1
|
In focus in HCB. Histochem Cell Biol 2023; 159:221-224. [PMID: 36877266 DOI: 10.1007/s00418-023-02184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
2
|
Qamar M, Abbas G, Afzaal M, Naz MY, Ghuffar A, Irfan M, Legutko S, Jozwik J, Zawada-Michalowska M, Ghanim AAJ, Rahman S, Niazi UM, Jalalah M, Alkahtani FS, Khan MKA, Kosicka E. Gold Nanorods for Doxorubicin Delivery: Numerical Analysis of Electric Field Enhancement, Optical Properties and Drug Loading/Releasing Efficiency. MATERIALS 2022; 15:ma15051764. [PMID: 35268995 PMCID: PMC8911263 DOI: 10.3390/ma15051764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
The optical properties and electric field enhancement of gold nanorods for different cases were investigated in this study. The numerical analysis was carried out to understand the functionality and working of gold nanorods, while the experimental portion of the work was focused on the efficiency of gold nanorods for targeted drug delivery. COMSOL Multiphysics was used for numerical analysis. The theoretical results suggest the use of gold nanorods (AuNRs) for anticancer applications. The resonance peaks for gold nanorods of 10 nm diameter were observed at 560 nm. The resonance peaks shifted towards longer wavelengths with an increase in nanorod size. The resonance peaks showed a shift of 140 nm with a change in nanorod length from 25 to 45 nm. On the experimental side, 22 nm, 35 nm and 47 nm long gold nanorods were produced using the seed-mediated growth method. The surface morphology of the nanorods, as well as their optical characteristics, were characterized. Later, gold nanorods were applied to the targeted delivery of the doxorubicin drug. Gold nanorods showed better efficiency for doxorubicin drug loading time, release time, loading temperature, and release temperature. These results reveal that AuNRs@DA possess good ability to load and deliver the drug directly to the tumorous cells since these cells show high temperature and acidity.
Collapse
Affiliation(s)
- Muhammad Qamar
- Department of Physics, Riphah International University Faisalabad Campus, Faisalabad 44000, Pakistan; (M.Q.); (M.A.); (A.G.)
| | - Ghulam Abbas
- Department of Physics, Riphah International University Faisalabad Campus, Faisalabad 44000, Pakistan; (M.Q.); (M.A.); (A.G.)
- Correspondence:
| | - Muhammad Afzaal
- Department of Physics, Riphah International University Faisalabad Campus, Faisalabad 44000, Pakistan; (M.Q.); (M.A.); (A.G.)
| | - Muhammad Y. Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Abdul Ghuffar
- Department of Physics, Riphah International University Faisalabad Campus, Faisalabad 44000, Pakistan; (M.Q.); (M.A.); (A.G.)
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.); (M.J.); (F.S.A.)
| | - Stanislaw Legutko
- Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Jerzy Jozwik
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland; (J.J.); (M.Z.-M.); (E.K.)
| | - Magdalena Zawada-Michalowska
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland; (J.J.); (M.Z.-M.); (E.K.)
| | - Abdulnour Ali Jazem Ghanim
- Civil Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 61441, Saudi Arabia;
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.); (M.J.); (F.S.A.)
| | - Usama M. Niazi
- Department of Mechanical Engineering Technology, National Skills University Islamabad, Islamabad 44000, Pakistan;
| | - Mohammed Jalalah
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.); (M.J.); (F.S.A.)
| | - Fahad Salem Alkahtani
- Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia; (M.I.); (S.R.); (M.J.); (F.S.A.)
| | - Mohammad K. A. Khan
- Mechanical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia;
| | - Ewelina Kosicka
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland; (J.J.); (M.Z.-M.); (E.K.)
| |
Collapse
|
3
|
Ten Approaches That Improve Immunostaining: A Review of the Latest Advances for the Optimization of Immunofluorescence. Int J Mol Sci 2022; 23:ijms23031426. [PMID: 35163349 PMCID: PMC8836139 DOI: 10.3390/ijms23031426] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/04/2022] Open
Abstract
Immunostaining has emerged as one of the most common and valuable techniques that allow the localization of proteins at a quantitative level within cells and tissues using antibodies coupled to enzymes, fluorochromes, or colloidal nanogold particles. The application of fluorochromes during immunolabeling is referred to as immunofluorescence, a method coupled to widefield or confocal microscopy and extensively applied in basic research and clinical diagnosis. Notwithstanding, there are still disadvantages associated with the application of this technique due to technical challenges in the process, such as sample fixation, permeabilization, antibody incubation times, and fluid exchange, etc. These disadvantages call for continuous updates and improvements to the protocols extensively described in the literature. This review contributes to protocol optimization, outlining 10 current methods for improving sample processing in different stages of immunofluorescence, including a section with further recommendations. Additionally, we have extended our own antibody signal enhancer method, which was reported to significantly increase antibody signals and is useful for cervical cancer detection, to improve the signals of fluorochrome-conjugated staining reagents in fibrous tissues. In summary, this review is a valuable tool for experienced researchers and beginners when planning or troubleshooting the immunofluorescence assay.
