1
|
Dongre R, Folkers GE, Gualerzi CO, Boelens R, Wienk H. A model for the interaction of the G3-subdomain of Geobacillus stearothermophilus IF2 with the 30S ribosomal subunit. Protein Sci 2016; 25:1722-33. [PMID: 27364543 DOI: 10.1002/pro.2977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Abstract
Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet-tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2-30S interaction, is positioned between the GTP-binding G2 and the fMet-tRNA binding C-terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two β-sheets with each four anti-parallel strands, followed by a C-terminal α-helix. In line with its role as linker between G3 and subdomain C1, this helix has no well-defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB-fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA-binding modules such as IF2-C2, IF1 and subdomains II of elongation factors EF-Tu and EF-G. Structural comparisons have resulted in a model that describes the interaction between IF2-G3 and the 30S ribosomal subunit.
Collapse
Affiliation(s)
- Ramachandra Dongre
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Gert E Folkers
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Claudio O Gualerzi
- Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, Italy
| | - Rolf Boelens
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Hans Wienk
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| |
Collapse
|
2
|
Caserta E, Ferrara C, Milon P, Fabbretti A, Rocchetti A, Tomsic J, Pon CL, Gualerzi CO, La Teana A. Ribosomal interaction of Bacillus stearothermophilus translation initiation factor IF2: characterization of the active sites. J Mol Biol 2009; 396:118-29. [PMID: 19917289 DOI: 10.1016/j.jmb.2009.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/26/2022]
Abstract
InfB-encoded translation initiation factor IF2 contains a non-conserved N-terminal domain and two conserved domains (G and C) constituted by three (G1, G2 and G3) and two (C1 and C2) sub-domains. Here, we show that: (i) Bacillus stearothermophilus IF2 complements in vivo an Escherichia coli infB null mutation and (ii) the N-domain of B. stearothermophilus IF2, like that of E. coli IF2, provides a strong yet dispensable interaction with 30 S and 50 S subunits in spite of the lack of any size, sequence or structural homology between the N-domains of the two factors. Furthermore, the nature of the B. stearothermophilus IF2 sites involved in establishing the functional interactions with the ribosome was investigated by generating deletion, random and site-directed mutations within sub-domains G2 or G3 of a molecule carrying an H301Y substitution in switch II of the G2 module, which impairs the ribosome-dependent GTPase activity of IF2. By selecting suppressors of the dominant-lethal phenotype caused by the H301Y substitution, three independent mutants impaired in ribosome binding were identified; namely, S387P (in G2) and G420E and E424K (in G3). The functional properties of these mutants and those of the deletion mutants are compatible with the premise that IF2 interacts with 30 S and 50 S subunits via G3 and G2 modules, respectively. However, beyond this generalization, because the mutation in G2 resulted in a functional alteration of G3 and vice versa, our results indicate the existence of extensive "cross-talking" between these two modules, highlighting a harmonic conformational cooperation between G2 and G3 required for a functional interaction between IF2 and the two ribosomal subunits. It is noteworthy that the E424K mutant, which completely lacks GTPase activity, displays IF2 wild-type capacity in supporting initiation of dipeptide formation.
Collapse
Affiliation(s)
- Enrico Caserta
- Laboratory of Genetics, Department of Biology, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Qin H, Grigoriadou C, Cooperman BS. Interaction of IF2 with the ribosomal GTPase-associated center during 70S initiation complex formation. Biochemistry 2009; 48:4699-706. [PMID: 19366171 DOI: 10.1021/bi900222e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Addition of an Escherichia coli 50S subunit (50S(Cy5)) containing a Cy5-labeled L11 N-terminal domain (L11-NTD) within the GTPase-associated center (GAC) to an E. coli 30S initiation complex (30SIC(Cy3)) containing Cy3-labeled initiation factor 2 complexed with GTP leads to rapid development of a FRET signal during formation of the 70S initiation complex (70SIC). Initiation factor 2 (IF2) and elongation factor G (EF-G) induce similar changes in ribosome structure. Here we show that such similarities are maintained on a dynamic level as well. Thus, movement of IF2 toward L11-NTD after initial 70S ribosome formation follows GTP hydrolysis and precedes P(i) release, paralleling movement of EF-G following its binding to the ribosome [Seo, H., et al. (2006) Biochemistry 45, 2504-2514], and in both cases, the rate of such movement is slowed if GTP hydrolysis is prevented. The 30SIC(Cy3):50S(Cy5) FRET signal also provides a sensitive probe of the ability of initiation factor 3 to discriminate between a canonical and a noncanonical initiation codon during 70SIC formation. We employ Bacillus stearothermophilus IF2 as a substitute for E. coli IF2 to take advantage of the higher stability of the complexes it forms with E. coli ribosomes. While Bst-IF2 is fully functional in formation of E. coli 70SIC, relative reactivities toward dipeptide formation of 70SICs formed with the two IF2s suggest that the Bst-IF2.GDP complex is more difficult to displace from the GAC than the E. coli IF2.GDP complex.
Collapse
Affiliation(s)
- Haiou Qin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | |
Collapse
|
4
|
Kapralou S, Fabbretti A, Garulli C, Gualerzi CO, Pon CL, Spurio R. Characterization of Bacillus stearothermophilus infA and of its product IF1. Gene 2008; 428:31-5. [PMID: 18951960 DOI: 10.1016/j.gene.2008.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 11/28/2022]
Abstract
Bacillus stearothermophilus infA encoding translation initiation factor IF1 was cloned and expressed in Escherichia coli and its transcript and protein product characterized. Although the functional properties of B. stearothermophilus and E. coli IF1, compared in several translational tests in the presence of both homologous and heterologous components, are not entirely identical, the two proteins are interchangeable in an in vitro translational system programmed with a natural mRNA. The availability of purified B. stearothermophilus IF1 now allows us to analyze the translation initiation pathway using efficient in vitro tests based entirely on purified components derived from this thermophilic Gram-positive bacterium.
