1
|
Kajikawa S, Takeuchi A, Nii A, Nakayama H, Doi K. Temporal Reduction in Size of Salivary Acinus in Rats Induced by Theophylline. Toxicol Pathol 2020; 33:218-24. [PMID: 15902964 DOI: 10.1080/01926230590896118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Repeated administration of theophylline, a phosphodiesterase inhibitor, induces the enlargement of the salivary glands in rats. Time-course changes after a single administration of theophylline were examined in the salivary glands, including phosphodiesterase enzyme activity, and the expression of aquaporin 5 (AQP5), a water channel. We also examined the contribution of β-adrenergic receptors to theophylline-induced salivary changes. Male F344 rats were given 50 mg/kg of theophylline intraperitoneally either alone or concurrently with a 10 mg/kg subcutaneous injection of propranolol. After treatment with theophylline alone, the weight and histology of the submaxillary and parotid glands were examined. Phosphodiesterase activity and AQP5 were detected by enzyme- and immuno-histochemistry, respectively. At 4 hours, 8 hours, or both, organ weights were decreased with depletion of secretory vesicles in the acinar cells. In the submaxillary glands, reduced activity of phosphodiesterase and increased expression of AQP5 in the intercalated ducts were observed at 4 hours. When co-administered, propranolol partially abolished theophylline-induced glandular reduction. These results suggest that the theophylline-induced transient reduction in size of the salivary glands is attributable not only to phosphodiesterase inhibition but also to β-adrenergic receptor activation and that the intercalated ducts in submaxillary glands play a role in the production of saliva.
Collapse
Affiliation(s)
- Satoru Kajikawa
- Safety Research Laboratories, Yamanouchi Pharmaceutical Co., Ltd., Itabashi-ku, Tokyo 174-8511, Japan
| | | | | | | | | |
Collapse
|
2
|
Christ T, Galindo-Tovar A, Thoms M, Ravens U, Kaumann AJ. Inotropy and L-type Ca2+ current, activated by beta1- and beta2-adrenoceptors, are differently controlled by phosphodiesterases 3 and 4 in rat heart. Br J Pharmacol 2009; 156:62-83. [PMID: 19133992 DOI: 10.1111/j.1476-5381.2008.00015.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE beta(1)- and beta(2)-adrenoceptors coexist in rat heart but beta(2)-adrenoceptor-mediated inotropic effects are hardly detectable, possibly due to phosphodiesterase (PDE) activity. We investigated the influence of the PDE3 inhibitor cilostamide (300 nmol x L(-1)) and the PDE4 inhibitor rolipram (1 micromol x L(-1)) on the effects of (-)-catecholamines. EXPERIMENTAL APPROACH Cardiostimulation evoked by (-)-noradrenaline (ICI118551 present) and (-)-adrenaline (CGP20712A present) through beta(1)- and beta(2)-adrenoceptors, respectively, was compared on sinoatrial beating rate, left atrial and ventricular contractile force in isolated tissues from Wistar rats. L-type Ca(2+)-current (I(Ca-L)) was assessed with whole-cell patch clamp. KEY RESULTS Rolipram caused sinoatrial tachycardia. Cilostamide and rolipram did not enhance chronotropic potencies of (-)-noradrenaline and (-)-adrenaline. Rolipram but not cilostamide potentiated atrial and ventricular inotropic effects of (-)-noradrenaline. Cilostamide potentiated the ventricular effects of (-)-adrenaline but not of (-)-noradrenaline. Concurrent cilostamide + rolipram uncovered left atrial effects of (-)-adrenaline. Both rolipram and cilostamide augmented the (-)-noradrenaline (1 micromol x L(-1)) evoked increase in I(Ca-L). (-)-Adrenaline (10 micromol x L(-1)) increased I(Ca-L) only in the presence of cilostamide but not rolipram. CONCLUSIONS AND IMPLICATIONS PDE4 blunts the beta(1)-adrenoceptor-mediated inotropic effects. PDE4 reduces basal sinoatrial rate in a compartment distinct from compartments controlled by beta(1)- and beta(2)-adrenoceptors. PDE3 and PDE4 jointly prevent left atrial beta(2)-adrenoceptor-mediated inotropy. Both PDE3 and PDE4 reduce I(Ca-L) responses through beta(1)-adrenoceptors but the PDE3 component is unrelated to inotropy. PDE3 blunts both ventricular inotropic and I(Ca-L) responses through beta(2)-adrenoceptors.