Collapse
|
4
|
Three-Dimensional Culture of Rhipicephalus ( Boophilus) microplus BmVIII-SCC Cells on Multiple Synthetic Scaffold Systems and in Rotating Bioreactors. INSECTS 2021; 12:insects12080747. [PMID: 34442313 PMCID: PMC8396921 DOI: 10.3390/insects12080747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022]
Abstract
Tick cell culture facilitates research on the biology of ticks and their role as vectors of pathogens that affect humans, domestic animals, and wildlife. Because two-dimensional cell culture doesn't promote the development of multicellular tissue-like composites, we hypothesized that culturing tick cells in a three-dimensional (3-D) configuration would form spheroids or tissue-like organoids. In this study, the cell line BmVIII-SCC obtained from the cattle fever tick, Rhipicephalus (Boophilus) microplus (Canestrini, 1888), was cultured in different synthetic scaffold systems. Growth of the tick cells on macrogelatinous beads in rotating continuous culture system bioreactors enabled cellular attachment, organization, and development into spheroid-like aggregates, with evidence of tight cellular junctions between adjacent cells and secretion of an extracellular matrix. At least three cell morphologies were identified within the aggregates: fibroblast-like cells, small endothelial-like cells, and larger cells exhibiting multiple cytoplasmic endosomes and granular vesicles. These observations suggest that BmVIII-SCC cells adapted to 3-D culture retain pluripotency. Additional studies involving genomic analyses are needed to determine if BmVIII-SCC cells in 3-D culture mimic tick organs. Applications of 3-D culture to cattle fever tick research are discussed.
Collapse
|
5
|
Lv MF, Xie L, Li YQ, Zhang XM, Li M, Liao ZF, Zhang ZK, Hong J, Zhang HM. Improved quantification of immune-gold labeling and its use to compare the distribution of cellular factors among sub-chloroplast compartments. Micron 2021; 145:103060. [PMID: 33799086 DOI: 10.1016/j.micron.2021.103060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
Quantification of immuno-gold labeling can provide valuable information on the quantity and localization of a target within a region of interest (ROI). Background subtraction usually requires preparation of material with a deliberately reduced amount of target component often by gene knockout/knockdown. This paper reports a modified method without the need for gene knockout/knockdown, by using a region outside the ROI as a background and non-immune serum to verify the reliability of the data. An optimized parameter for use in image processing was also developed to improve semi-automatic segmentation of gold particles, by using the standard deviation of pixel intensity together with default parameters (size and intensity) to improve specificity. The modified methods were used to quantify the gold labeling of various components within chloroplasts and their 3 sub-organelle compartments (thylakoid, stroma and starch). Rubisco, actin, myosin, β-tubulin, Endoplasmic reticulum-retention signal HDEL, Sterol methyltransferase 1, and double stranded RNA were all effectively and consistently quantified at the level of the different sub-chloroplast compartments. The approach should be applicable more widely for high resolution labelling of samples in which a background requiring gene knockout/knockdown is not a realistic option.
Collapse
Affiliation(s)
- Ming-Fang Lv
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Li Xie
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Qin Li
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Min Zhang
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mei Li
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Feng Liao
- Public Lab, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhong-Kai Zhang
- Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650223, China
| | - Jian Hong
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
6
|
Tremi I, Havaki S, Georgitsopoulou S, Lagopati N, Georgakilas V, Gorgoulis VG, Georgakilas AG. A Guide for Using Transmission Electron Microscopy for Studying the Radiosensitizing Effects of Gold Nanoparticles In Vitro. NANOMATERIALS 2021; 11:nano11040859. [PMID: 33801708 PMCID: PMC8065702 DOI: 10.3390/nano11040859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
The combined effects of ionizing radiation (IR) with high-z metallic nanoparticles (NPs) such as gold has developed a growing interest over the recent years. It is currently accepted that radiosensitization is not only attributed to physical effects but also to underlying chemical and biological mechanisms’ contributions. Low- and high-linear energy transfer (LET) IRs produce DNA damage of different structural types. The combination of IR with gold nanoparticles may increase the clustering of energy deposition events in the vicinity of the NPs due to the production mainly of photoelectrons and Auger electrons. Biological lesions of such origin for example on DNA are more difficult to be repaired compared to isolated lesions and can augment IR’s detrimental effects as shown by numerous studies. Transmission electron microscopy (TEM) offers a unique opportunity to study the complexity of these effects on a very detailed cellular level, in terms of structure, including nanoparticle uptake and damage. Cellular uptake and nanoparticle distribution inside the cell are crucial in order to contribute to an optimal dose enhancement effect. TEM is mostly used to observe the cellular localization of nanoparticles. However, it can also provide valuable insights on the NPs’ radiosensitization pathways, by studying the biochemical mechanisms through immunogold-labelling of antigenic sites at ultrastructural level under high resolution and magnification. Here, our goal is to describe the possibilities, methodologies and proper use of TEM in the interest of studying NPs-based radiosensitization mechanisms.
Collapse
Affiliation(s)
- Ioanna Tremi
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece;
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.H.); (N.L.); (V.G.G.)
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.H.); (N.L.); (V.G.G.)
| | - Sofia Georgitsopoulou
- Department of Material Science, University of Patras, 26504 Patras, Greece; (S.G.); (V.G.)
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.H.); (N.L.); (V.G.G.)
| | - Vasilios Georgakilas
- Department of Material Science, University of Patras, 26504 Patras, Greece; (S.G.); (V.G.)
