1
|
Sun WW, Yan XM, Qiao AJ, Zhang YJ, Yang L, Huang HC, Shi HF, Yan BL. Upregulated galectin-1 in Angiostrongylus cantonensis L5 reduces body fat and increases oxidative stress tolerance. Parasit Vectors 2022; 15:46. [PMID: 35123560 PMCID: PMC8817484 DOI: 10.1186/s13071-022-05171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Angiostrongylus cantonensis L5, parasitizing human cerebrospinal fluid, causes eosinophilic meningitis, which is attributed to tissue inflammatory responses caused primarily by the high percentage of eosinophils. Eosinophils are also involved in killing helminths, using the peroxidative oxidation and hydrogen peroxide (H2O2) generated by dismutation of superoxide produced during respiratory burst. In contrast, helminthic worms have evolved to attenuate eosinophil-mediated tissue inflammatory responses for their survival. In previous study, we demonstrated the extracellular function of Acan-Gal-1 in inducing the apoptosis of macrophages. Here, the intracellular functions of Acan-Gal-1 were investigated, aiming to further reveal the mechanism involved in A. cantonensis L5 worms surviving inflammatory responses in the human central nervous system. Methods In this study, a model organism, Caenorhabditis elegans, was used as a surrogate to investigate the intracellular functions of Acan-Gal-1 in protecting the worm from its host’s immune attacks. First, structural characterization of Acan-Gal-1 was analyzed using bioinformatics; second, qRT-PCR was used to monitor the stage specificity of Acan-gal-1 expression in A. cantonensis. Microinjections were performed to detect the tissue specificity of lec-1 expression, the homolog of Acan-gal-1 in C. elegans. Third, microinjection was performed to develop Acan-gal-1::rfp transgenic worms. Then, oxidative stress assay and Oil Red O fat staining were used to determine the functions of Acan-Gal-1 in C. elegans. Results The results of detecting the stage specificity of Acan-gal-1 expression showed that Acan-Gal-1 was upregulated in both L5 and adult worms. Detection of the tissue specificity showed that the homolog of Acan-gal-1 in C. elegans, lec-1 was expressed ubiquitously and mainly localized in cuticle. Investigating the intracellular functions of Acan-Gal-1 in the surrogate C. elegans showed that N2 worms expressing pCe-lec-1::Acan-gal-1::rfp, with lipid deposition reduced, were significantly resistant to oxidative stress; lec-1 mutant worms, where lipid deposition increased, showed susceptible to oxidative stress, and this phenotype could be rescued by expressing pCe-lec-1::Acan-gal-1::rfp. Expressing pCe-lec-1::Acan-gal-1::rfp or lec-1 RNAi in fat-6;fat-7 double-mutant worms, where fat stores were reduced, had no significant effect on the oxidative stress tolerance. Conclusion In C. elegans worms, upregulated Acan-Gal-1 plays a defensive role against damage due to oxidative stress for worm survival by reducing fat deposition. This might indicate the mechanism by which A. cantonensis L5 worms, with upregulated Acan-Gal-1, survive the immune attack of eosinophils in the human central nervous system. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05171-4.
Collapse
|
2
|
VanKoten HW, Moore RS, Cloninger MJ. Nanoparticles To Study Lectins in Caenorhabditis elegans: Multivalent Galactose β1-4 Fucose-Functionalized Dendrimers Provide Protection from Oxidative Stress. Biomacromolecules 2021; 22:4720-4729. [PMID: 34704753 DOI: 10.1021/acs.biomac.1c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Galectins are galactoside-binding lectins that are functional dimers or higher-order oligomers. Multivalent binding has been shown to augment the relatively low affinity of the galectins for their galactoside-binding partners, enabling the galectins to play an important role in the global remodeling of cells that occurs during the stress conditions of disease states, including heart disease and cancer. The presence of galectins in the nematode Caenorhabditis elegans and their galactoside-binding properties have been demonstrated, but the role of multivalent interactions for C. elegans galectins is unknown. Here, we describe the synthesis of Galβ1-4Fuc-functionalized poly(amidoamine) dendrimers and their utility in studies using C. elegans during oxidative stress. C. elegans were fed Galβ1-4Fuc-functionalized dendrimers and RNA interference to knock down lectins lec-1 and lec-10 while undergoing oxidative stress. C. elegans that were pretreated with the glycodendrimers were less susceptible to oxidative stress than untreated controls. Worms that were fed fluorescently tagged glycodendrimers and imaged indicated that the dendrimers are primarily present in the digestive tract of the worms, and uptake into the vulva and proximal gonads could also be observed in some instances. This study suggests that multivalently presented Galβ1-4Fuc can protect C. elegans from oxidative stress.