Collapse
Affiliation(s)
- Torsten Christ
- Department of Pharmacology, Dresden University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|
3
|
Afzal F, Andressen KW, Mørk HK, Aronsen JM, Sjaastad I, Dahl CP, Skomedal T, Levy FO, Osnes JB, Qvigstad E. 5-HT4
-elicited positive inotropic response is mediated by cAMP and regulated by PDE3 in failing rat and human cardiac ventricles. Br J Pharmacol 2009. [DOI: 10.1038/bjp.2008.339 [pii]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
4
|
Afzal F, Andressen KW, Mørk HK, Aronsen JM, Sjaastad I, Dahl CP, Skomedal T, Levy FO, Osnes JB, Qvigstad E. 5-HT4-elicited positive inotropic response is mediated by cAMP and regulated by PDE3 in failing rat and human cardiac ventricles. Br J Pharmacol 2008; 155:1005-14. [PMID: 18846035 DOI: 10.1038/bjp.2008.339] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The left ventricle in failing hearts becomes sensitive to 5-HT parallelled by appearance of functional G(s)-coupled 5-HT(4) receptors. Here, we have explored the regulatory functions of phosphodiesterases in the 5-HT(4) receptor-mediated functional effects in ventricular muscle from failing rat and human heart. EXPERIMENTAL APPROACH Extensive myocardial infarctions were induced by coronary artery ligation in Wistar rats. Contractility was measured in left ventricular papillary muscles of rat, 6 weeks after surgery and in left ventricular trabeculae from explanted human hearts. cAMP was quantified by RIA. KEY RESULTS In papillary muscles from postinfarction rat hearts, 5-HT(4) stimulation exerted positive inotropic and lusitropic effects and increased cAMP. The inotropic effect was increased by non-selective PDE inhibition (IBMX, 10 microM) and selective inhibition of PDE3 (cilostamide, 1 microM), but not of PDE2 (EHNA, 10 microM) or PDE4 (rolipram, 10 microM). Combined PDE3 and PDE4 inhibition enhanced inotropic responses beyond the effect of PDE3 inhibition alone, increased the sensitivity to 5-HT, and also revealed an inotropic response in control (sham-operated) rat ventricle. Lusitropic effects were increased only during combined PDE inhibition. In failing human ventricle, the 5-HT(4) receptor-mediated positive inotropic response was regulated by PDEs in a manner similar to that in postinfarction rat hearts. CONCLUSIONS AND IMPLICATIONS 5-HT(4) receptor-mediated positive inotropic responses in failing rat ventricle were cAMP-dependent. PDE3 was the main PDE regulating this response and involvement of PDE4 was disclosed by concomitant inhibition of PDE3 in both postinfarction rat and failing human hearts. 5-HT, PDE3 and PDE4 may have pathophysiological functions in heart failure.
Collapse
Affiliation(s)
- F Afzal
- Department of Pharmacology, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Leroy J, Abi-Gerges A, Nikolaev VO, Richter W, Lechêne P, Mazet JL, Conti M, Fischmeister R, Vandecasteele G. Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases. Circ Res 2008; 102:1091-100. [PMID: 18369156 DOI: 10.1161/circresaha.107.167817] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Steady-state activation of cardiac beta-adrenergic receptors leads to an intracellular compartmentation of cAMP resulting from localized cyclic nucleotide phosphodiesterase (PDE) activity. To evaluate the time course of the cAMP changes in the different compartments, brief (15 seconds) pulses of isoprenaline (100 nmol/L) were applied to adult rat ventricular myocytes (ARVMs) while monitoring cAMP changes beneath the membrane using engineered cyclic nucleotide-gated channels and within the cytosol with the fluorescence resonance energy transfer-based sensor, Epac2-camps. cAMP kinetics in the two compartments were compared to the time course of the L-type Ca(2+) channel current (I(Ca,L)) amplitude. The onset and recovery of cAMP transients were, respectively, 30% and 50% faster at the plasma membrane than in the cytosol, in agreement with a rapid production and degradation of the second messenger at the plasma membrane and a restricted diffusion of cAMP to the cytosol. I(Ca,L) amplitude increased twice slower than cAMP at the membrane, and the current remained elevated for approximately 5 minutes after cAMP had already returned to basal level, indicating that cAMP changes are not rate-limiting in channel phosphorylation/dephosphorylation. Inhibition of PDE4 (with 10 micromol/L Ro 20-1724) increased the amplitude and dramatically slowed down the onset and recovery of cAMP signals, whereas PDE3 blockade (with 1 micromol/L cilostamide) had a minor effect only on subsarcolemmal cAMP. However, when both PDE3 and PDE4 were inhibited, or when all PDEs were blocked using 3-isobutyl-l-methylxanthine (300 micromol/L), cAMP signals and I(Ca,L) declined with a time constant >10 minutes. cAMP-dependent protein kinase inhibition with protein kinase inhibitor produced a similar effect as a partial inhibition of PDE4 on the cytosolic cAMP transient. Consistently, cAMP-PDE assay on ARVMs briefly (15 seconds) exposed to isoprenaline showed a pronounced (up to approximately 50%) dose-dependent increase in total PDE activity, which was mainly attributable to activation of PDE4. These results reveal temporally distinct beta-adrenergic receptor cAMP compartments in ARVMs and shed new light on the intricate roles of PDE3 and PDE4.