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.H.); (N.L.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 11527 Athens, Greece
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece;
- Correspondence:
| |
Collapse
|
7
|
OUP accepted manuscript. Microscopy (Oxf) 2021; 71:i72-i80. [DOI: 10.1093/jmicro/dfab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
|
8
|
Reifarth M, Schubert US, Hoeppener S. Considerations for the Uptake Characteristic of Inorganic Nanoparticles into Mammalian Cells-Insights Gained by TEM Investigations. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martin Reifarth
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
9
|
ten Hove JB, Schijven LMI, Wang J, Velders AH. Size-controlled and water-soluble gold nanoparticles using UV-induced ligand exchange and phase transfer. Chem Commun (Camb) 2018; 54:13355-13358. [DOI: 10.1039/c8cc05899g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oleylamine-capped gold nanoparticles (AuNPs) with sizes ranging from 5 to 13 nm and narrow size distributions (<10%) are synthesized by using a seeded growth approach. Water-solubility is achieved by using a UV-induced ligand exchange approach.
Collapse
Affiliation(s)
- Jan Bart ten Hove
- Laboratory of BioNanoTechnology
- Wageningen University
- 6708 WG Wageningen
- The Netherlands
| | - Laura M. I. Schijven
- Laboratory of BioNanoTechnology
- Wageningen University
- 6708 WG Wageningen
- The Netherlands
- Laboratory of Biobased Chemistry and Technology
| | - Junyou Wang
- Laboratory of BioNanoTechnology
- Wageningen University
- 6708 WG Wageningen
- The Netherlands
| | - Aldrik H. Velders
- Laboratory of BioNanoTechnology
- Wageningen University
- 6708 WG Wageningen
- The Netherlands
| |
Collapse
|
10
|
McClellan P, Jacquet R, Yu Q, Landis WJ. A Method for the Immunohistochemical Identification and Localization of Osterix in Periosteum-Wrapped Constructs for Tissue Engineering of Bone. J Histochem Cytochem 2017; 65:407-420. [PMID: 28415912 PMCID: PMC5490846 DOI: 10.1369/0022155417705300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
A novel immunohistochemistry (IHC) approach has been developed to label and localize osterix, a bone-specific transcription factor, within formalin-fixed, paraffin-embedded, tissue-engineered constructs uniquely containing synthetic polymers and human periosteal tissue. Generally, such specimens consisting in part of polymeric materials and mineral are particularly difficult for IHC identification of proteins. Samples here were fabricated from human periosteum, electrospun poly-l-lactic acid (PLLA) nanofibers, and polycaprolactone/poly-l-lactic acid (PCL/PLLA, 75/25) scaffolds and harvested following 10 weeks of implantation in athymic mice. Heat-induced and protease-induced epitope retrieval methods from selected existing protocols were examined to identify osterix. All such protease-induced techniques were unsuccessful. Heat-induced retrieval gave positive results for osterix immunohistochemical staining in sodium citrate/EDTA/Tween 20 with high heat (120C) and pressure (~30 psi) for 10 min, but the heat and pressure levels resulted in tissue damage and section delamination from slides that limited protocol effectiveness. Heat-induced epitope retrieval led to other osterix-positive staining results achieved with minimal impact on structural integrity of the tissue and polymers in sodium citrate/EDTA/Tween 20 buffer at 60C and normal pressure (14.5 psi) for 72 hr. The latter approach identified osterix-positive cells by IHC within periosteal tissue, layers of electrospun PLLA nanofibers, and underlying PCL/PLLA scaffolds of the tissue-engineered constructs.
Collapse
Affiliation(s)
- Phillip McClellan
- Department of Polymer Science, The University of Akron, Akron, Ohio (PM, RJ, QY, WJL)
| | - Robin Jacquet
- Department of Polymer Science, The University of Akron, Akron, Ohio (PM, RJ, QY, WJL)
| | - Qing Yu
- Department of Polymer Science, The University of Akron, Akron, Ohio (PM, RJ, QY, WJL)
| | - William J. Landis
- Department of Polymer Science, The University of Akron, Akron, Ohio (PM, RJ, QY, WJL)
| |
Collapse
|
11
|
An easy, fast and “low-tech”-equipment-requiring alternative method to optimize immunolabelling conditions for pre-embedding immunogold electron microscopy and to correlate light and electron microscopical immunogold labelling results. J Immunol Methods 2017; 444:7-16. [DOI: 10.1016/j.jim.2017.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 11/20/2022]
|
12
|
Ochs M, Knudsen L, Hegermann J, Wrede C, Grothausmann R, Mühlfeld C. Using electron microscopes to look into the lung. Histochem Cell Biol 2016; 146:695-707. [PMID: 27688057 DOI: 10.1007/s00418-016-1502-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
In the nineteenth century, there was a dispute about the existence of a lung alveolar epithelium which remained unsolved until the invention of electron microscopy (EM) and its application to the lung. From the early 1960s, Ewald Weibel became the master of lung EM. He showed that the alveolar epithelium is covered with a lining layer containing surfactant. Weibel also explained the phenomenon of "non-nucleated plates" observed already in 1881 by Albert Kölliker. Weibel's most significant contribution was to the development of stereological methods. Therefore, quantitative characterization of lung structure revealing structure-function relationships became possible. Today, the spectrum of EM methods to study the fine structure of the lung has been extended significantly. Cryo-preparation techniques are available which are necessary for immunogold labeling of molecules. Energy-filtering techniques can be used for the detection of elements. There have also been major improvements in stereology, thus providing a very versatile toolbox for quantitative lung phenotype analyses. A new dimension was added by 3D EM techniques. Depending on the desired sample size and resolution, the spectrum ranges from array tomography via serial block face scanning EM and focused ion beam scanning EM to electron tomography. These 3D datasets provide new insights into lung ultrastructure. Biomedical EM is an ever-developing field. Its high resolution remains unparalleled. Moreover, EM has the unique advantage of providing an "open view" into cells and tissues within their full architectural context. Therefore, EM will remain an indispensable tool for a better understanding of the lung's functional design.