Collapse
Affiliation(s)
- Harrison W VanKoten
- Department of Chemistry and Biochemistry, Montana State University, 103 Chemistry and Biochemistry Building, Bozeman, Montana 59717, United States
| | - Rebecca S Moore
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, New Jersey 08544, United States
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, 103 Chemistry and Biochemistry Building, Bozeman, Montana 59717, United States
| |
Collapse
|
3
|
Naqvi MAUH, Memon MA, Jamil T, Naqvi SZ, Aimulajiang K, Gadahi JA, Xu L, Song X, Li X, Yan R. Galectin Domain Containing Protein from Haemonchus contortus Modulates the Immune Functions of Goat PBMCs and Regulates CD4+ T-Helper Cells In Vitro. Biomolecules 2020; 10:E116. [PMID: 31936604 PMCID: PMC7022894 DOI: 10.3390/biom10010116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 02/08/2023] Open
Abstract
Galectins are glycan-binding proteins that are widely expressed and distributed in mammalian tissues as well as cells of innate and adaptive immune responses. CD4+ T-helper cells differentiate into effector subsets in response to cytokines. T helper 9 cells are one of the recently described subsets of effector T cells that are relatively new and less studied. In this study, galectin domain containing protein from Haemonchus contortus (Hc-GDC) was cloned, expressed in pET32a, and immunoblotting was performed. Localization of recombinant (r)Hc-GDC on outer and inner surface of H. contortus worm and binding with goat Peripheral Blood Mononuclear cells (PBMCs) were performed using immunofluorescence assay. Moreover, effects of rHc-GDC on proliferation, apoptosis, cell migration, and the nitric oxide production in goat PBMCs were evaluated. Furthermore, modulatory effects of rHc-GDC on production of Th1, Th2, and Th9 cells were evaluated by flowcytometry and on interferon gamma, interleukin (IL)-4 and IL-9 were evaluated by quantitative real-time polymerase chain reaction. The results demonstrated that rHc-GDC was successfully cloned, expressed in expression vector as well as in the gut surface of adult H. contortus worm and successful binding with PBMCs surface were observed. Immunoblotting results revealed that rHc-GDC is an important active protein of H. contortus excretory and secretory products. Moreover, the interaction of rHc-GDC with host cells increased the production of Th2, Th9 cells, IL4, IL-9, PBMC proliferation, nitric oxide, and cell migration. No effects of rHc-GDC were observed on PMBC apoptosis, production of Th1 cells, and secretions of IFN- and IL-10 cytokines. These findings indicate that recombinant GDC protein from H. contortus modulates the immune functions of goat PBMCs and has the potential to enhance protective immunity by inducing T helper-9-derived IL-9 in vitro.
Collapse
Affiliation(s)
- Muhammad Ali-ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Tahseen Jamil
- Sindh Agriculture University, Tandojam 70050, Sindh, Pakistan; (T.J.); (J.A.G.)