Collapse
Affiliation(s)
- Jérôme Leroy
- INSERM U-769, Université Paris-Sud 11, Faculté de Pharmacie, 5, Rue J.-B. Clément, F-92296 Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Campos-Toimil M, Keravis T, Orallo F, Takeda K, Lugnier C. Short-term or long-term treatments with a phosphodiesterase-4 (PDE4) inhibitor result in opposing agonist-induced Ca(2+) responses in endothelial cells. Br J Pharmacol 2008; 154:82-92. [PMID: 18311187 DOI: 10.1038/bjp.2008.56] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE We previously reported that agonist-induced rises in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) in human umbilical vein endothelial cells (HUVEC) were inhibited after a short-term (2 min) pre-treatment with cAMP-elevating agents. The aim of this work was to study the effects of longer term (8 h) pre-treatment with dibutyryl-cAMP (db-cAMP) or rolipram, a specific inhibitor of phosphodiesterase-4 (PDE4), on [Ca(2+)](i), cAMP levels and PDE activity and expression in HUVEC. EXPERIMENTAL APPROACH [Ca(2+)](i) changes were measured in isolated HUVEC by Fura-2 imaging. Intracellular cAMP levels and PDE4 activity were assessed by enzyme-immunoassay and radio-enzymatic assay, respectively. PDE expression was measured by northern and western blot analysis. KEY RESULTS Long-term pre-treatment of HUVEC with rolipram or db-cAMP significantly increased ATP-, histamine- and thrombin-induced [Ca(2+)](i) rises. Short-term pre-treatment with rolipram was associated with an increase in cAMP, whereas long-term pre-treatment was associated with a decrease in cAMP. Long-term pre-treatment with rolipram or db-cAMP induced a significant increase in PDE4 activity and the expression of 74 kDa-PDE4A and 73 kDa-PDE4B was specifically enhanced. All these effects were suppressed by cycloheximide. CONCLUSIONS AND IMPLICATIONS Our data suggest that sustained inhibition of PDE4 by rolipram induced an increase in PDE4 activity, possibly as a compensatory mechanism to accelerate cAMP degradation and that PDE4A and PDE4B were implicated in the regulation of [Ca(2+)](i). Thus, isozyme-specific PDE4 inhibitors might be useful as therapeutic agents in diseases where [Ca(2+)](i) handling is altered, such as atherosclerosis, hypertension and tolerance to beta-adrenoceptor agonists.
Collapse
Affiliation(s)
- M Campos-Toimil
- Departmento de Farmacoloxía, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
7
|
Kwak HJ, Park KM, Choi HE, Chung KS, Lim HJ, Park HY. PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways. Cell Signal 2007; 20:803-14. [PMID: 18276108 DOI: 10.1016/j.cellsig.2007.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 12/05/2007] [Accepted: 12/18/2007] [Indexed: 01/23/2023]
Abstract
Myocyte apoptosis plays an important role in myocardial infarction and cAMP is crucial in the regulation of myocyte apoptosis. Phosphodiesterase-4 (PDE4) inhibitor blocks the hydrolysis of cAMP via inhibition of PDE4 and is attractive candidate for novel anti-inflammatory drugs. However, its function in cardiovascular diseases and cardiomyocyte apoptosis is unclear. Therefore, we investigated whether roflumilast, a PDE4 inhibitor, exerts protective effect against NO-induced apoptosis in both of H9c2 cells and neonatal rat cardiomyocytes (NRCMs), focusing on cAMP downstream molecules such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). According to our data, intracellular cAMP was increased by roflumilast treatment in H9c2 cells and NRCMs. Roflumilast inhibited SNP-induced apoptosis and this effect was reversed by PKA specific inhibitor H-89 and KT-5720. In addition, PKA specific activator N(6)-benzoyladenosine 3',5-cyclic monophosphate (N(6)Bz-cAMP) mimicked the effects of roflumilast. CREB phosphorylation by roflumilast was also inhibited by H-89, indicating that roflumilast protects SNP-induced apoptosis via PKA-dependent pathway. Roflumilast increased Epac1/GTP-Rap1 and the protective effect was abolished by Epac1 siRNA transfection, demonstrating that Epac signaling was also involved in this protective response. In support, Epac specific activator 8-(4-chlrorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8CPT-2Me-cAMP) protected SNP-induced apoptosis. PI3K/Akt inhibitor LY294002 blocked roflumilast-induced Akt phosphorylation and protective effect. Furthermore, inhibition of Epac1 with siRNA had no effect on roflumilast-induced CREB phosphorylation, whereas inhibited Akt phosphorylation, implicating that Akt phosphorylation was regulated by Epac pathway. In addition, it was also observed that rolipram and cilomilast exert similar effects as roflumilast. In summary, our data indicate that roflumilast protects NO-induced apoptosis via both cAMP-PKA/CREB and Epac/Akt-dependent pathway. Our study suggests a possibility of PDE4 inhibitor roflumilast as a potential therapeutic agent against myocardial ischemia/reperfusion (I/R) injury.