Collapse
Affiliation(s)
- Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover, Germany.
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Roman Grothausmann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| |
Collapse
|
13
|
Bildgebung von bioorthogonalen Gruppen in ihrem ultrastrukturellen Kontext mittels Elektronenmikroskopie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
van Elsland DM, van Kasteren SI. Imaging Bioorthogonal Groups in Their Ultrastructural Context with Electron Microscopy. Angew Chem Int Ed Engl 2016; 55:9472-3. [PMID: 27346592 DOI: 10.1002/anie.201604672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 01/16/2023]
Abstract
Spitting image: Herein a recent paper on the imaging of bioorthogonal groups using three-dimensional electron microscopy is discussed. The work has demonstrated electron microscopy imaging as a technique suitable for gaining structural information on bioorthogonal groups in their cellular context.
Collapse
Affiliation(s)
- Daphne M van Elsland
- Leiden Institute of Chemistry/Institute of Chemical Immunology, Bioorganic Synthesis, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry/Institute of Chemical Immunology, Bioorganic Synthesis, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.
| |
Collapse
|
15
|
Abstract
UNLABELLED Moraxella catarrhalis is a human respiratory pathogen that causes acute otitis media in children and is associated with exacerbations in patients suffering from chronic obstructive pulmonary disease (COPD). The first step in M. catarrhalis colonization is adherence to the mucosa, epithelial cells, and extracellular matrix (ECM). The objective of this study was to evaluate the role of M. catarrhalis interactions with collagens from various angles. Clinical isolates (n= 43) were tested for collagen binding, followed by a detailed analysis of protein-protein interactions using recombinantly expressed proteins.M. catarrhalis-dependent interactions with collagen produced by human lung fibroblasts and tracheal tissues were studied by utilizing confocal immunohistochemistry and high-resolution scanning electron microscopy. A mouse smoke-induced chronic obstructive pulmonary disease (COPD) model was used to estimate the adherence of M. catarrhalis in vivo. We found that all M. catarrhalis clinical isolates tested adhered to fibrillar collagen types I, II, and III and network-forming collagens IV and VI. The trimeric autotransporter adhesins ubiquitous surface protein A2(UspA2) and UspA2H were identified as major collagen-binding receptors.M. catarrhalis wild type adhered to human tracheal tissue and collagen-producing lung fibroblasts, whereas UspA2 and UspA2H deletion mutants did not. Moreover, in the COPD mouse model, bacteria devoid of UspA2 and UspA2H had a reduced level of adherence to the respiratory tract compared to the adherence of wild-type bacteria. Our data therefore suggest that theM. catarrhalisUspA2 and UspA2H-dependent interaction with collagens is highly critical for adherence in the host and, furthermore, may play an important role in the establishment of disease. IMPORTANCE The respiratory tract pathogen Moraxella catarrhalis adheres to the host by interacting with several components, including the ECM. Collagen accounts for 30% of total body proteins, and therefore, bacterial adherence to abundant host collagens mediates bacterial persistence and colonization. In this study, we characterized previously unknown M. catarrhalis-dependent interactions with host collagens and found that the trimeric autotransporter adhesins ubiquitous surface protein A2(UspA2) and UspA2H are highly important. Our observations also suggested that collagen-mediated adherence ofM. catarrhalis is indispensable for bacterial survival in the host, as exemplified by a mouse COPD model.
Collapse
|
16
|
Takizawa T, Powell RD, Hainfeld JF, Robinson JM. FluoroNanogold: an important probe for correlative microscopy. J Chem Biol 2015; 8:129-42. [PMID: 26884817 PMCID: PMC4744603 DOI: 10.1007/s12154-015-0145-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022] Open
Abstract
Correlative microscopy is a powerful imaging approach that refers to observing the same exact structures within a specimen by two or more imaging modalities. In biological samples, this typically means examining the same sub-cellular feature with different imaging methods. Correlative microscopy is not restricted to the domains of fluorescence microscopy and electron microscopy; however, currently, most correlative microscopy studies combine these two methods, and in this review, we will focus on the use of fluorescence and electron microscopy. Successful correlative fluorescence and electron microscopy requires probes, or reporter systems, from which useful information can be obtained with each of the imaging modalities employed. The bi-functional immunolabeling reagent, FluoroNanogold, is one such probe that provides robust signals in both fluorescence and electron microscopy. It consists of a gold cluster compound that is visualized by electron microscopy and a covalently attached fluorophore that is visualized by fluorescence microscopy. FluoroNanogold has been an extremely useful labeling reagent in correlative microscopy studies. In this report, we present an overview of research using this unique probe.
Collapse
Affiliation(s)
| | - Richard D. Powell
- />Nanoprobes, Incorporated, 95 Horseblock Road, Unit 1, Yaphank, NY 11980-9710 USA
| | - James F. Hainfeld
- />Nanoprobes, Incorporated, 95 Horseblock Road, Unit 1, Yaphank, NY 11980-9710 USA
| | - John M. Robinson
- />Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
17
|
The potential of bioorthogonal chemistry for correlative light and electron microscopy: a call to arms. J Chem Biol 2015. [DOI: 10.1007/s12154-015-0134-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
18
|
Ding B, Tian Y, Pan Y, Shan Y, Cai M, Xu H, Sun Y, Wang H. Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing. NANOSCALE 2015; 7:7545-9. [PMID: 25864702 DOI: 10.1039/c5nr01020a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.