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Javaid Ali Gadahi
- Sindh Agriculture University, Tandojam 70050, Sindh, Pakistan; (T.J.); (J.A.G.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| |
Collapse
|
4
|
Akimoto Y, Ikehara S, Yamaguchi T, Kim J, Kawakami H, Shimizu N, Hori M, Sakakita H, Ikehara Y. Galectin expression in healing wounded skin treated with low-temperature plasma: Comparison with treatment by electronical coagulation. Arch Biochem Biophys 2016; 605:86-94. [PMID: 26827730 DOI: 10.1016/j.abb.2016.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Low-temperature plasma is useful for the care of wounded skin. It accelerates wound healing. However, the mechanism of this effect has not been fully elucidated yet. Galectin-1 is reported to accelerate wound healing via the Smad signaling pathway. In the present study to clarify whether or not galectins were expressed during the process of wound healing in the plasma-treated skin, we examined the effect of low-temperature plasma on galectin expression in the healing skin. We compared the effects of low-temperature plasma on the expression of galectin-1, -2, and -3 in the healing skin with those of electrocoagulation conducted with a high-frequency electrical coagulator. Immediately after the start of low-temperature plasma treatment following the incision made in the skin, a membrane-like structure was formed on the surface of the wound. Immunoelectron microscopy showed that these galectins were localized in the membrane-like structure of the plasma-treated skin. The expressions of these galectins were increased by the low-temperature plasma treatment, whereas they were inhibited by the electrocoagulation. These results suggest that galectins were involved in the wound healing of low-temperature plasma-treated skin. Galectins will thus be good markers for further examination of the effects of low-temperature plasma on the healing of wounded skin.
Collapse
Affiliation(s)
- Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, 181-8611, Japan.
| | - Sanae Ikehara
- Biotechnology Research Institute for Drug Discovery, The National Institutes of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Takashi Yamaguchi
- Biotechnology Research Institute for Drug Discovery, The National Institutes of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Jaeho Kim
- Electronics and Photonics Research Institute, AIST, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, 181-8611, Japan
| | - Nobuyuki Shimizu
- International University of Health and Welfare, Sanno Hospital, Akasaka, 107-0052, Japan
| | - Masaru Hori
- Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Hajime Sakakita
- Electronics and Photonics Research Institute, AIST, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Yuzuru Ikehara
- Biotechnology Research Institute for Drug Discovery, The National Institutes of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan; Graduate School of Medicine, Chiba University, Chiba, 107-0052, Japan
| |
Collapse
|
5
|
Wang W, Wang S, Zhang H, Yuan C, Yan R, Song X, Xu L, Li X. Galectin Hco-gal-m from Haemonchus contortus modulates goat monocytes and T cell function in different patterns. Parasit Vectors 2014; 7:342. [PMID: 25056558 PMCID: PMC4117971 DOI: 10.1186/1756-3305-7-342] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/06/2014] [Indexed: 12/24/2022] Open
Abstract
Background Monocytes and T cells are two major subpopulations of peripheral blood mononuclear cells (PBMC) and play an essential role in the innate and adaptive immune systems. Different members of the galectin family show multiple and distinct regulatory effects on different cell types. Previous studies have demonstrated that the galectin from Haemonchus contortus (Hco-gal-m) performed immunomodulatory effects on goat PBMC, however, which subpopulation of PBMC is the primary target of Hco-gal-m and whether the immune modulations share the same mechanism remain unclear. Methods In this study, the developmental expression of Hco-gal-m was analyzed by RT-PCR and Western blot analysis. The distribution of Hco-gal-m in adult worm was detected by an immunohistochemical test. The binding activity of the recombinant Hco-gal-m (rHco-gal-m) on goat monocytes and T cells were assessed by flow cytometry. The immunomodulatory effects of Hco-gal-m on cytokine secretion, cell activation and apoptosis were observed by co-incubation of rHco-gal-m with goat monocytes and T cells. Results Hco-gal-m was expressed in L4 as well as adult worms and predominantly localized at the internal surface of the worm guts. rHco-gal-m could bind to both monocytes and T cells. The engagement of rHco-gal-m decreased the production of IL-6, IL-10 and TNF-α in T cells, however, it significantly increased the secretion of IL-10 in monocytes. After rHco-gal-m exposure, the expression of MHC-II on monocytes and that of CD25 on T cells were restricted. Consequently, T cell proliferations were potently inhibited by rHco-gal-m. In addition, rHco-gal-m induced apoptosis in T cells, but not significantly in monocytes. Conclusions Our results indicated that rHco-gal-m modulated goat monocytes and T cell function in different patterns. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-342) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Takeuchi T, Nemoto-Sasaki Y, Sugiura KI, Arata Y, Kasai KI. Galectin LEC-1 plays a defensive role against damage due to oxidative stress in Caenorhabditis elegans. J Biochem 2013; 154:455-64. [DOI: 10.1093/jb/mvt074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