Collapse
Affiliation(s)
- Hyun-Jeong Kwak
- Division of Cardiovascular Diseases, Department of Biomedical Sciences, National Institutes of Health, 194 Tongillo, Eunpyung-gu, Seoul 122-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
8
|
Osadchii OE. Myocardial phosphodiesterases and regulation of cardiac contractility in health and cardiac disease. Cardiovasc Drugs Ther 2007; 21:171-94. [PMID: 17373584 DOI: 10.1007/s10557-007-6014-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 02/21/2007] [Indexed: 01/14/2023]
Abstract
Phosphodiesterase (PDE) inhibitors are potent cardiotonic agents used for parenteral inotropic support in heart failure. Contractile effects of these agents are mediated through cAMP-protein kinase A-induced stimulation of I (Ca2+) which ultimately results in increased Ca(2+)-induced sarcoplasmic reticulum Ca(2+) release. A number of additional effects such as increases in sarcoplasmic reticulum Ca(2+) stores, stimulation of reverse mode Na(+)-Ca(2+) exchange, direct or cAMP-mediated effects on sarcoplasmic reticulum ryanodine receptor, stimulation of the voltage-sensitive sarcoplasmic reticulum Ca(2+) release mechanism, as well as A(1) adenosine receptor blockade could contribute to positive inotropic responses to PDE inhibitors. Moreover, some PDE inhibitors exhibit Ca(2+) sensitizer properties as they could increase the affinity of troponin C Ca(2+)-binding sites as well as reduce Ca(2+) threshold for thin myofilament sliding and facilitate cross-bridge cycling. Inotropic responses to PDE inhibitors are significantly reduced in cardiac disease, an effect largely attributed to downregulation of cAMP-mediated signalling due to sustained sympathetic activation. Four PDE isoenzymes (PDE1, PDE2, PDE3 and PDE4) are present in myocardial tissue of various mammalian species, of which PDE3 and PDE4 are particularly involved in regulation of cardiac myocyte contraction. PDE cAMP-hydrolysing activity is preserved in compensated cardiac hypertrophy but significantly reduced in animal models of heart failure. However, clinical studies have not revealed any changes in distribution profile as well as kinetic and regulatory properties of myocardial PDEs in failing human hearts. A reduction of PDE inhibitors-induced contractile responses in heart failure has therefore been ascribed to reduced cAMP synthesis due to uncoupling of adenylyl cyclase from beta-adrenoreceptor. In cardiac myocytes, PDEs are targeted to distinct subcellular compartments by scaffolding proteins such as myomegalin, mAKAP and beta-arrestins. Over subcellular microdomains, cAMP hydrolysis by PDE3 and PDE4 allows to control the activity of local pools of protein kinase A and therefore the extent of protein kinase A-mediated phosphorylation of cellular proteins.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Cardiology Group, School of Clinical Sciences, University Clinical Departments, University of Liverpool, The Duncan Building, Liverpool, UK.
