviridae family and showing effective inhibition of Salmonella enterica and a few Escherichia coli O157:H7 strains. Here we announce the completely sequenced first genome of a Salmonella phage using flagella as receptors. It is the largest genome among Salmonella phages sequenced to date, and major findings from its annotation are described.
Collapse
|
45
|
Park M, Lee JH, Shin H, Kim M, Choi J, Kang DH, Heu S, Ryu S. Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enterica and Escherichia coli O157:H7. Appl Environ Microbiol 2012; 78:58-69. [PMID: 22020516 PMCID: PMC3255626 DOI: 10.1128/aem.06231-11] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/07/2011] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica and Escherichia coli O157:H7 are major food-borne pathogens causing serious illness. Phage SFP10, which revealed effective infection of both S. enterica and E. coli O157:H7, was isolated and characterized. SFP10 contains a 158-kb double-stranded DNA genome belonging to the Vi01 phage-like family Myoviridae. In vitro adsorption assays showed that the adsorption constant rates to both Salmonella enterica serovar Typhimurium and E. coli O157:H7 were 2.50 × 10⁻⁸ ml/min and 1.91 × 10⁻⁸ ml/min, respectively. One-step growth analysis revealed that SFP10 has a shorter latent period (25 min) and a larger burst size (>200 PFU) than ordinary Myoviridae phages, suggesting effective host infection and lytic activity. However, differential development of resistance to SFP10 in S. Typhimurium and E. coli O157:H7 was observed; bacteriophage-insensitive mutant (BIM) frequencies of 1.19 × 10⁻² CFU/ml for S. Typhimurium and 4.58 × 10⁻⁵ CFU/ml for E. coli O157:H7 were found, indicating that SFP10 should be active and stable for control of E. coli O157:H7 with minimal emergence of SFP10-resistant pathogens but may not be for S. Typhimurium. Specific mutation of rfaL in S. Typhimurium and E. coli O157:H7 revealed the O antigen as an SFP10 receptor for both bacteria. Genome sequence analysis of SFP10 and its comparative analysis with homologous Salmonella Vi01 and Shigella phiSboM-AG3 phages revealed that their tail fiber and tail spike genes share low sequence identity, implying that the genes are major host specificity determinants. This is the first report identifying specific infection and inhibition of Salmonella Typhimurium and E. coli O157:H7 by a single bacteriophage.
Collapse
Affiliation(s)
- Minjung Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Agricultural Biomaterials, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Laboratory of Food Microbiology and Functional Genomics, Department of Food Science and Biotechnology, CHA University, Seongnam, South Korea
| | - Hakdong Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Agricultural Biomaterials, Seoul National University, Seoul, South Korea
| | - Minsik Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Agricultural Biomaterials, Seoul National University, Seoul, South Korea
| | - Jeongjoon Choi
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Agricultural Biomaterials, Seoul National University, Seoul, South Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Agricultural Biomaterials, Seoul National University, Seoul, South Korea
| | - Sunggi Heu
- Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration, Suwon, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Agricultural Biomaterials, Seoul National University, Seoul, South Korea
| |
Collapse
|
46
|
Hu Y, Yu H, Shaw G, Renfree MB, Pask AJ. Differential roles of TGIF family genes in mammalian reproduction. BMC DEVELOPMENTAL BIOLOGY 2011; 11:58. [PMID: 21958027 PMCID: PMC3204290 DOI: 10.1186/1471-213x-11-58] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/29/2011] [Indexed: 01/06/2023]
Abstract