7
|
Rebello KM, Barros JSL, Mota EM, Carvalho PC, Perales J, Lenzi HL, Neves-Ferreira AGC. Comprehensive proteomic profiling of adult Angiostrongylus costaricensis, a human parasitic nematode. J Proteomics 2011; 74:1545-59. [PMID: 21596163 DOI: 10.1016/j.jprot.2011.04.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 12/17/2022]
Abstract
Angiostrongylus costaricensis is a nematode helminth that causes an intestinal acute inflammatory process known as abdominal angiostrongyliasis, which is a poorly understood human disease occurring in Latin America. Our aim was to study the proteomic profiles of adult parasites focusing on immunogenic proteins. Total cellular extracts from both genders showed similar 2-DE profiles, with 60% of all protein spots focused between pH 5-7 and presenting molecular masses from 20.1 to 66 kDa. A total of 53 different dominant proteins were identified in our dataset and were mainly associated with the following over-represented Gene Ontology Biological Process terms: "macromolecule metabolic process", "developmental process", "response to stress", and "biological regulation". Female and male immunoblots showed similar patterns of reactive proteins. Immunoreactive spots identified by MALDI-PSD were found to represent heat shock proteins, a putative abnormal DAuer Formation family member, and galectins. To date, very few biochemical analyses have focused on the nematode Angiostrongylus costaricensis. As such, our results contribute to a better understanding of its biology and the mechanisms underlying the host-parasite relationship associated with this species. Moreover, our findings represent a first step in the search for candidate proteins for diagnostic assays and the treatment of this parasitic infection.
Collapse
Affiliation(s)
- Karina M Rebello
- Toxinology Laboratory, Oswaldo Cruz Institute (IOC), Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Kim JY, Cho MK, Choi SH, Lee KH, Ahn SC, Kim DH, Yu HS. Inhibition of dextran sulfate sodium (DSS)-induced intestinal inflammation via enhanced IL-10 and TGF-β production by galectin-9 homologues isolated from intestinal parasites. Mol Biochem Parasitol 2010; 174:53-61. [DOI: 10.1016/j.molbiopara.2010.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/24/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
|
9
|
Lee DW, Seo JB, Nam MH, Kang JS, Kim SY, Kim AY, Kim WT, Choi JK, Um Y, Lee Y, Moon IS, Han HR, Koh SH, Je YH, Lim KJ, Lee SH, Koh YH. A combination of biochemical and proteomic analyses reveals Bx-LEC-1 as an antigenic target for the monoclonal antibody 3-2A7-2H5-D9-F10 specific to the pine wood nematode. Mol Cell Proteomics 2010; 10:M900521-MCP200. [PMID: 20410377 DOI: 10.1074/mcp.m900521-mcp200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pine wilt disease (PWD) is one of the most devastating forest diseases in Asia and Europe. The pine wood nematode, Bursaphelenchus xylophilus, has been identified as the pathogen underlying PWD, although the pathology is not completely understood. At present, diagnosis and confirmation of PWD are time consuming tasks that require nematode extraction and microscopic examination. To develop a more efficient detection method for B. xylophilus, we first generated monoclonal antibodies (MAbs) specific to B. xylophilus. Among 2304 hybridoma fusions screened, a hybridoma clone named 3-2A7-2H5 recognized a single protein from B. xylophilus specifically, but not those from other closely related nematodes. We finally selected the MAb clone 3-2A7-2H5-D9-F10 (D9-F10) for further studies. To identify the antigenic target of MAb-D9-F10, we analyzed proteins in spots, fractions, or bands isolated from SDS-PAGE, two-dimensional electrophoresis, anion exchange chromatography, and immunoprecipitation via nano liquid chromatography electrospray ionization quadrupole ion trap mass spectrometry (nano-LC-ESI-Q-IT-MS). Peptides of galactose-binding lectin-1 of B. xylophilus (Bx-LEC-1) were commonly detected in several proteomic analyses, demonstrating that this LEC-1 is the antigenic target of MAb-D9-F10. The localization of MAb-D9-F10 immunoreactivities at the area of the median bulb and esophageal glands suggested that the Bx-LEC-1 may be involved in food perception and digestion. The Bx-LEC-1 has two nonidentical galactose-binding lectin domains important for carbohydrate binding. The affinity of the Bx-LEC-1 to D-(+)-raffinose and N-acetyllactosamine were much higher than that to L-(+)-rhamnose. Based on this combination of evidences, MAb-D9-F10 is the first identified molecular biomarker specific to the Bx-LEC-1.