Collapse
Affiliation(s)
- Stavroula Kapralou
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, Camerino (MC), Italy
| | | | | | | | | | | |
Collapse
|
5
|
Maone E, Di Stefano M, Berardi A, Benelli D, Marzi S, La Teana A, Londei P. Functional analysis of the translation factor aIF2/5B in the thermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 2007; 65:700-13. [PMID: 17608795 PMCID: PMC1976387 DOI: 10.1111/j.1365-2958.2007.05820.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The protein IF2/eIF5B is one of the few translation initiation factors shared by all three primary domains of life (bacteria, archaea, eukarya). Despite its phylogenetic conservation, the factor is known to present marked functional divergences in the bacteria and the eukarya. In this work, the function in translation of the archaeal homologue (aIF2/5B) has been analysed in detail for the first time using a variety of in vitro assays. The results revealed that the protein is a ribosome-dependent GTPase which strongly stimulates the binding of initiator tRNA to the ribosomes even in the absence of other factors. In agreement with this finding, aIF2/5B enhances the translation of both leadered and leaderless mRNAs when expressed in a cell-free protein-synthesizing system. Moreover, the degree of functional conservation of the IF2-like factors in the archaeal and bacterial lineages was investigated by analysing the behaviour of 'chimeric' proteins produced by swapping domains between the Sulfolobus solfataricus aIF2/5B factor and the IF2 protein of the thermophilic bacterium Bacillus stearothermophilus. Beside evidencing similarities and differences between the archaeal and bacterial factors, these experiments have provided insight into the common role played by the IF2/5B proteins in all extant cells.
Collapse
Affiliation(s)
- Enzo Maone
- Dpt. of Biotecnologie Cellulari ed Ematologia, Università di Roma SapienzaViale Regina Elena 324 Roma, Italy.
| | - Michele Di Stefano
- Istituto di Biochimica, Università Politecnica delle MarcheVia Ranieri Ancona, Italy.
| | - Alessandra Berardi
- Dpt. of Biotecnologie Cellulari ed Ematologia, Università di Roma SapienzaViale Regina Elena 324 Roma, Italy.
| | - Dario Benelli
- DIBIFIM, Università di Bari, Piazzale Giulio CesareBari, Italy.
| | - Stefano Marzi
- Institut for de Biologie Moleculaire et Cellulare CNRS67084 Strasbourg Cedex, France.
| | - Anna La Teana
- Istituto di Biochimica, Università Politecnica delle MarcheVia Ranieri Ancona, Italy.
| | - Paola Londei
- Dpt. of Biotecnologie Cellulari ed Ematologia, Università di Roma SapienzaViale Regina Elena 324 Roma, Italy.
- DIBIFIM, Università di Bari, Piazzale Giulio CesareBari, Italy.
- For correspondence. E-mail ; Tel. (+39) 06 4462891; Fax (+39) 06 4462891
| |
Collapse
|
6
|
Marzi S, Knight W, Brandi L, Caserta E, Soboleva N, Hill WE, Gualerzi CO, Lodmell JS. Ribosomal localization of translation initiation factor IF2. RNA (NEW YORK, N.Y.) 2003; 9:958-69. [PMID: 12869707 PMCID: PMC1370462 DOI: 10.1261/rna.2116303] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 05/15/2003] [Indexed: 05/22/2023]
Abstract
Bacterial translation initiation factor IF2 is a GTP-binding protein that catalyzes binding of initiator fMet-tRNA in the ribosomal P site. The topographical localization of IF2 on the ribosomal subunits, a prerequisite for understanding the mechanism of initiation complex formation, has remained elusive. Here, we present a model for the positioning of IF2 in the 70S initiation complex as determined by cleavage of rRNA by the chemical nucleases Cu(II):1,10-orthophenanthroline and Fe(II):EDTA tethered to cysteine residues introduced into IF2. Two specific amino acids in the GII domain of IF2 are in proximity to helices H3, H4, H17, and H18 of 16S rRNA. Furthermore, the junction of the C-1 and C-2 domains is in proximity to H89 and the thiostrepton region of 23S rRNA. The docking is further constrained by the requisite proximity of the C-2 domain with P-site-bound tRNA and by the conserved GI domain of the IF2 with the large subunit's factor-binding center. Comparison of our present findings with previous data further suggests that the IF2 orientation on the 30S subunit changes during the transition from the 30S to 70S initiation complex.
Collapse
Affiliation(s)
- Stefano Marzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC) Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Tiennault-Desbordes E, Cenatiempo Y, Laalami S. Initiation factor 2 of Myxococcus xanthus, a large version of prokaryotic translation initiation factor 2. J Bacteriol 2001; 183:207-13. [PMID: 11114918 PMCID: PMC94867 DOI: 10.1128/jb.183.1.207-213.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have isolated the structural gene for translation initiation factor IF2 (infB) from the myxobacterium Myxococcus xanthus. The gene (3.22 kb) encodes a 1,070-residue protein showing extensive homology within its G domain and C terminus to the equivalent regions of IF2 from Escherichia coli. The protein cross-reacts with antibodies raised against E. coli IF2 and was able to complement an E. coli infB mutant. The M. xanthus protein is the largest IF2 known to date. This is essentially due to a longer N-terminal region made up of two characteristic domains. The first comprises a 188-amino-acid sequence consisting essentially of alanine, proline, valine, and glutamic acid residues, similar to the APE domain observed in Stigmatella aurantiaca IF2. The second is unique to M. xanthus IF2, is located between the APE sequence and the GTP binding domain, and consists exclusively of glycine, proline, and arginine residues.