| |
Collapse
|
9
|
Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2005; 109:366-98. [PMID: 16102838 DOI: 10.1016/j.pharmthera.2005.07.003] [Citation(s) in RCA: 666] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 01/08/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs), which are ubiquitously distributed in mammalian tissues, play a major role in cell signaling by hydrolyzing cAMP and cGMP. Due to their diversity, which allows specific distribution at cellular and subcellular levels, PDEs can selectively regulate various cellular functions. Their critical role in intracellular signaling has recently designated them as new therapeutic targets for inflammation. The PDE superfamily represents 11 gene families (PDE1 to PDE11). Each family encompasses 1 to 4 distinct genes, to give more than 20 genes in mammals encoding the more than 50 different PDE proteins probably produced in mammalian cells. Although PDE1 to PDE6 were the first well-characterized isoforms because of their predominance in various tissues and cells, their specific contribution to tissue function and their regulation in pathophysiology remain open research fields. This concerns particularly the newly discovered families, PDE7 to PDE11, for which roles are not yet established. In many pathologies, such as inflammation, neurodegeneration, and cancer, alterations in intracellular signaling related to PDE deregulation may explain the difficulties observed in the prevention and treatment of these pathologies. By inhibiting specifically the up-regulated PDE isozyme(s) with newly synthesized potent and isozyme-selective PDE inhibitors, it may be potentially possible to restore normal intracellular signaling selectively, providing therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR, 7034, Pharmacologie et Physicochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 route du Rhin, BP 60024, 67401 Illkirch, France.
| |
Collapse
|
10
|
Laforest MF, Pouliot E, Guéguen L, Richard FJ. Fundamental significance of specific phosphodiesterases in the control of spontaneous meiotic resumption in porcine oocytes. Mol Reprod Dev 2005; 70:361-72. [PMID: 15625697 DOI: 10.1002/mrd.20203] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The meiosis of mammalian oocytes begins during the fetal life and stops at the dictyate stage. This study has assessed the role of specific phosphodiesterase (PDE) inhibitors on the control of meiotic resumption in porcine oocytes investigating the influence of PMSG-hCG and cAMP stimulation. Cumulus-oocytes complexes (COCs) and denuded oocytes (DOs) were collected from gilt ovaries obtained at a local slaughterhouse. Oocytes were cultured in NCSU23 with different PDE inhibitors. The EC(50) for oocytes maintained in germinal vesicle (GV) stage was evaluated using different doses of both cilostamide (CIL), PDE3 inhibitor and 3-isobutyl-1-methylxanthine (IBMX), a nonspecific PDE inhibitor. In presence of PMSG-hCG, meiotic resumption is observed after 24 hr of culture. Both CIL and IBMX reversibly blocked meiotic resumption. In absence of PMSG-hCG, meiotic resumption is reduced after 24 hr of culture. After 48 hr of culture, only CIL significantly blocked meiotic resumption. Still in absence of PMSG-hCG, significant effect of treatment was only observed in COCs using the combination of CIL and rolipram (PDE3 and PDE4 inhibitor, respectively) compared to the use of IBMX. To assess the contribution of cAMP synthesis, a low dose of an adenylyl cyclase (AC) stimulator, forskolin, has been used in combination with CIL showing a significant effect of this combination. In CIL-treated COCs and DOs, significant higher percentages of oocytes were maintained in GV stage when cultured in combination with forskolin instead of PMSG-hCG. In conclusion, these results demonstrate that the control of meiotic resumption in porcine oocytes is highly regulated by cAMP. Both the degradation by specific PDE3 enzyme and the synthesis by an active AC are highly involved.
Collapse
Affiliation(s)
- Martin F Laforest
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des Sciences de l'Agriculture et d'Alimentation, Université Laval, Ste-Foy, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
11
|
Mongillo M, McSorley T, Evellin S, Sood A, Lissandron V, Terrin A, Huston E, Hannawacker A, Lohse MJ, Pozzan T, Houslay MD, Zaccolo M. Fluorescence Resonance Energy Transfer–Based Analysis of cAMP Dynamics in Live Neonatal Rat Cardiac Myocytes Reveals Distinct Functions of Compartmentalized Phosphodiesterases. Circ Res 2004; 95:67-75. [PMID: 15178638 DOI: 10.1161/01.res.0000134629.84732.11] [Citation(s) in RCA: 305] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac myocytes have provided a key paradigm for the concept of the compartmentalized cAMP generation sensed by AKAP-anchored PKA. Phosphodiesterases (PDEs) provide the sole route for degrading cAMP in cells and are thus poised to regulate intracellular cAMP gradients. PDE3 and PDE4 represent the major cAMP degrading activities in rat ventriculocytes. By performing real-time imaging of cAMP in situ, we establish the hierarchy of these PDEs in controlling cAMP levels in basal conditions and on stimulation with a β-adrenergic receptor agonist. PDE4, rather than PDE3, appears to be responsible for modulating the amplitude and duration of the cAMP response to beta-agonists. PDE3 and PDE4 localize to distinct compartments and this may underpin their different functional roles. Our findings indicate the importance of distinctly localized PDE isoenzymes in determining compartmentalized cAMP signaling.