Collapse
Affiliation(s)
- Dae-Weon Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Caenorhabditis elegans galectins LEC-1–LEC-11: Structural features and sugar-binding properties. Biochim Biophys Acta Gen Subj 2008; 1780:1131-42. [DOI: 10.1016/j.bbagen.2008.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/28/2008] [Accepted: 07/07/2008] [Indexed: 11/21/2022]
|
11
|
Hirabayashi J, Kasai KI. Evolution of animal lectins. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 19:45-88. [PMID: 15898188 DOI: 10.1007/978-3-642-48745-3_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- J Hirabayashi
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-01, Japan
| | | |
Collapse
|
12
|
Ahmed H, Bianchet MA, Amzel LM, Hirabayashi J, Kasai KI, Giga-Hama Y, Tohda H, Vasta GR. Novel carbohydrate specificity of the 16-kDa galectin from Caenorhabditis elegans: binding to blood group precursor oligosaccharides (type 1, type 2, Talpha, and Tbeta) and gangliosides. Glycobiology 2002; 12:451-61. [PMID: 12145186 DOI: 10.1093/glycob/cwf052] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Galectins, a family of soluble beta-galactosyl-binding lectins, are believed to mediate cell-cell and cell-extracellular matrix interactions during development, inflammation, apoptosis, and tumor metastasis. However, neither the detailed mechanisms of their function(s) nor the identities of their natural ligands have been unequivocally elucidated. Of the several galectins present in the nematode Caenorhabditis elegans, the 16-kDa "proto" type and the 32-kDa "tandem-repeat" type are the best characterized so far, but their carbohydrate specificities have not been examined in detail. Here, we report the carbohydrate-binding specificity of the recombinant C. elegans 16-kDa galectin and the structural analysis of its binding site by homology modeling. Our results indicate that unlike the galectins characterized so far, the C. elegans 16-kDa galectin interacts with most blood group precursor oligosaccharides (type 1, Galbeta1,3GlcNAc, and type 2, Galbeta1,4GlcNAc; Talpha, Galbeta1,3GalNAcalpha; Tbeta, Galbeta1,3GalNAcbeta) and gangliosides containing the Tbeta structure. Homology modeling of the C. elegans 16-kDa galectin CRD revealed that a shorter loop containing residues 66-69, which enables interactions of Glu(67) with both axial and equatorial -OH at C-3 of GlcNAc (in Galbeta1,4GlcNAc) or at C-4 of GalNAc (in Galbeta1,3GalNAc), provides the structural basis for this novel carbohydrate specificity.
Collapse
Affiliation(s)
- Hafiz Ahmed
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 East Pratt Street, Baltimore, MD 21202, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
A protein map of Caenorhabditis elegans was constructed by using two-dimensional gel electrophoresis followed by peptide mass fingerprinting. A whole worm extract of a mixed population was separated on immobilized pH gradient strips 4-7 L, 3-10 NL, 6-11 L and 12% sodium dodecyl sulfate-polyacrylamide gel eletrophoresis (SDS-PAGE) gels. Gels were stained with colloidal Coomassie blue and 286 spots representing 152 proteins were subsequently identified by matrix-assisted laser desorption/ionization-mass spectrometry after in-gel digestion with trypsin. Most of the identified proteins with known cellular function were enzymes related to carbohydrate and lipid metabolism, or structural proteins with subcellular locations in the cytoplasm, mitochondria or cytoskeleton.