Collapse
Affiliation(s)
- E Tiennault-Desbordes
- Institut de Biologie Moléculaire et d'Ingénierie Génétique, ESA CNRS 6031, Université de Poitiers, 86022 Poitiers Cedex, France
| | | | | |
Collapse
|
8
|
Krásný L, Vacík T, Fucík V, Jonák J. Cloning and characterization of the str operon and elongation factor Tu expression in Bacillus stearothermophilus. J Bacteriol 2000; 182:6114-22. [PMID: 11029432 PMCID: PMC94746 DOI: 10.1128/jb.182.21.6114-6122.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete primary structure of the str operon of Bacillus stearothermophilus was determined. It was established that the operon is a five-gene transcriptional unit: 5'-ybxF (unknown function; homology to eukaryotic ribosomal protein L30)-rpsL (S12)-rpsG (S7)-fus (elongation factor G [EF-G])-tuf (elongation factor Tu [EF-Tu])-3'. The main operon promoter (strp) was mapped upstream of ybxF, and its strength was compared with the strength of the tuf-specific promoter (tufp) located in the fus-tuf intergenic region. The strength of the tufp region to initiate transcription is about 20-fold higher than that of the strp region, as determined in chloramphenicol acetyltransferase assays. Deletion mapping experiments revealed that the different strengths of the promoters are the consequence of a combined effect of oppositely acting cis elements, identified upstream of strp (an inhibitory region) and tufp (a stimulatory A/T-rich block). Our results suggest that the oppositely adjusted core promoters significantly contribute to the differential expression of the str operon genes, as monitored by the expression of EF-Tu and EF-G.
Collapse
Affiliation(s)
- L Krásný
- Department of Protein Biosynthesis, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 166 37 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
9
|
Gaurivaud P, Laigret F, Garnier M, Bove JM. Fructose utilization and pathogenicity of Spiroplasma citri: characterization of the fructose operon. Gene 2000; 252:61-9. [PMID: 10903438 DOI: 10.1016/s0378-1119(00)00230-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transposon Tn4001 mutagenesis of Spiroplasma citri wild-type (wt) strain GII-3 led to the isolation and characterization of non-phytopathogenic mutant GMT 553. In this mutant, transposon Tn4001 is inserted within the first gene of the fructose operon. This operon comprises three genes. The first gene (fruR) codes for a putative transcriptional regulator protein belonging to the deoxyribonucleoside repressor (DeoR) family. Sequence similarities and functional complementation of mutant GMT 553 with different combinations of the wt genes of the fructose operon showed that the second gene (fruA) codes for the permease of the phosphoenolpyruvate:fructose phosphotransferase system (fructose PTS), and the third, fruK, for the 1-phosphofructokinase (1-PFK). Transcription of the fructose operon in wt strain GII-3 resulted in two messenger RNAs, one of 2.8kb and one of 3.8kb. Insertion of Tn4001 in the genome of mutant GMT 553 abolished transcription of the fructose operon, and resulted in the inability of this mutant to use fructose. Functional complementation experiments demonstrated that fructose utilization was restored with fruR-fruA-fruK, fruA-fruK or fruA only, but not with fruR or fruR-fruA. This is the first time that an operon for sugar utilization has been functionally characterized in the mollicutes.
Collapse
Affiliation(s)
- P Gaurivaud
- Laboratoire de Biologie Cellulaire et Moléculaire, Institut de Biologie Végétale Moléculaire, Institut National de la Recherche Agronomique, Université Victor Segalen Bordeaux 2, 71 avenue Edouard Bourleaux, Cedex, France
| | | | | | | |
Collapse
|
10
|
Hedegaard J, Hauge M, Fage-Larsen J, Mortensen KK, Kilian M, Sperling-Petersen HU, Poulsen K. Investigation of the translation-initiation factor IF2 gene, infB, as a tool to study the population structure of Streptococcus agalactiae. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 7):1661-1670. [PMID: 10878130 DOI: 10.1099/00221287-146-7-1661] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sequence of infB, encoding the prokaryotic translation-initiation factor 2 (IF2), was determined in eight strains of Streptococcus agalactiae (group B streptococcus) and an alignment revealed limited intraspecies diversity within S. agalactiae. The amino acid sequence of IF2 from S. agalactiae and from related species were aligned and revealed an interspecies conserved central and C-terminal part, and an N-terminal part that is highly variable in length and amino acid sequence. The diversity and relationships in a collection of 58 genetically distinct strains of S. agalactiae were evaluated by comparing a partial sequence of infB. A total of six alleles were detected for the region of infB analysed. The alleles correlated with the separation of the same strains of S. agalactiae into major evolutionary lineages, as shown in previous work. The partial sequences of infB were furthermore used in phylogenetic analyses of species closely related to S. agalactiae, yielding an evolutionary tree which had a topology similar to a tree constructed using 16S rRNA sequences from the same species.
Collapse
Affiliation(s)
- Jakob Hedegaard
- Department of Biostructural Chemistry, Institute of Molecular and Structural Biology, Aarhus University, Gustav Wiedsvej 10C, DK-8000 Aarhus C, Denmark1
| | - Majbritt Hauge
- Department of Medical Microbiology and Immunology, The Bartholin Building, Aarhus University, DK-8000 Aarhus C, Denmark2
| | - Jeppe Fage-Larsen
- Department of Biostructural Chemistry, Institute of Molecular and Structural Biology, Aarhus University, Gustav Wiedsvej 10C, DK-8000 Aarhus C, Denmark1
| | - Kim Kusk Mortensen
- Department of Biostructural Chemistry, Institute of Molecular and Structural Biology, Aarhus University, Gustav Wiedsvej 10C, DK-8000 Aarhus C, Denmark1
| | - Mogens Kilian
- Department of Medical Microbiology and Immunology, The Bartholin Building, Aarhus University, DK-8000 Aarhus C, Denmark2
| | - Hans Uffe Sperling-Petersen
- Department of Biostructural Chemistry, Institute of Molecular and Structural Biology, Aarhus University, Gustav Wiedsvej 10C, DK-8000 Aarhus C, Denmark1
| | - Knud Poulsen
- Department of Medical Microbiology and Immunology, The Bartholin Building, Aarhus University, DK-8000 Aarhus C, Denmark2
| |
Collapse
|
11
|
Spurio R, Brandi L, Caserta E, Pon CL, Gualerzi CO, Misselwitz R, Krafft C, Welfle K, Welfle H. The C-terminal subdomain (IF2 C-2) contains the entire fMet-tRNA binding site of initiation factor IF2. J Biol Chem 2000; 275:2447-54. [PMID: 10644698 DOI: 10.1074/jbc.275.4.2447] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous protein unfolding studies had suggested that IF2 C, the 24. 5-kDa fMet-tRNA binding domain of Bacillus stearothermophilus translation initiation factor IF2, may consist of two subdomains. In the present work, the four Phe residues of IF2 C (positions 531, 599, 657, and 721) were replaced with Trp, yielding four variant proteins having intrinsic fluorescence markers in different positions of the molecule. Comparison of the circular dichroism and Trp fluorescence changes induced by increasing concentrations of guanidine hydrochloride demonstrated that IF2 C indeed consists of two subdomains: the more stable N-terminal (IF2 C-1) subdomain containing Trp-599, and the less stable C-terminal (IF2 C-2) subdomain containing Trp-721. Isolated subdomain IF2 C-2, which consists of just 110 amino acids (from Glu-632 to Ala-741), was found to bind fMet-tRNA with the same specificity and affinity as native IF2 or IF2 C-domain. Trimming IF2 C-2 from both N and C termini demonstrated that the minimal fragment still capable of fMet-binding consists of 90 amino acids. IF2 C-2 was further characterized by circular dichroism; by urea-, guanidine hydrochloride-, and temperature-induced unfolding; and by differential scanning calorimetry. The results indicate that IF2 C-2 is a globular molecule containing predominantly beta structures (25% antiparallel and 8% parallel beta strands) and turns (19%) whose structural properties are not grossly affected by the presence or absence of the N-terminal subdomain IF2 C-1.