Background TG-interacting factors (TGIFs) belong to a family of TALE-homeodomain proteins including TGIF1, TGIF2 and TGIFLX/Y in human. Both TGIF1 and TGIF2 act as transcription factors repressing TGF-β signalling. Human TGIFLX and its orthologue, Tex1 in the mouse, are X-linked genes that are only expressed in the adult testis. TGIF2 arose from TGIF1 by duplication, whereas TGIFLX arose by retrotransposition to the X-chromosome. These genes have not been characterised in any non-eutherian mammals. We therefore studied the TGIF family in the tammar wallaby (a marsupial mammal) to investigate their roles in reproduction and how and when these genes may have evolved their functions and chromosomal locations. Results Both TGIF1 and TGIF2 were present in the tammar genome on autosomes but TGIFLX was absent. Tammar TGIF1 shared a similar expression pattern during embryogenesis, sexual differentiation and in adult tissues to that of TGIF1 in eutherian mammals, suggesting it has been functionally conserved. Tammar TGIF2 was ubiquitously expressed throughout early development as in the human and mouse, but in the adult, it was expressed only in the gonads and spleen, more like the expression pattern of human TGIFLX and mouse Tex1. Tammar TGIF2 mRNA was specifically detected in round and elongated spermatids. There was no mRNA detected in mature spermatozoa. TGIF2 protein was specifically located in the cytoplasm of spermatids, and in the residual body and the mid-piece of the mature sperm tail. These data suggest that tammar TGIF2 may participate in spermiogenesis, like TGIFLX does in eutherians. TGIF2 was detected for the first time in the ovary with mRNA produced in the granulosa and theca cells, suggesting it may also play a role in folliculogenesis. Conclusions The restricted and very similar expression of tammar TGIF2 to X-linked paralogues in eutherians suggests that the evolution of TGIF1, TGIF2 and TGIFLX in eutherians was accompanied by a change from ubiquitous to tissue-specific expression. The distribution and localization of TGIF2 in tammar adult gonads suggest that there has been an ultra-conserved function for the TGIF family in fertility and that TGIF2 already functioned in spermatogenesis and potentially folliculogenesis long before its retrotransposition to the X-chromosome of eutherian mammals. These results also provide further evidence that the eutherian X-chromosome has actively recruited sex and reproductive-related genes during mammalian evolution.
Collapse
Affiliation(s)
- Yanqiu Hu
- ARC Centre of Excellence for Kangaroo Genomics, Department of Zoology, The University of Melbourne, VIC, 3010, Australia
| | | | | | | | | |
Collapse
|
47
|
Hu Y, Yu H, Shaw G, Pask AJ, Renfree MB. Kallmann syndrome 1 gene is expressed in the marsupial gonad. Biol Reprod 2010; 84:595-603. [PMID: 21123819 DOI: 10.1095/biolreprod.110.087437] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kallmann syndrome is characterized by hypogonadotrophic hypogonadism and anosmia. The syndrome can be caused by mutations in several genes, but the X-linked form is caused by mutation in the Kallmann syndrome 1 (KAL1). KAL1 plays a critical role in gonadotropin-releasing hormone (GnRH) neuronal migration that is essential for the normal development of the hypothalamic-pituitary-gonadal axis. Interestingly, KAL1 appears to be missing from the rodent X, and no orthologue has been detected as yet. We investigated KAL1 during development and in adults of an Australian marsupial, the tammar wallaby, Macropus eugenii. Marsupial KAL1 maps to an autosome within a group of genes that was added as a block to the X chromosome in eutherian evolution. KAL1 expression was widespread in embryonic and adult tissues. In the adult testis, tammar KAL1 mRNA and protein were detected in the germ cells at specific stages of differentiation. In the adult testis, the protein encoded by KAL1, anosmin-1, was restricted to the round spermatids and elongated spermatids. In the adult ovary, anosmin-1 was not only detected in the oocytes but was also localized in the granulosa cells throughout folliculogenesis. This is the first examination of KAL1 mRNA and protein localization in adult mammalian gonads. The protein localization suggests that KAL1 participates in gametogenesis not only through the development of the hypothalamic-pituitary-gonadal axis by activation of GnRH neuronal migration, but also directly within the gonads themselves. Because KAL1 is autosomal in marsupials but is X-linked in eutherians, its conserved involvement in gametogenesis supports the hypothesis that reproduction-related genes were actively recruited to the eutherian X chromosome.