Collapse
|
12
|
Jurevicius J, Skeberdis VA, Fischmeister R. Role of cyclic nucleotide phosphodiesterase isoforms in cAMP compartmentation following beta2-adrenergic stimulation of ICa,L in frog ventricular myocytes. J Physiol 2003; 551:239-52. [PMID: 12815180 PMCID: PMC2343164 DOI: 10.1113/jphysiol.2003.045211] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 06/02/2003] [Indexed: 02/02/2023] Open
Abstract
The role of cyclic nucleotide phosphodiesterase (PDE) isoforms in the beta2-adrenergic stimulation of the L-type Ca2+ current (ICa,L) was investigated in frog ventricular myocytes using double patch-clamp and double-barrelled microperfusion techniques. Isoprenaline (ISO, 1 nM to 10 microM) was applied on one half of the cell, either alone or in the presence of PDE inhibitors, and the local and distant responses of ICa,L were used to determine the gradient of local vs. distant cAMP concentration (alpha). IBMX (100 microM), a non-selective PDE inhibitor, reduced alpha from 40 to 4.4 indicating a 9-fold reduction in intracellular cAMP compartmentation when all PDE activity was blocked. While PDE1 and PDE2 inhibition had no effect, PDE3 inhibition by milrinone (3 microM) or PDE4 inhibition by Ro 20-1724 (3 microM) reduced alpha by 6- and 4-fold, respectively. A simultaneous application of milrinone and Ro 20-1724 produced a similar effect to IBMX, showing that PDE3 and PDE4 were the major PDEs accounting for cAMP compartmentation. Okadaic acid (3 microM), a non-selective phosphatase inhibitor, or H89 (1 microM), an inhibitor of cAMP-dependent protein kinase (PKA), had no effect on the distant response of ICa,L to ISO indicating that PDE activation by PKA played a minor role in cAMP compartmentation. Our results demonstrate that PDE activity determines the degree of cAMP compartmentation in frog ventricular cells upon beta2-adrenergic stimulation. PDE3 and PDE4 subtypes play a major role in this process, and contribute equally to ensure a functional coupling of beta2-adrenergic receptors with nearby Ca2+ channels via local elevations of cAMP.
Collapse
Affiliation(s)
- Jonas Jurevicius
- Laboratoire de Cardiologie Cellulaire et Moléculaire, INSERM U-446, Université Paris-Sud, Faculté de Pharmacie, F-92296 Châtenay-Malabry, France
| | | | | |
Collapse
|
13
|
Georget M, Mateo P, Vandecasteele G, Lipskaia L, Defer N, Hanoune J, Hoerter J, Lugnier C, Fischmeister R. Cyclic AMP compartmentation due to increased cAMP-phosphodiesterase activity in transgenic mice with a cardiac-directed expression of the human adenylyl cyclase type 8 (AC8). FASEB J 2003; 17:1380-91. [PMID: 12890691 DOI: 10.1096/fj.02-0784com] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hearts from AC8TG mice develop a higher contractility (LVSP) and larger Ca2+ transients than NTG mice, with (surprisingly) no modification in L-type Ca2+ channel current (ICa,L) (1). In this study, we examined the cardiac response of AC8TG mice to beta-adrenergic and muscarinic agonists and IBMX, a cyclic nucleotide phosphodiesterase (PDE) inhibitor. Stimulation of LVSP and ICa,L by isoprenaline (ISO, 100 nM) was twofold smaller in AC8TG vs. NTG mice. In contrast, IBMX (100 microM) produced a twofold higher stimulation of ICa,L in AC8TG vs. NTG mice. IBMX (10 microM) increased LVSP by 40% in both types of mice, but contraction and relaxation were hastened in AC8TG mice only. Carbachol (10 microM) had no effect on basal contractility in NTG hearts but decreased LVSP by 50% in AC8TG mice. PDE assays demonstrated an increase in cAMP-PDE activity in AC8TG hearts, mainly due to an increase in the hydrolytic activity of PDE4 and PDE1 toward cAMP and a decrease in the activity of PDE1 and PDE2 toward cGMP. We conclude that cardiac expression of AC8 is accompanied by a rearrangement of PDE isoforms, leading to a strong compartmentation of the cAMP signal that shields L-type Ca2+ channels and protects the cardiomyocytes from Ca2+ overload.