Collapse
Affiliation(s)
- Bohua Ding
- School of Physics, Northeast Normal University, Changchun, Jilin 130024, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mayhew TM. Quantitative immunocytochemistry at the ultrastructural level: a stereology-based approach to molecular nanomorphomics. Cell Tissue Res 2014; 360:43-59. [PMID: 25403623 DOI: 10.1007/s00441-014-2038-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022]
Abstract
Biological systems span multiple levels of structural organisation from the macroscopic, via the microscopic, to the nanoscale. Therefore, comprehensive investigation of systems biology requires application of imaging modalities that reveal structure at multiple resolution scales. Nanomorphomics is the part of morphomics devoted to the systematic study of functional morphology at the nanoscale and an important element of its achievement is the combination of immunolabelling and transmission electron microscopy (TEM). The ultimate goal of quantitative immunocytochemistry is to estimate numbers of target molecules (usually peptides, proteins or protein complexes) in biological systems and to map their spatial distributions within them. Immunogold cytochemistry utilises target-specific affinity markers (primary antibodies) and visualisation aids (e.g., colloidal gold particles or silver-enhanced nanogold particles) to detect and localise target molecules at high resolution in intact cells and tissues. In the case of post-embedding labelling of ultrathin sections for TEM, targets are localised as a countable digital readout by using colloidal gold particles. The readout comprises a spatial distribution of gold particles across the section and within the context of biological ultrastructure. The observed distribution across structural compartments (whether volume- or surface-occupying) represents both specific and non-specific labelling; an assessment by eye alone as to whether the distribution is random or non-random is not always possible. This review presents a coherent set of quantitative methods for testing whether target molecules exhibit preferential and specific labelling of compartments and for mapping the same targets in two or more groups of cells as their TEM immunogold-labelling patterns alter after experimental manipulation. The set also includes methods for quantifying colocalisation in multiple-labelling experiments and mapping absolute numbers of colloidal gold particles across compartments at specific positions within cells having a point-like inclusion (e.g., centrosome, nucleolus) and a definable vertical axis. Although developed for quantifying colloidal gold particles, the same methods can in principle be used to quantify other electron-dense punctate nanoparticles, including quantum dots.
Collapse
Affiliation(s)
- Terry M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, E Floor, Nottingham, NG7 2UH, UK,
| |
Collapse
|
20
|
Haemophilus influenzae surface fibril (Hsf) is a unique twisted hairpin-like trimeric autotransporter. Int J Med Microbiol 2014; 305:27-37. [PMID: 25465160 DOI: 10.1016/j.ijmm.2014.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 11/21/2022] Open
Abstract
The Haemophilus surface fibril (Hsf) is an extraordinary large (2413 amino acids) trimeric autotransporter, present in all encapsulated Haemophilus influenzae. It contributes to virulence by directly functioning as an adhesin. Furthermore, Hsf recruits the host factor vitronectin thereby inhibiting the host innate immune response resulting in enhanced survival in serum. Here we observed by electron microscopy that Hsf appears as an 100 nm long fibril at the bacterial surface albeit the length is approximately 200 nm according to a bioinformatics based model. To unveil this discrepancy, we denaturated Hsf at the surface of Hib by using guanidine hydrochloride (GuHCl). Partial denaturation induced in the presence of GuHCl unfolded the Hsf molecules, and resulted in an increased length of fibres in comparison to the native trimeric form. Importantly, our findings were also verified by E. coli expressing Hsf at its surface. In addition, a set of Hsf-specific peptide antibodies also indicated that the N-terminal of Hsf is located near the C-terminal at the base of the fibril. Taken together, our results demonstrated that Hsf is not a straight molecule but is folded and doubled over. This is the first report that provides the unique structural features of the trimeric autotransporter Hsf.
Collapse
|
21
|
Basavegowda N, Idhayadhulla A, Lee YR. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:58-64. [PMID: 25175188 DOI: 10.1016/j.msec.2014.06.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/14/2014] [Accepted: 06/30/2014] [Indexed: 01/14/2023]
Abstract
This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV-vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30-50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications.
Collapse
Affiliation(s)
- Nagaraj Basavegowda
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Akber Idhayadhulla
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| |
Collapse
|
22
|
A fine-tuned interaction between trimeric autotransporter haemophilus surface fibrils and vitronectin leads to serum resistance and adherence to respiratory epithelial cells. Infect Immun 2014; 82:2378-89. [PMID: 24664511 DOI: 10.1128/iai.01636-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Haemophilus influenzae type b (Hib) escapes the host immune system by recruitment of the complement regulator vitronectin, which inhibits the formation of the membrane attack complex (MAC) by inhibiting C5b-C7 complex formation and C9 polymerization. We reported previously that Hib acquires vitronectin at the surface by using Haemophilus surface fibrils (Hsf). Here we studied in detail the interaction between Hsf and vitronectin and its role in the inhibition of MAC formation and the invasion of lung epithelial cells. The vitronectin-binding region of Hsf was defined at the N-terminal region comprising Hsf amino acids 429 to 652. Moreover, the Hsf recognition site on vitronectin consisted of the C-terminal amino acids 352 to 374. H. influenzae was killed more rapidly in vitronectin-depleted serum than in normal human serum (NHS), and increased MAC deposition was observed at the surface of an Hsf-deficient H. influenzae mutant. In parallel, Hsf-expressing Escherichia coli selectively acquired vitronectin from serum, resulting in significant inhibition of the MAC. Moreover, when vitronectin was bound to Hsf, increased bacterial adherence and internalization into epithelial cells were observed. Taking our findings together, we have defined a fine-tuned protein-protein interaction between Hsf and vitronectin that may contribute to increased Hib virulence.