Collapse
Affiliation(s)
- Yanqiu Hu
- ARC Centre of Excellence for Kangaroo Genomics, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
48
|
Yu H, Pask AJ, Shaw G, Renfree MB. Comparative analysis of the mammalian WNT4 promoter. BMC Genomics 2009; 10:416. [PMID: 19732466 PMCID: PMC2758904 DOI: 10.1186/1471-2164-10-416] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 09/06/2009] [Indexed: 11/25/2022] Open
Abstract
Background WNT4 is a critical signalling molecule in embryogenesis and homeostasis, but the elements that control its transcriptional regulation are largely unknown. This study uses comparative cross species sequence and functional analyses between humans and a marsupial (the tammar wallaby,Macropus eugenii) to refine the mammalian Wnt4 promoter. Results We have defined a highly conserved 89 bp minimal promoter region in human WNT4 by comparative analysis with the tammar wallaby. There are many conserved transcription factor binding sites in the proximal promoter region, including SP1, MyoD, NFκB and AP2, as well as highly conserved CpG islands within the human, mouse and marsupial promoters, suggesting that DNA methylation may play an important role in WNT4 transcriptional regulation. Conclusion Using a marsupial model, we have been able to provide new information on the transcriptional regulators in the promoter of this essential mammalian developmental gene, WNT4. These transcription factor binding sites and CpG islands are highly conserved in two disparate mammals, and are likely key controlling elements in the regulation of this essential developmental gene.
Collapse
Affiliation(s)
- Hongshi Yu
- ARC Centre of Excellence in Kangaroo Genomics, Department of Zoology, The University of Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
49
|
Hu Y, Yu H, Pask AJ, O'Brien DA, Shaw G, Renfree MB. A-kinase anchoring protein 4 has a conserved role in mammalian spermatogenesis. Reproduction 2009; 137:645-53. [DOI: 10.1530/rep-08-0337] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A-kinase anchor protein 4 (AKAP4) is an X-linked member of the AKAP family of scaffold proteins that anchor cAMP-dependent protein kinases and play an essential role in fibrous sheath assembly during spermatogenesis and flagellar function in spermatozoa. Marsupial spermatozoa differ in structural organization from those of eutherian mammals but data on the molecular control of their structure and function are limited. We therefore cloned and characterized the AKAP4 gene in a marsupial, the tammar wallaby (Macropus eugenii). The gene structure, sequence, and predicted protein of AKAP4 were highly conserved with that of eutherian orthologues and it mapped to the marsupial X-chromosome. There was no AKAP4 expression detected in the developing young. In the adult, AKAP4 expression was limited to the testis with a major transcript of 2.9 kb. AKAP4 mRNA was expressed in the cytoplasm of round and elongated spermatids while its protein was found on the principal piece of the flagellum in the sperm tail. This is consistent with its expression in other mammals. Thus, AKAP4 appears to have a conserved role in spermatogenesis for at least the last 166 million years of mammalian evolution.
Collapse
|
50
|
Pask AJ, Harry JL, Graves JAM, O'Neill RJW, Layfield SL, Shaw G, Renfree MB. SOX9 has both conserved and novel roles in marsupial sexual differentiation. Genesis 2002; 33:131-9. [PMID: 12124946 DOI: 10.1002/gene.10096] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In addition to an essential role in chondrogenesis, SOX9 is a highly conserved and integral part of the testis determining pathway in human and mouse. To determine whether SOX9 is involved in sex determination in noneutherian mammals we cloned a marsupial orthologue and studied its expression. The tammar wallaby SOX9 gene proved to be highly conserved, and maps to a region of the tammar genome syntenic to human chromosome 17. Marsupial SOX9 transcripts were detected by RT-PCR in the developing limb buds and both the developing ovary and testis from the first sign of gonadal development through to adulthood. Northern blot, in situ hybridisation, and immunohistochemical analyses showed that SOX9 reaches high levels of expression in the developing testis, where it is confined to the Sertoli cell nuclei, and the brain. This is similar to the expression pattern seen in human and mouse embryos and is consistent with a conserved role for SOX9 in vertebrate brain, skeletal, and gonadal development. In addition, SOX9 was expressed in the developing scrotum and mammary gland primordium regions of the tammar up to the time of birth. SOX9 protein was also detected in the developing Wolffian duct epithelium in the male mesonephros. These previously undescribed locations of SOX9 expression suggest that SOX9 may play additional roles in the differentiation of the marsupial reproductive system.
Collapse
Affiliation(s)
- Andrew J Pask
- Department of Zoology, The University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|