Collapse
Affiliation(s)
- R Spurio
- Laboratory of Genetics, Department of Biology, University of Camerino, Camerino 62032, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
McCutcheon JP, Agrawal RK, Philips SM, Grassucci RA, Gerchman SE, Clemons WM, Ramakrishnan V, Frank J. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc Natl Acad Sci U S A 1999; 96:4301-6. [PMID: 10200257 PMCID: PMC16327 DOI: 10.1073/pnas.96.8.4301] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The location of translational initiation factor IF3 bound to the 30S subunit of the Thermus thermophilus ribosome has been determined by cryoelectron microscopy. Both the 30S.IF3 complex and control 30S subunit structures were determined to 27-A resolution. The difference map calculated from the two reconstructions reveals three prominent lobes of positive density. The previously solved crystal structure of IF3 fits very well into two of these lobes, whereas the third lobe probably arises from conformational changes induced in the 30S subunit as a result of IF3 binding. Our placement of IF3 on the 30S subunit allows an understanding in structural terms of the biochemical functions of this initiation factor, namely its ability to dissociate 70S ribosomes into 30S and 50S subunits and the preferential selection of initiator tRNA by IF3 during initiation.
Collapse
Affiliation(s)
- J P McCutcheon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Vornlocher HP, Kreutzer R, Sprinzl M. Organization of the Thermus thermophilus nusA/infB operon and overexpression of the infB gene in Escherichia coli. Biochimie 1997; 79:195-203. [PMID: 9242984 DOI: 10.1016/s0300-9084(97)83506-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The structural gene for translation initiation factor IF2 from Thermus thermophilus was identified on the basis of the N-terminal amino acid sequence of intact T thermophilus IF2 and an internal 25 kDa IF2 fragment. A total of 5135 bp was cloned and sequenced, comprising the open reading frames for p15A, NusA, p10A, IF2, p10B and SecD, which may form an operon. There are pronounced similarities between the operon arrangement and primary sequence of the T thermophilus genes and proteins, respectively, and their counterparts from other organisms. The T thermophilus infB gene was expressed to a high level in E coli. Four hundred milligrams of homogenous T thermophilus IF2 were prepared from 60 g of overproducing cells.
Collapse
Affiliation(s)
- H P Vornlocher
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | |
Collapse
|
14
|
Bremaud L, Laalami S, Derijard B, Cenatiempo Y. Translation initiation factor IF2 of the myxobacterium Stigmatella aurantiaca: presence of a single species with an unusual N-terminal sequence. J Bacteriol 1997; 179:2348-55. [PMID: 9079922 PMCID: PMC178973 DOI: 10.1128/jb.179.7.2348-2355.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The structural gene for translation initiation factor IF2 (infB) was isolated from the myxobacterium Stigmatella aurantiaca on a 5.18-kb BamHI genomic restriction fragment. The infB gene (ca. 3.16 kb) encodes a 1,054-residue polypeptide with extensive homology within its G domain and C terminus with the equivalent regions of IF2s from Escherichia coli, Bacillus subtilis, Bacillus stearothermophilus, and Streptococcus faecium. The N-terminal region does not display any significant homology to other known proteins. The S. aurantiaca infB gene encodes a single protein which cross-reacted with antiserum to E. coli IF2 and was able to complement an E. coli infB mutant. The S. aurantiaca IF2 is distinguished from all other IF2s by a sequence of 160 residues near the N terminus that has an unusual composition, made up essentially of alanine, proline, valine, and glutamic acid. Within this sequence, the pattern PXXXAP is repeated nine times. Complete deletion of this sequence did not affect the factor's function in initiation of translation and even increased its capacity to complement the E. coli infB mutant.
Collapse
Affiliation(s)
- L Bremaud
- Institut de Biologie Moléculaire et d'Ingénierie Génétique, URA CNRS 1172, Université de Poitiers, France
| | | | | | | |
Collapse
|
15
|
Misselwitz R, Welfe K, Krafft C, Gualerzi CO, Welfle H. Translational initiation factor IF2 from Bacillus stearothermophilus: a spectroscopic and microcalorimetric study of the C-domain. Biochemistry 1997; 36:3170-8. [PMID: 9115993 DOI: 10.1021/bi962613n] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Conformation and stability of the C-terminal domain of initiation factor IF2 from Bacillus stearothermophilus were analyzed by circular dichroism, fluorescence and Raman spectroscopy, and microcalorimetry under different solvent conditions. From circular dichroism and Raman measurements, IF2C at neutral pH can be classified as an alpha + beta protein. Solvent perturbation and Raman spectroscopy indicate a high accessibility of the tyrosine residues in the native protein. The Gdn/HCl-induced unfolding of IF2C was monitored by circular dichroism. IF2C unfolding at neutral pH proceeds in two discrete steps. The midpoints (c(m)) and the free energy of unfolding (deltaG(u)H2O) of the first and second transition are 2.05 M and 6.2 kcal x mol(-1) and 4.1 M and 12.9 kcal x mol(-1), respectively. ANS does not bind to the stable intermediate formed at 3 M Gdn/HCl. It seems likely that IF2C is composed of two subdomains which unfold in a stepwise process. Melting experiments at pH 7.0 are impaired by irreversible aggregation at higher temperatures. However, in Gdn/HCl containing buffer at denaturant concentrations up to 1.5 M the melting becomes a reversible process and can be analyzed by differential scanning calorimetry. At Gdn/HCl concentrations between 1.0 and 1.5 M, IF2C seems to be composed of two folding units with Tm values of about 60 and 78 degrees C and folding enthalpy values (deltaHm) of about 37 and 58 kcal x mol(-1). At pH values below pH 3.0, IF2C can adopt a new acid-induced conformation, which is characterized by a high secondary structure content and a strong ANS binding. The Gdn/HCl-induced unfolding of IF2C at pH 2.6 takes place only in one discrete step with a midpoint c(m) of 3.3 M and a deltaG(AUa)H2O of 11.9 kcal x mol(-1).