Collapse
|
23
|
Philimonenko VV, Philimonenko AA, Šloufová I, Hrubý M, Novotný F, Halbhuber Z, Krivjanská M, Nebesářová J, Šlouf M, Hozák P. Simultaneous detection of multiple targets for ultrastructural immunocytochemistry. Histochem Cell Biol 2014; 141:229-39. [PMID: 24449180 PMCID: PMC3935117 DOI: 10.1007/s00418-013-1178-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 11/25/2022]
Abstract
Simultaneous detection of biological molecules by means of indirect immunolabeling provides valuable information about their localization in cellular compartments and their possible interactions in macromolecular complexes. While fluorescent microscopy allows for simultaneous detection of multiple antigens, the sensitive electron microscopy immunodetection is limited to only two antigens. In order to overcome this limitation, we prepared a set of novel, shape-coded metal nanoparticles readily discernible in transmission electron microscopy which can be conjugated to antibodies or other bioreactive molecules. With the use of novel nanoparticles, various combinations with commercial gold nanoparticles can be made to obtain a set for simultaneous labeling. For the first time in ultrastructural histochemistry, up to five molecular targets can be identified simultaneously. We demonstrate the usefulness of the method by mapping of the localization of nuclear lipid phosphatidylinositol-4,5-bisphosphate together with four other molecules crucial for genome function, which proves its suitability for a wide range of biomedical applications.
Collapse
Affiliation(s)
- V V Philimonenko
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14200, Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Han HM, Bouchet-Marquis C, Huebinger J, Grabenbauer M. Golgi apparatus analyzed by cryo-electron microscopy. Histochem Cell Biol 2013; 140:369-81. [PMID: 23954988 PMCID: PMC3787787 DOI: 10.1007/s00418-013-1136-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2013] [Indexed: 11/28/2022]
Abstract
In 1898, the Golgi apparatus was discovered by light microscopy, and since the 1950s, the ultrastructure composition is known by electron microscopic investigation. The complex three-dimensional morphology fascinated researchers and was sometimes even the driving force to develop novel visualization techniques. However, the highly dynamic membrane systems of Golgi apparatus are delicate and prone to fixation artifacts. Therefore, the understanding of Golgi morphology and its function has been improved significantly with the development of better preparation methods. Nowadays, cryo-fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in amorphous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy and tomography. Even though the overall morphology of vitrified Golgi stacks is comparable to well-prepared and resin-embedded samples, previously unknown structural details can be observed solely based on their native density. At this point, any further improvement of sample preparation would gain novel insights, perhaps not in terms of general morphology, but on fine structural details of this dynamic organelle.
Collapse
Affiliation(s)
- Hong-Mei Han
- Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Cedric Bouchet-Marquis
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO USA
- FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124 USA
| | - Jan Huebinger
- Department of Systemic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Markus Grabenbauer
- Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Karuppaiya P, Satheeshkumar E, Chao WT, Kao LY, Chen ECF, Tsay HS. Anti-metastatic activity of biologically synthesized gold nanoparticles on human fibrosarcoma cell line HT-1080. Colloids Surf B Biointerfaces 2013; 110:163-70. [DOI: 10.1016/j.colsurfb.2013.04.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 01/30/2023]
|
26
|
Marangoni VS, Paino IM, Zucolotto V. Synthesis and characterization of jacalin-gold nanoparticles conjugates as specific markers for cancer cells. Colloids Surf B Biointerfaces 2013; 112:380-6. [PMID: 24028851 DOI: 10.1016/j.colsurfb.2013.07.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/04/2013] [Accepted: 07/16/2013] [Indexed: 11/17/2022]
Abstract
New nanobiocomposites that combine nanoparticles and biomolecules have been shown very relevant for medical applications. Recently, cancer diagnostics and treatment have benefited from the development of nanobiocomposites, in which metallic or magnetic nanoparticles are conjugated with specific biomolecules for selective cell uptake. Despite recent advances in this area, the biomedical applications of these materials are still limited by the low efficiency of functionalization, low stability, among other factors. In this study, we report the synthesis of jacalin-conjugated gold nanoparticles, a nanoconjugate with potential application in medical areas, especially for cancer diagnosis. Jacalin is a lectin protein and it was employed due to its ability to recognize the Galβ1-3GalNAc disaccharide, which is highly expressed in tumor cells. Gold nanoparticles (AuNPs) were synthesized in the presence of generation 4 polyamidoamine dendrimer (PAMAM G4) and conjugated with fluorescein isothiocyanate (FITC)-labeled jacalin. The AuNPs/jacalin nanoconjugates were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and vibrational spectroscopy (FTIR). We also performed an investigation using isothermal titration calorimetry (ITC) and fluorescence quenching measurements to understand the interactions occurring between the AuNPs and jacalin, which revealed that the nanoconjugate formation is driven by an entropic process with good affinity. Furthermore, in vitro tests revealed that the AuNPs/jacalin-FITC nanoconjugates exhibited higher affinity for leukemic K562 cells than for healthy mononuclear blood cells, which could be useful for biomedical applications, including cancer cells imaging.