Collapse
Affiliation(s)
- S P Schrimpf
- Center for Genomics Research, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
14
|
Arata Y, Hirabayashi J, Kasai K. Sugar binding properties of the two lectin domains of the tandem repeat-type galectin LEC-1 (N32) of Caenorhabditis elegans. Detailed analysis by an improved frontal affinity chromatography method. J Biol Chem 2001; 276:3068-77. [PMID: 11058602 DOI: 10.1074/jbc.m008602200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 32-kDa galectin (LEC-1 or N32) of the nematode Caenorhabditis elegans is the first example of a tandem repeat-type galectin and is composed of two domains, each of which is homologous to typical vertebrate 14-kDa-type galectins. To elucidate the biological meaning of this unique structure containing two probable sugar binding sites in one molecule, we analyzed in detail the sugar binding properties of the two domains by using a newly improved frontal affinity chromatography system. The whole molecule (LEC-1), the N-terminal lectin domain (Nh), and the C-terminal lectin domain (Ch) were expressed in Escherichia coli, purified, and immobilized on HiTrap gel agarose columns, and the extent of retardation of various sugars by the columns was measured. To raise the sensitivity of the system, we used 35 different fluorescence-labeled oligosaccharides (pyridylaminated (PA) sugars). All immobilized proteins showed affinity for N-acetyllactosamine-containing N-linked complex-type sugar chains, and the binding was stronger for more branched sugars. Ch showed 2-5-fold stronger binding toward all complex-type sugars compared with Nh. Both Nh and Ch preferred Galbeta1-3GlcNAc to Galbeta1-4GlcNAc. Because the Fucalpha1-2Galbeta1-3GlcNAc (H antigen) structure was found to interact with all immobilized protein columns significantly, the K(d) value of pentasaccharide Fucalpha1-2Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc-PA for each column was determined by analyzing the concentration dependence. Obtained values for immobilized LEC-1, Nh, and Ch were 6.0 x 10(-5), 1.3 x 10(-4), and 6.5 x 10(-5) m, respectively. The most significant difference between Nh and Ch was in their affinity for GalNAcalpha1-3(Fucalpha1-2)Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc-PA, which contains the blood group A antigen; the K(d) value for immobilized Nh was 4.8 x 10(-5) m, and that for Ch was 8.1 x 10(-4) m. The present results clearly indicate that the two sugar binding sites of LEC-1 have different sugar binding properties.
Collapse
Affiliation(s)
- Y Arata
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamika, Kanagawa, 199-0195, Japan.
| | | | | |
Collapse
|
15
|
Arata A, Sekiguchi M, Hirabayashi J, Kasai K. Effects of substitution of conserved amino acid residues on the sugar-binding property of the tandem-repeat 32-kDa galectin of the nematode Caenorhabditis elegans. Biol Pharm Bull 2001; 24:14-8. [PMID: 11201239 DOI: 10.1248/bpb.24.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 32-kDa galectin (LEC-1) of the nematode Caenorhabditis elegans (C elegans) is composed of two tandemly repeated homologous sequences, each containing a carbohydrate-recognition domain (CRD). Using the polymerase chain reaction (PCR) with LEC-1 cDNA as a template and "megaprimers", we performed site-directed mutagenesis to substitute conserved amino acid residues in these domains. The resultant mutated LEC-1s were produced in E. coli, and their binding abilities were estimated by affinity chromatography. When one of the conserved amino acid residues in the first lectin domain was substituted, the binding ability of the mutant protein to asialofetuin-agarose was reduced but still remained. The binding ability of such mutants was similar to that of the recombinant half molecule containing the second lectin domain (Ch). However, when mutations were introduced into the second lectin domain, the binding ability of these mutant lectins to asialofetuin-agarose was significantly reduced just like the half recombinant molecule containing the first lectin domain (Nh). The different effects of the substitution of amino acid residues on the two lectin domains suggest that the binding properties of the two sites are different and that LEC-1 acts as a "heterobifunctional crosslinker."