Collapse
Affiliation(s)
- R Misselwitz
- Institute of Biochemistry, Medical Faculty (Charite), Humboldt University, Berlin, Germany
| | | | | | | | | |
Collapse
|
16
|
Wu XQ, RajBhandary UL. Effect of the amino acid attached to Escherichia coli initiator tRNA on its affinity for the initiation factor IF2 and on the IF2 dependence of its binding to the ribosome. J Biol Chem 1997; 272:1891-5. [PMID: 8999877 DOI: 10.1074/jbc.272.3.1891] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We show that the nature of the amino acid in the formylaminoacyl-tRNA influences initiation factor (IF) 2 dependence of its ribosome binding and that this IF2 dependence reflects the relative affinity of the formylaminoacyl-tRNA for the initiation factor IF2. We compared the template-dependent ribosome binding activities, in the presence of initiation factors, of wild type and anticodon sequence mutants of Escherichia coli initiator tRNAs that carry formylmethionine (fMet), formylglutamine (fGln), or formylvaline (fVal). The fGln-tRNA bound less well than fMet-tRNA whereas the fVal-tRNA bound as well as fMet-tRNA. The rate and extent of binding of fGln-tRNA to the ribosome was significantly increased by further addition of purified initiation factor IF2. In contrast, the binding of fVal-tRNA or fMet-tRNA was not affected much by the addition of IF2. Using gel mobility shift assay, we have measured the apparent Kd values of the IF2.formylaminoacyl-tRNA binary complexes. These are 1.8, 3.5, and 10.5 microM for fMet-tRNA, fVal-tRNA, and fGln-tRNA, respectively.
Collapse
Affiliation(s)
- X Q Wu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
17
|
Vornlocher HP, Scheible WR, Faulhammer HG, Sprinzl M. Identification and purification of translation initiation factor 2 (IF2) from Thermus thermophilus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:66-71. [PMID: 9030723 DOI: 10.1111/j.1432-1033.1997.66_1a.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Translation initiation factor 2 (IF2) is one of three protein factors required for initiation of protein synthesis in eubacteria. The protein is responsible for binding the initiator RNA to the ribosomal P site. IF2 is a member of the GTP GDP-binding protein superfamily. In the extreme thermophilic bacterium Thermus thermophilus, IF2 was identified as a 66-kDa protein by affinity labeling and immunoblotting. The protein was purified to homogeneity. The specific activity indicates a stoichiometric IF2-mediated binding of formylmethionine-tRNA to 70S ribosomes. The N-terminal amino acid sequences of the intact protein and of two proteolytic fragments of 25 kDa and 40 kDa were determined. Comparison with other bacterial IF2 sequences indicates a similar domain architecture in all bacterial IF2 proteins.
Collapse
Affiliation(s)
- H P Vornlocher
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | | | |
Collapse
|
18
|
Ma L, Spremulli LL. Cloning and sequence analysis of the human mitochondrial translational initiation factor 2 cDNA. J Biol Chem 1995; 270:1859-65. [PMID: 7829522 DOI: 10.1074/jbc.270.4.1859] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Complete cDNAs encoding human mitochondrial translational initiation factor 2 (IF-2mt) have been obtained from liver, heart, and fetal brain cDNA libraries. These cDNAs have a long open reading frame 2181 residues in length encoding a protein of 727 amino acids. Overall, human IF-2mt has 30-40% identity to the corresponding prokaryotic factors. Surprisingly, it is no more homologous to yeast IF-2mt than to the IF-2s from bacterial sources. The greatest region of conservation lies in the G-domain of this factor with less conservation in the COOH-terminal half of the protein and very little homology near the amino terminus. The 5'-untranslated leaders of the liver and heart cDNAs contain a number of short open reading frames. These sequences may play a role in the translational activity of the IF-2mt mRNA. Northern analysis indicates that the IF-2mt gene is expressed in all tissues but that the level of expression varies over a wide range.
Collapse
Affiliation(s)
- L Ma
- Department of Chemistry, University of North Carolina, Chapel Hill 27599
| | | |
Collapse
|
19
|
Kostrzewa M, Zetsche K. Organization of plastid-encoded ATPase genes and flanking regions including homologues of infB and tsf in the thermophilic red alga Galdieria sulphuraria. PLANT MOLECULAR BIOLOGY 1993; 23:67-76. [PMID: 8219057 DOI: 10.1007/bf00021420] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have cloned and sequenced the plastid ATPase operons (atp1 and atp2) and flanking regions from the unicellular red alga Galdieria sulphuraria (Cyanidium caldarium). Six genes (5 atpI, H, G, F, D and A 3) are linked in atp1 encoding ATPase subunits a, c, b, b, delta and alpha, respectively. The atpF gene does not contain an intron and overlaps atpD by 1 bp. As in the genome of chloroplasts from land plants, the cluster is located downstream of rps2, but between this gene and atp1 we found the gene for the prokaryotic translation elongation factor TS. Downstream of atpA, we detected two open reading frames, one encoding a putative transport protein. The genes atpB and atpE, encoding ATPase subunits beta and epsilon, respectively, are linked in atp2, separated by a 2 bp spacer. Upstream of atpB, an uninterrupted orf167 was detected which is homologous to an intron-containing open reading frame in land plant chloroplasts. This orf167 is preceded on the opposite DNA strand by a homologue to initiation factor 2 in prokaryotes. The arrangement of atp1 and atp2 is the same as observed in the multicellular red alga Antithamnion sp., indicating a conserved genome arrangement in the red algal plastid genome. Differences compared to green chloroplast genomes suggest a large phylogenetic distance between red algae and green plants, while similarities in arrangement and sequence to chromophytic ATPase operons support a red algal origin of chlorophyll a/c-containing plastids or alternatively point to a common prokaryotic endosymbiont.