Collapse
Affiliation(s)
- Valeria S Marangoni
- Physics Institute of São Carlos, University of São Paulo, São Carlos, BR-13560970, Brazil
| | | | | |
Collapse
|
27
|
|
28
|
Takizawa T, Robinson JM. Correlative fluorescence and transmission electron microscopy in tissues. Methods Cell Biol 2012; 111:37-57. [PMID: 22857922 DOI: 10.1016/b978-0-12-416026-2.00003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Correlative microscopy has meant different things over the years; currently, this term refers to imaging the same exact structures with two or more imaging modalities. This commonly involves combining fluorescence and electron microscopy. Much of the recent work related to correlative microscopy has been done using cell culture models. However, many biological questions cannot be addressed in these models, but require instead the 3-dimensional organization of cells found in tissues. Herein, we discuss some of the issues related to correlative microscopy of tissues including the major reporter systems presently available for correlative microscopy. We present data from our own work in which we have focused on the use of ultrathin cryosections of tissues as the substrate for immunolabeling to combine immunofluorescence and electron microscopy of the same sub-cellular structures.
Collapse
Affiliation(s)
- Toshihiro Takizawa
- Department of Molecular Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | | |
Collapse
|
29
|
The stabilization of Au NP–AChE nanocomposites by biosilica encapsulation for the development of a thiocholine biosensor. Bioelectrochemistry 2012; 86:72-7. [DOI: 10.1016/j.bioelechem.2012.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/19/2012] [Accepted: 02/10/2012] [Indexed: 11/23/2022]
|
30
|
Slouf M, Hruby M, Bakaeva Z, Vlkova H, Nebesarova J, Philimonenko AA, Hozak P. Preparation of stable Pd nanocubes and their use in biological labeling. Colloids Surf B Biointerfaces 2012; 100:205-8. [PMID: 22771526 DOI: 10.1016/j.colsurfb.2012.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/20/2012] [Accepted: 05/21/2012] [Indexed: 11/16/2022]
Abstract
Stable Pd nanocubes (PdNC) with the average size ~15 nm were prepared by the controlled reduction of sodium tetrachloropalladate with ascorbic acid in water, in the presence of polyvinylpyrrolidone and potassium bromide. Morphology of the particles was characterized by transmission electron microscopy (TEM) and their stability in the colloidal solution was verified by dynamic light scattering (DLS). It has been demonstrated that the Pd nanocubes can be distinguished from commercial Au nanospheres in a standard TEM microscope by means of automated image analysis. In the next step, the PdNC were successfully conjugated to immunoglobulin proteins and used for the detection of a specific protein (nucleophosmin) on ultrathin sections of HeLa cells. Our experiments showed that PdNC can be used for multiple immunolabeling in combination with commercial Au nanospheres.
Collapse
Affiliation(s)
- Miroslav Slouf
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
31
|
Wu S, Avila-Sakar A, Kim J, Booth DS, Greenberg CH, Rossi A, Liao M, Li X, Alian A, Griner SL, Juge N, Yu Y, Mergel CM, Chaparro-Riggers J, Strop P, Tampé R, Edwards RH, Stroud RM, Craik CS, Cheng Y. Fabs enable single particle cryoEM studies of small proteins. Structure 2012; 20:582-92. [PMID: 22483106 PMCID: PMC3322386 DOI: 10.1016/j.str.2012.02.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 01/31/2012] [Accepted: 02/17/2012] [Indexed: 01/08/2023]
Abstract
In spite of its recent achievements, the technique of single particle electron cryomicroscopy (cryoEM) has not been widely used to study proteins smaller than 100 kDa, although it is a highly desirable application of this technique. One fundamental limitation is that images of small proteins embedded in vitreous ice do not contain adequate features for accurate image alignment. We describe a general strategy to overcome this limitation by selecting a fragment antigen binding (Fab) to form a stable and rigid complex with a target protein, thus providing a defined feature for accurate image alignment. Using this approach, we determined a three-dimensional structure of an ∼65 kDa protein by single particle cryoEM. Because Fabs can be readily generated against a wide range of proteins by phage display, this approach is generally applicable to study many small proteins by single particle cryoEM.