Collapse
Affiliation(s)
- A Arata
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan.
| | | | | | | |
Collapse
|
16
|
Gasser RB, Newton SE. Genomic and genetic research on bursate nematodes: significance, implications and prospects. Int J Parasitol 2000; 30:509-34. [PMID: 10731573 DOI: 10.1016/s0020-7519(00)00021-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular genetic research on parasitic nematodes (order Strongylida) is of major significance for many fundamental and applied areas of medical and veterinary parasitology. The advent of gene technology has led to some progress for this group of nematodes, particularly in studying parasite systematics, drug resistance and population genetics, and in the development of diagnostic assays and the characterisation of potential vaccine and drug targets. This paper gives an account of the molecular biology and genetics of strongylid nematodes, mainly of veterinary socio-economic importance, indicates the implications of such research and gives a perspective on genome research for this important parasite group, in light of recent technological advances and knowledge of the genomes of other metazoan organisms.
Collapse
Affiliation(s)
- R B Gasser
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria, Australia.
| | | |
Collapse
|
17
|
Akimoto Y, Imai Y, Hirabayashi J, Kasai K, Hirano H. Histochemistry and cytochemistry of endogenous animal lectins. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1999; 33:1-90. [PMID: 10319374 DOI: 10.1016/s0079-6336(98)80002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Y Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
18
|
Greenhalgh CJ, Beckham SA, Newton SE. Galectins from sheep gastrointestinal nematode parasites are highly conserved. Mol Biochem Parasitol 1999; 98:285-9. [PMID: 10080397 DOI: 10.1016/s0166-6851(98)00167-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- C J Greenhalgh
- Centre for Animal Biotechnology, School of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
19
|
Hirabayashi J, Dutta SK, Kasai K. Novel galactose-binding proteins in Annelida. Characterization of 29-kDa tandem repeat-type lectins from the earthworm Lumbricus terrestris. J Biol Chem 1998; 273:14450-60. [PMID: 9603958 DOI: 10.1074/jbc.273.23.14450] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Novel type lectins were found in the phylum Annelida, i.e. in the earthworm, tubifex, leech, and lugworm. The lectins (29-31 kDa) were extracted from the worms without the use of detergent and purified by affinity chromatography on asialofetuin-agarose. On the basis of the partial primary structures of the earthworm Lumbricus terrestris 29-kDa lectin (EW29), degenerate primers were synthesized for use in the reverse transcriptase-polymerase chain reaction. An amplified 155-base pair fragment was used to screen a cDNA library. Four types of full-length clones were obtained, all of which encoded 260 amino acids, but which were found to differ at 29 nucleotide positions. Since three of them resulted in non-silent substitutions, EW29 mRNA was considered to be a mixture of at least three distinct polynucleotides encoding the following proteins: Ala44-Gln197-Ile213 (clone 5), Gly44-Gln197-Val213 (clone 7), and Ala44-His197-Ile213 (clones 8 and 9; different at the nucleotide level, but encoding an identical polypeptide). Genomic polymerase chain reaction using DNA from a single worm revealed that the single worm already had four sets of cDNAs. The EW29 protein showed two features. First, the lectin was composed of two homologous domains (14,500 Da) showing 27% identity with each other. When each of the domains was separately expressed in Escherichia coli, the C-terminal domain was found to bind to asialofetuin-agarose as strongly as the whole protein, whereas the N-terminal domain did not bind and only retardation was observed. EW29 was found to exist as a monomer under non-denaturing conditions. It had significant hemagglutinating activity, which was inhibited by a wide range of galactose-containing saccharides. Second, EW29 contained multiple short conserved motifs, "Gly-X-X-X-Gln-X-Trp." Similar motifs have been found in many carbohydrate-recognizing proteins from an extensive variety of organisms, e.g. plant lectin ricin B-chain and Clostridium botulinum 33-kDa hemagglutinin. Therefore, these carbohydrate-recognition proteins appear to form a protein superfamily.