Collapse
Affiliation(s)
- M Kostrzewa
- Institut für Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany
| | | |
Collapse
|
20
|
Shazand K, Tucker J, Grunberg-Manago M, Rabinowitz JC, Leighton T. Similar organization of the nusA-infB operon in Bacillus subtilis and Escherichia coli. J Bacteriol 1993; 175:2880-7. [PMID: 8491709 PMCID: PMC204605 DOI: 10.1128/jb.175.10.2880-2887.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We reported previously the cloning and sequence of the Bacillus subtilis infB gene which encodes the essential IF2 factor required for initiation of translation (K. Shazand, J. Tucker, R. Chiang, K. Stansmore, H. U. Sperling-Petersen, M. Grunberg-Manago, J. C. Rabinowitz, and T. Leighton, J. Bacteriol. 172:2675-2687, 1990). The location of the 5' border of the infB operon was investigated by using integrative plasmids carrying various DNA fragments from the region upstream of the infB gene. The lethal effect of disruption of the infB transcriptional unit could be suppressed when the integrated plasmid introduced the spac promoter upstream of the infB operon and transformants were selected in conditions of induction of spac expression. Such an integrated plasmid was used as a starting point to clone the promoter of the infB operon. Primer extension mapping suggests that a single sigma A-type promoter controls transcription of the infB operon. The sequence of a 5,760-bp region encompassing the infB gene was determined. The infB operon is located immediately downstream of the polC gene and comprises seven open reading frames, four of which appear to be the homologs of genes present in the same order in the Escherichia coli infB operon, including nusA. The striking similarity between the E. coli and B. subtilis infB operons suggests that the function of each gene pair is conserved and that the B. subtilis NusA homolog, which is 124 residues shorter than its E. coli counterpart, could play a role similar to its role in E. coli.
Collapse
Affiliation(s)
- K Shazand
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | |
Collapse
|
21
|
Hubert M, Nyengaard NR, Shazand K, Mortensen KK, Lassen SF, Grunberg-Manago M, Sperling-Petersen HU. Tandem translation of Bacillus subtilis initiation factor IF2 in E. coli. Over-expression of infBB.su in E. coli and purification of alpha- and beta-forms of IF2B.su. FEBS Lett 1992; 312:132-8. [PMID: 1426242 DOI: 10.1016/0014-5793(92)80920-c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The protein synthesis initiation factor, IF2, in Bacillus subtilis has previously been characterized as being present in two forms, alpha and beta, of molecular mass 79 and 68 kDa, respectively, on the basis of their cross-reaction with anti-E. coli IF2 antibodies and by the DNA sequence of the gene for IF2, infBB.su. In this work we have cloned infBB.su in E. coli cells. Two proteins of molecular mass identical to the B. subtilis IF2 alpha and -beta were over-expressed and purified using a new three-step ion-exchange chromatography procedure. The N-terminal amino acid sequence of the two proteins was determined and the results confirmed that the two forms were IF2 alpha and -beta, both encoded by the infB gene. The N-terminal amino acid sequence determined for IF2 beta is Met94-Gln-Asn-Asn-Gln-Phe. The presence of methionine at position 94 shows that this form is, in fact, the result of a second translational initiation in infBB.su mRNA, since the codon at amino acid position 94 is GUG, which is the normal codon for valine, but also known to be an initiator codon. This is a new example of the unusual tandem translation in E. coli of an open mRNA reading frame.
Collapse
Affiliation(s)
- M Hubert
- Department of Chemistry, Aarhus University, Denmark
| | | | | | | | | | | | | |
Collapse
|
22
|
Su YA, He P, Clewell DB. Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob Agents Chemother 1992; 36:769-78. [PMID: 1323953 PMCID: PMC189400 DOI: 10.1128/aac.36.4.769] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The nucleotide sequence of the tetracycline resistance determinant tet(M), located on conjugative transposon Tn916 of Enterococcus faecalis, was determined and found to encode a 72,486-dalton protein exhibiting a high degree of homology with other tet(M) determinants. A short open reading frame corresponding to a 28-amino-acid peptide and containing a number of inverted repeat sequences was noted immediately upstream of tet(M), suggesting that regulation might occur by a mechanism involving transcriptional attenuation. Transcription analyses found this to indeed be the case, showing that the expression of tet(M) resulted from an extension of a small transcript representing the upstream leader region into the resistance determinant. Exposure of cells to tetracycline resulted in a significant increase in the amount of tet(M) transcription; this increase could be explained on the basis of increased transcriptional read-through from the upstream transcript. A model suggesting how transcriptional attenuation might operate in this system is presented.
Collapse
Affiliation(s)
- Y A Su
- Department of Biologic Science, School of Dentistry, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
23
|
Severini M, Choli T, La Teana A, Gualerzi CO. Proteolysis of Bacillus stearothermophilus IF2 and specific protection by fMet-tRNA. FEBS Lett 1992; 297:226-8. [PMID: 1544401 DOI: 10.1016/0014-5793(92)80543-p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Translation initiation factor IF2 from Bacillus stearothermophilus (741 amino acids, Mr 82,043) was subjected to trypsinolysis alone or in the presence of fMet-tRNA. The initiator tRNA was found to protect very efficiently the Arg308-Ala309 bond within the GTP binding site of IF2 and, more weakly, three bonds (Lys146-Gln147, Lys154-Glu155 and Arg519-Ser520). The first two are located at the border between the non-conserved, dispensable (for translation) N-terminal portion and the conserved G-domain of the protein, the third is located at the border between the G- and C-domains. Since IF2 is known to interact with fMet-tRNA through its protease-resistant C- (carboxyl terminus) domain, the observed protection suggests that, upon binding of fMet-tRNA, long-distance tertiary interactions between the IF2 domains may take place.