Collapse
Affiliation(s)
- Marie Georget
- Laboratoire de Cardiologie Cellulaire et Moléculaire, INSERM U-446, Université Paris-Sud, Faculté de Pharmacie, 5, Rue J.-B. Clément, F-92296 Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
It is generally accepted that cyclic nucleotides are key signaling molecules in the control of oocyte meiotic resumption. Given the role of phosphodiesterases (PDEs) in cyclic nucleotide degradation, this study was undertaken to investigate the properties and regulation of PDEs expressed in rat oocytes. Cilostamide-sensitive PDE3 was the major activity detected in denuded oocytes, whereas no PDE3 activity could be detected in cumulus cells. Moreover, comparable levels of PDE3 activity were measured in cumulus-oocyte complexes (COCs) and in denuded oocytes. The oocyte PDE was recovered in the soluble fraction of the homogenate and immunoprecipitated with a specific PDE3A antibody. A significant and transient increase (P < 0.05) in PDE3 activity was measured in the oocytes after 30 min of culture (70 min after isolation) compared with immediately after collection (10 min after isolation). Conversely, no changes in activity were observed when denuded oocytes or cumulus cells were incubated for up to 130 min. Evaluation of oocyte maturation indicated that only 10% of oocytes had resumed meiosis at the peak of the PDE3 activity. A significant increase (P < 0.05) in PDE3 activity was measured in COCs when follicle-enclosed oocytes were cultured in the presence of hCG. Again, this increase preceded oocyte maturation. In conclusion, these data demonstrate that PDE3A is the major PDE form expressed in mammalian oocytes. PDE3A activity increases prior to resumption of meiosis in both spontaneous and gonadotropin-stimulated maturation. These findings strongly support the hypothesis that an increase in oocyte PDE3A activity is one of the intraoocyte mechanisms controlling resumption of meiosis in rat oocytes, at least in vitro.
Collapse
Affiliation(s)
- F J Richard
- Division of Reproductive Biology, Department of Gynecology and Obstetrics, Stanford University School of Medicine, Stanford, California 94305-5317, USA
| | | | | |
Collapse
|
15
|
Imahashi K, Yoshioka J, Yamakita T, Yamano S, Kusuoka H, Nishimura T. Type IV phosphodiesterase inhibitor suppresses insulin-dependent myocardial glucose uptake. Clin Exp Pharmacol Physiol 2001; 28:290-1. [PMID: 11251642 DOI: 10.1046/j.1440-1681.2001.03440.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Phosphodiesterase (PDE) IV has been localized at cardiomyocytes and the coronary vasculature and modulates cAMP, but the effect of PDE IV on myocardial glucose uptake has not been demonstrated. 2. Glucose uptake in rat isolated hearts treated with the PDE IV inhibitor rolipram was measured by [31P] nuclear magnetic resonance spectroscopy. 3. Under non-stimulating conditions, glucose uptake was not significantly different between control and rolipram (1 micromol/L)-treated rat hearts, whereas enhanced uptake in insulin-stimulated conditions was significantly attenuated by rolipram. 4. Phosphodiesterase IV inhibitor negatively affects insulin-dependent myocardial glucose uptake.