Collapse
Affiliation(s)
- J Hirabayashi
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan.
| | | | | |
Collapse
|
20
|
Arata Y, Hirabayashi J, Kasai KI. Structure of the 32-kDa galectin gene of the nematode Caenorhabditis elegans. J Biol Chem 1997; 272:26669-77. [PMID: 9334250 DOI: 10.1074/jbc.272.42.26669] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Galectins are a family of soluble beta-galactoside-binding lectins distributed in both vertebrates and invertebrates and, more recently, found also in fungus. The 32-kDa galectin isolated from the nematode Caenorhabditis elegans (Hirabayashi, J., Satoh, M., and Kasai, K. (1992) J. Biol. Chem. 267, 15485-15490) was the first "tandem repeat-type" galectin, containing two homologous carbohydrate-binding sites. Here, we report the structure of the nematode 32-kDa galectin gene. Physical mapping by yeast artificial chromosome polytene filter hybridization revealed that the 32-kDa galectin gene is located on chromosome II. Analysis of the transcript (1.4 kilobases) showed the presence at its 5'-end of a 22-nucleotide trans-spliced leader sequence (SL1). The entire genomic structure spanning >5 kilobase pairs (kbp), including the 5'-noncoding region, two intervening sequences (introns 1 and 2), and the 3'-noncoding region, was completely determined by the combination of genomic polymerase chain reaction and conventional colony hybridization. Intron 1 was relatively long (2.4 kbp) and was found to be inserted after the ninth codon (TAC) from the initiation codon. This position proved to be almost homologous to the conserved first intron insertion position in the vertebrate galectin genes (i. e. genes of mammalian galectin-1, -2, and -3 and chick 14-kDa galectin). On the other hand, intron 2 was much shorter (0.6 kbp), and it was inserted into the central region of the second carbohydrate-binding site. Although such an insertion pattern has never been observed in the vertebrate galectin genes, it seems to be common in C. elegans tandem repeat-type galectin genes, as predicted by the C. elegans genome project (Coulson, A., and the C. elegans Genome Consortium (1996) Biochem. Soc. Trans. 24, 289-291). Based on extensive sequence comparison, the origin and molecular evolution of the tandem repeat-type galectins are discussed.
Collapse
Affiliation(s)
- Y Arata
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-01, Japan
| | | | | |
Collapse
|
21
|
Newton SE, Monti JR, Greenhalgh CJ, Ashman K, Meeusen EN. cDNA cloning of galectins from third stage larvae of the parasitic nematode Teladorsagia circumcincta. Mol Biochem Parasitol 1997; 86:143-53. [PMID: 9200121 DOI: 10.1016/s0166-6851(97)02834-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A monoclonal antibody raised to a Teladorsagia circumcincta 31-33 kDa doublet antigen was used to immunoscreen a T. circumcincta cDNA expression library. Sheep antibodies eluted from the proteins expressed by two clones immunopositive with the monoclonal antibody specifically recognised the doublet antigen on Western blots of third stage larval extract, confirming that these clones coded for the antigen. Database searches revealed high levels of similarity with beta-galactoside-binding lectin-like proteins (Ga1BPs or galectins) from Caenorhabditis elegans and Onchocerca volvulus. By analogy with these sequences, both T. circumcincta cDNA clones contain the full-length protein coding region. The native doublet proteins could be preferentially extracted from homogenates of third stage larvae with lactose and could be affinity purified on an asialofetuin column, confirming the identity of these bands as galectins. Reverse transcriptase-polymerase chain reaction amplification using a primer based on the C. elegans Spliced Leader SL1 sequence showed that the corresponding T. circumcincta mRNAs are also trans-spliced at their 5' ends. While there are considerable nucleotide differences between the two clones, the majority are located in the non-coding regions. Within the coding region there are 87 nucleotide differences but only three of these result in amino acid substitutions.
Collapse
Affiliation(s)
- S E Newton
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|