Collapse
Affiliation(s)
- M Severini
- Department of Biology, University of Camerino, Italy
| | | | | | | |
Collapse
|
24
|
Severini M, Spurio R, La Teana A, Pon C, Gualerzi C. Ribosome-independent GTPase activity of translation initiation factor IF2 and of its G-domain. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54424-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Gualerzi C, Severini M, Spurio R, La Teana A, Pon C. Molecular dissection of translation initiation factor IF2. Evidence for two structural and functional domains. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55305-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Laalami S, Putzer H, Plumbridge JA, Grunberg-Manago M. A severely truncated form of translational initiation factor 2 supports growth of Escherichia coli. J Mol Biol 1991; 220:335-49. [PMID: 1830345 DOI: 10.1016/0022-2836(91)90017-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have constructed strains carrying null mutations in the chromosomal copy of the gene for translational initiation factor (IF) 2 (infB). A functional copy of the infB gene is supplied in trans by a thermosensitive lysogenic lambda phage integrated at att lambda. These strains enabled us to test in vivo the importance of different structural elements of IF2 expressed from genetically engineered plasmid constructs. We found that, as expected, the gene for IF2 is essential. However, a protein consisting of the C-terminal 55,000 Mr fragment of the wild-type IF2 protein is sufficient to allow growth when supplied in excess. This result suggests that the catalytic properties are localized in the C-terminal half of the protein, which includes the G-domain, and that this fragment is sufficient to complement the IF2 deficiency in the infB deletion strain.
Collapse
Affiliation(s)
- S Laalami
- Institut de Biologie Physico-Chimique, URA 1139, Paris, France
| | | | | | | |
Collapse
|
27
|
Ramakrishnan V, Gerchman SE. Cloning, sequencing, and overexpression of genes for ribosomal proteins from Bacillus stearothermophilus. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(17)35255-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Severini M, Choli T, La Teana A, Gualerzi CO. Proteolysis of Bacillus stearothermophilus IF2 and specific protection by GTP. FEBS Lett 1990; 276:14-6. [PMID: 2265694 DOI: 10.1016/0014-5793(90)80495-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Translation initiation factor IF2 from Bacillus stearothermophilus (741 amino acids, Mr = 82,043) was subjected to trypsinolysis alone or in the presence of GTP. Following electroblotting and automated amino acid sequencing of the resulting peptides, the location and the sequential order of the main cleavage sites were identified. Trypsinolysis of IF2 ultimately generates two compact domains: a 24.5 kDa C-terminal fragment and a 40 kDa G-fragment which is obtained only in the presence of GTP which strongly protects a cleavage site within the GTP binding domain.
Collapse
Affiliation(s)
- M Severini
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | |
Collapse
|
29
|
Krömer WJ, Hatakeyama T, Kimura M. Nucleotide sequences of Bacillus stearothermophilus ribosomal protein genes: part of the ribosomal S10 operon. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1990; 371:631-6. [PMID: 2222862 DOI: 10.1515/bchm3.1990.371.2.631] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Restriction fragments from Bacillus stearothermophilus chromosomal DNA were cross-hybridized with the Escherichia coli ribosomal protein L2 gene rplB. A 2-kb EcoRI fragment which showed cross-hybridization was cloned into the M13 phage and sequenced by the dideoxy chain-terminating method. Comparison of the deduced amino-acid sequences with the corresponding sequences of E. coli ribosomal proteins showed that this fragment contains the region encoding the C-terminus of L2, the genes encoding S19, L22, S3 as well as the N-terminus of L16. Thus the organization of this gene cluster is the same as that in the S10 operon of E. coli. The deduced sequences of proteins L22 and S3, which have not been determined so far, were found to have 52% or 55% amino-acid identity, respectively, with those of the corresponding proteins in E. coli. The deduced B. stearothermophilus S19 protein sequence was in accordance with the reinvestigated protein sequence (H. Hirano, personal communication).
Collapse
Affiliation(s)
- W J Krömer
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin
| | | | | |
Collapse
|
30
|
Shazand K, Tucker J, Chiang R, Stansmore K, Sperling-Petersen HU, Grunberg-Manago M, Rabinowitz JC, Leighton T. Isolation and molecular genetic characterization of the Bacillus subtilis gene (infB) encoding protein synthesis initiation factor 2. J Bacteriol 1990; 172:2675-87. [PMID: 2110148 PMCID: PMC208912 DOI: 10.1128/jb.172.5.2675-2687.1990] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Western blot (immunoblot) analysis of Bacillus subtilis cell extracts detected two proteins that cross-reacted with monospecific polyclonal antibody raised against Escherichia coli initiation factor 2 alpha (IF2 alpha). Subsequent Southern blot analysis of B. subtilis genomic DNA identified a 1.3-kilobase (kb) HindIII fragment which cross-hybridized with both E. coli and Bacillus stearothermophilus IF2 gene probes. This DNA was cloned from a size-selected B. subtilis plasmid library. The cloned HindIII fragment, which was shown by DNA sequence analysis to encode the N-terminal half of the B. subtilis IF2 protein and 0.2 kb of upstream flanking sequence, was utilized as a homologous probe to clone an overlapping 2.76-kb ClaI chromosomal fragment containing the entire IF2 structural gene. The HindIII fragment was also used as a probe to obtain overlapping clones from a lambda gt11 library which contained additional upstream and downstream flanking sequences. Sequence comparisons between the B. subtilis IF2 gene and the other bacterial homologs from E. coli, B. stearothermophilus, and Streptococcus faecium displayed extensive nucleic acid and protein sequence homologies. The B. subtilis infB gene encodes two proteins, IF2 alpha (78.6 kilodaltons) and IF2 beta (68.2 kilodaltons); both were expressed in B. subtilis and E. coli. These two proteins cross-reacted with antiserum to E. coli IF2 alpha and were able to complement in vivo an E. coli infB gene disruption. Four-factor recombination analysis positioned the infB gene at 145 degrees on the B. subtilis chromosome, between the polC and spcB loci. This location is distinct from those of the other major ribosomal protein and rRNA gene clusters of B. subtilis.