Collapse
Affiliation(s)
- K Imahashi
- Division of Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Verde I, Vandecasteele G, Lezoualc'h F, Fischmeister R. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Br J Pharmacol 1999; 127:65-74. [PMID: 10369457 PMCID: PMC1565993 DOI: 10.1038/sj.bjp.0702506] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effects of several phosphodiesterase (PDE) inhibitors on the L-type Ca current (I(Ca)) and intracellular cyclic AMP concentration ([cAMP]i) were examined in isolated rat ventricular myocytes. The presence of mRNA transcripts encoding for the different cardiac PDE subtypes was confirmed by RT-PCR. IBMX (100 microM), a broad-spectrum PDE inhibitor, increased basal I(Ca) by 120% and [cAMP]i by 70%, similarly to a saturating concentration of the beta-adrenoceptor agonist isoprenaline (1 microM). However, MIMX (1 microM), a PDE1 inhibitor, EHNA (10 microM), a PDE2 inhibitor, cilostamide (0.1 microM), a PDE3 inhibitor, or Ro20-1724 (0.1 microM), a PDE4 inhibitor, had no effect on basal I(Ca) and little stimulatory effects on [cAMP]i (20-30%). Each selective PDE inhibitor was then tested in the presence of another inhibitor to examine whether a concomitant inhibition of two PDE subtypes had any effect on I(Ca) or [cAMP]i. While all combinations tested significantly increased [cAMP]i (40-50%), only cilostamide (0.1 microM)+ Ro20-1724 (0.1 microM) produced a significant stimulation of I(Ca) (50%). Addition of EHNA (10 microM) to this mix increased I(Ca) to 110% and [cAMP]i to 70% above basal, i.e. to similar levels as obtained with IBMX (100 microM) or isoprenaline (1 microM). When tested on top of a sub-maximal concentration of isoprenaline (1 nM), which increased I(Ca) by (approximately 40% and had negligible effect on [cAMP]i, each selective PDE inhibitor induced a clear stimulation of [cAMP]i and an additional increase in I(Ca). Maximal effects on I(Ca) were approximately 8% for MIMX (3 microM), approximately 20% for EHNA (1-3 microM), approximately 30% for cilostamide (0.3-1 microM) and approximately 50% for Ro20-1724 (0.1 microM). Our results demonstrate that PDE1-4 subtypes regulate I(Ca) in rat ventricular myocytes. While PDE3 and PDE4 are the dominant PDE subtypes involved in the regulation of basal I(Ca), all four PDE subtypes determine the response of I(Ca) to a stimulus activating cyclic AMP production, with the rank order of potency PDE4>PDE3>PDE2>PDE1.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- 3',5'-Cyclic-AMP Phosphodiesterases/biosynthesis
- 3',5'-Cyclic-AMP Phosphodiesterases/physiology
- 3',5'-Cyclic-GMP Phosphodiesterases/antagonists & inhibitors
- 3',5'-Cyclic-GMP Phosphodiesterases/biosynthesis
- 3',5'-Cyclic-GMP Phosphodiesterases/physiology
- Adrenergic beta-Agonists/pharmacology
- Animals
- Calcium/physiology
- Calcium Channels/metabolism
- Calcium Channels, L-Type
- Cyclic AMP/physiology
- Cyclic Nucleotide Phosphodiesterases, Type 1
- Cyclic Nucleotide Phosphodiesterases, Type 3
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Heart Ventricles/cytology
- Heart Ventricles/enzymology
- Heart Ventricles/metabolism
- In Vitro Techniques
- Isoproterenol/pharmacology
- Male
- Myocardium/cytology
- Myocardium/enzymology
- Myocardium/metabolism
- Patch-Clamp Techniques
- Phosphodiesterase Inhibitors/pharmacology
- Phosphoric Diester Hydrolases
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Ignacio Verde
- Laboratoire de Cardiologie Cellulaire et Moléculaire, INSERM U-446, Université de Paris-Sud, Faculté de Pharmacie, F-92296 Châtenay-Malabry, France
| | - Grégoire Vandecasteele
- Laboratoire de Cardiologie Cellulaire et Moléculaire, INSERM U-446, Université de Paris-Sud, Faculté de Pharmacie, F-92296 Châtenay-Malabry, France
| | - Frank Lezoualc'h
- Laboratoire de Cardiologie Cellulaire et Moléculaire, INSERM U-446, Université de Paris-Sud, Faculté de Pharmacie, F-92296 Châtenay-Malabry, France
| | - Rodolphe Fischmeister
- Laboratoire de Cardiologie Cellulaire et Moléculaire, INSERM U-446, Université de Paris-Sud, Faculté de Pharmacie, F-92296 Châtenay-Malabry, France
- Author for correspondence:
| |
Collapse
|
17
|
Okruhlicová L, Tribulová N, Styk J, Eckly A, Lugnier C, Slezk J. Species differences in localization of cardiac cAMP-phosphodiesterase activity: a cytochemical study. Mol Cell Biochem 1997; 173:183-8. [PMID: 9278270 DOI: 10.1023/a:1006845513962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The localization of the membrane-bound cyclic 3',5'-AMP phosphodiesterase in cardiac tissues of both, rat and dog was studied by cytochemical method. 40 microm thick slices from glutaraldehyde fixed heart tissue were incubated in the medium with cAMP as a substrate and Pb ions as a capture metal of the reaction product. The cAMP-PDE activity in the rat ventricle was only shown positive on the sarcolemma. Whereas, in canine ventricular tissue the cAMP-PDE activity in cardiomyocytes was shown on the sarcolemma, on the junctional sarcoplasmic reticulum and on subsarcolemmal cisternae. The results confirm differences in the localization of cAMP-PDE in dog and rat heart.
Collapse
Affiliation(s)
- L Okruhlicová
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|