Collapse
Affiliation(s)
- K Shazand
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pon CL, Brombach M, Thamm S, Gualerzi CO. Cloning and characterization of a gene cluster from Bacillus stearothermophilus comprising infC, rpmI and rplT. MOLECULAR & GENERAL GENETICS : MGG 1989; 218:355-7. [PMID: 2779520 DOI: 10.1007/bf00331290] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using two synthetic deoxyribonucleotide probes encoding segments of the primary structure of initiation factor IF3 from Bacillus stearothermophilus, we identified and cloned a segment of DNA which carries the infC gene. As in Escherichia coli, the infC gene begins with the unusual initiation triplet AUU, and is followed by the structural genes for ribosomal proteins L35 and L20 (rpmI and rplT, respectively).
Collapse
Affiliation(s)
- C L Pon
- Max-Planck-Institut für Molekulare Genetik, Abt. Wittmann, Berlin
| | | | | | | |
Collapse
|
32
|
Friedrich K, Brombach M, Pon CL. Identification, cloning and sequence of the Streptococcus faecium infB (translational initiation factor IF2) gene. MOLECULAR & GENERAL GENETICS : MGG 1988; 214:595-600. [PMID: 3063954 DOI: 10.1007/bf00330501] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The structural gene for translational initiation factor IF2 (infB) from Streptococcus faecium was identified by cross-hybridization with DNA probes derived from the corresponding gene of Bacillus stearothermophilus. The entire infB gene (ca. 2.8 kb) was cloned and sequenced. The amino acid sequence deduced from the nucleotide sequence shows that S. faecium initiation factor IF2 (785 amino acids, Mr 86,415) displays extensive homology (ca. 69% and 53%) with the region comprising three-quarters of the molecule from the carboxy-terminus of B. stearothermophilus and Escherichia coli IF2, respectively. The region comprising one-quarter of the molecule from the amino-terminus, on the other hand, does not display any significant homology.
Collapse
Affiliation(s)
- K Friedrich
- Max-Planck-Institut für Molekulare Genetik, Abt. Wittmann, Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
33
|
Pon CL, Calogero RA, Gualerzi CO. Identification, cloning, nucleotide sequence and chromosomal map location of hns, the structural gene for Escherichia coli DNA-binding protein H-NS. MOLECULAR & GENERAL GENETICS : MGG 1988; 212:199-202. [PMID: 2841565 DOI: 10.1007/bf00334684] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Beginning with a synthetic oligonucleotide probe derived from its amino acid sequence, we have identified, cloned and sequenced the hns gene encoding H-NS, an abundant Escherichia coli 15 kDa DNA-binding protein with a possible histone-like function. The amino acid sequence of the protein deduced from the nucleotide sequence is in full agreement with that determined for H-NS. By comparison of the restriction map of the cloned gene and of its neighboring regions with the physical map of E. coli K12 as well as by hybridization of the hns gene with restriction fragments derived from the total chromosome, we have located the hns gene oriented counterclockwise at 6.1 min on the E. coli chromosome, just before an IS30 insertion element.
Collapse
Affiliation(s)
- C L Pon
- Max-Planck-Institut für Molekulare Genetik, Abt. Wittmann, Berlin
| | | | | |
Collapse
|
34
|
Calogero RA, Pon CL, Gualerzi CO. Chemical synthesis and in vivo hyperexpression of a modular gene coding for Escherichia coli translational initiation factor IF1. MOLECULAR & GENERAL GENETICS : MGG 1987; 208:63-9. [PMID: 3302613 DOI: 10.1007/bf00330423] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An artificial gene encoding the Escherichia coli translational initiation factor IF1 was synthesized based on the primary structure (71 amino acid residues) of the protein. Codons for individual amino acids were selected on the basis of the preferred codon usage found in the structural genes for the initiation factor IF2 of E. coli and Bacillus stearothermophilus, both of which can be expressed at high levels in E. coli cells. We gave the IF1 gene a modular structure by introducing specific restriction enzyme sites into the sequence, resulting in units of three to ten codons. This was conceived to facilitate site-directed mutagenesis of the gene and thus to obtain IF1 with specific amino acid alterations at desired positions. The IF1 gene was assembled by shot-gun ligation of 9 synthetic oligodeoxyribonucleotides ranging in size from 31 to 65 nucleotides and cloned into an expression vector to place the gene under the control of an inducible promoter. Upon induction, E. coli cells harbouring the artificial gene were found to produce large amounts (greater than or equal to 60 mg/100 g cells) of a protein indistinguishable from natural IF1 in both chemical and biological properties.
Collapse
|
35
|
Brombach M, Pon CL. The unusual translational initiation codon AUU limits the expression of the infC (initiation factor IF3) gene of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1987; 208:94-100. [PMID: 3302616 DOI: 10.1007/bf00330428] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The expression of infC, the structural gene for translational initiation factor IF3, has been studied in different constructs under the control of the lambda PL and tac promoters. The amount of synthesized IF3 has been determined by a quantitative functional test and the levels of IF3-specific mRNA have been estimated. The synthesis of IF3 is strongly enhanced when the unusual AUU initiation codon is changed to AUG by site-directed mutagenesis. Removal of the sequence upstream from the start codon including most of the Shine-Dalgarno sequence, as well as part of a 10 bp region with potential complementarity to an internal region of the 16S rRNA, which is unique to the IF3 mRNA, reduced but did not completely abolish the high expression of infC obtained after introduction of the AUG initiation codon. The level of IF3 mRNA was found to be positively influenced by the presence of the rplT gene in the plasmid downstream from the infC gene. In vivo accumulation of a large excess of IF3, obtained when the infC gene was placed under the control of an incompletely repressed tac promoter, was not accompanied by any noticeable adverse phenotype.
Collapse
|