Collapse
Affiliation(s)
- Shenping Wu
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Agustin Avila-Sakar
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - JungMin Kim
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - David S. Booth
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
- Graduate Group in Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Charles H. Greenberg
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
- Graduate Group in Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Andrea Rossi
- Rinat Labs, Pfizer Inc., 230 East Grand Ave, South San Francisco, CA 94080
| | - Maofu Liao
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Xueming Li
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Akram Alian
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sarah L. Griner
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Narinobu Juge
- Department of Physiology and Department of Neurology, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Yadong Yu
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Claudia M. Mergel
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | | | - Pavel Strop
- Rinat Labs, Pfizer Inc., 230 East Grand Ave, South San Francisco, CA 94080
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Robert H. Edwards
- Department of Physiology and Department of Neurology, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
- California Institute of Quantitative Biosciences (QB3), University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
- California Institute of Quantitative Biosciences (QB3), University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
- California Institute of Quantitative Biosciences (QB3), University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| | - Yifan Cheng
- The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158
- California Institute of Quantitative Biosciences (QB3), University of California San Francisco, 600 16th Street, San Francisco, CA 94158
| |
Collapse
|
32
|
Abstract
The correlation of light and electron microscopy (EM) is a powerful tool as it combines the investigation of dynamic processes in vivo with the resolution power of the electron microscope. The green fluorescent proteins (GFPs) and its derivatives revolutionized live-cell light microscopy. Hence, this review outlines correlative microscopy of GFP through photo-oxidation, a method that allows for the direct ultrastructural visualization of fluorophores upon illumination. Oxygen radicals generated during the GFP bleaching process photo-oxidize diaminobenzidine (DAB) into an electron dense precipitate that can be visualized both by routine EM of thin sections and by electron tomography for 3D analysis. There are different levels of correlative microscopy, i.e. the correlation of certain areas, cells, or organelles from light to EM, where photo-oxidation of DAB through GFP allows the highest possible degree--the correlation of specific molecules.
Collapse
Affiliation(s)
- Markus Grabenbauer
- Department of Systems Cell Biology, Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Str. 11, D-44227 Dortmund, North Rhine-Westphalia, Germany
| |
Collapse
|
33
|
Affiliation(s)
- Ruth Duncan
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe, Av. Autopista del Saler 16 E-46012, Valencia, Spain
| | - Rogerio Gaspar
- Nanomedicine & Drug Delivery Systems Group, iMed, Faculty of Pharmacy of the University of Lisbon, Av. Prof Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
34
|
Kandiah E, Watts NR, Cheng N, Cardone G, Stahl SJ, Heller T, Liang TJ, Wingfield PT, Steven AC. Cryo-EM study of Hepatitis B virus core antigen capsids decorated with antibodies from a human patient. J Struct Biol 2011; 177:145-51. [PMID: 22056468 DOI: 10.1016/j.jsb.2011.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/15/2011] [Accepted: 10/18/2011] [Indexed: 01/23/2023]
Abstract
The capsid (core antigen, HBcAg) is one of three major antigens present in patients infected with Hepatitis B virus. The capsids are icosahedral particles, whose most prominent features are spikes that extend 25 Å out from the contiguous "floor". At the spike tip are two copies of the "immunodominant loop". Previously, the epitopes of seven murine monoclonal antibodies have been identified by cryo-EM analysis of Fab-labeled capsids. All but one are conformational and all but one map around the spike tip. The exception, which is also the tightest-binder, straddles an inter-molecular interface on the floor. Seeking to relate these observations to the immunological response of infected humans, we isolated anti-cAg antibodies from a patient, prepared Fabs, and analyzed their binding to capsids. A priori, one possibility was that many different Fabs would give an undifferentiated continuum of Fab-related density. In fact, the density observed was highly differentiated and could be reproduced by modeling with just five Fabs, three binding to the spike and two to the floor. These results show that epitopes on the floor, far (~30 Å) from the immunodominant loop, are clinically relevant and that murine anti-cAg antibodies afford a good model for the human system.
Collapse
Affiliation(s)
- Eaazhisai Kandiah
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Singh A, Shukla R, Hassan S, Bhonde RR, Sastry M. Cytotoxicity and Cellular Internalization Studies of Biogenic Gold Nanotriangles in Animal Cell Lines. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/19430892.2011.633479] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Abstract
The rapid advancement of nanotechnology in recent years has fuelled a burgeoning interest in the field of nanoparticle research, in particular, its application in the medical arena. A constantly expanding knowledge based on a better understanding of the properties of gold nanoparticles (AuNPs) coupled with relentless experimentation means that the frontiers of nanotechnology are constantly being challenged. At present, there seems to be heightened interest in the application of AuNPs to the management of cancer, encompassing diagnosis, monitoring and treatment of the disease. These efforts are undertaken in the hope of revolutionizing current methods of treatment and treatment strategies for a multifactorial disease such as cancer. This review will focus on the current applications of AuNPs in cancer management.
Collapse
|
37
|
Inorganic-organic hybrid nanomaterials for therapeutic and diagnostic imaging applications. Int J Mol Sci 2011; 12:3888-927. [PMID: 21747714 PMCID: PMC3131598 DOI: 10.3390/ijms12063888] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/31/2011] [Indexed: 12/20/2022] Open
Abstract
Nanotechnology offers outstanding potential for future biomedical applications. In particular, due to their unique characteristics, hybrid nanomaterials have recently been investigated as promising platforms for imaging and therapeutic applications. This class of nanoparticles can not only retain valuable features of both inorganic and organic moieties, but also provides the ability to systematically modify the properties of the hybrid material through the combination of functional elements. Moreover, the conjugation of targeting moieties on the surface of these nanomaterials gives them specific targeted imaging and therapeutic properties. In this review, we summarize the recent reports in the synthesis of hybrid nanomaterials and their applications in biomedical areas. Their applications as imaging and therapeutic agents in vivo will be highlighted.
Collapse
|
38
|
Singh B, Jalalvand F, Mörgelin M, Zipfel P, Blom AM, Riesbeck K. Haemophilus influenzae protein E recognizes the C-terminal domain of vitronectin and modulates the membrane attack complex. Mol Microbiol 2011; 81:80-98. [PMID: 21542857 DOI: 10.1111/j.1365-2958.2011.07678.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Haemophilus influenzae protein E (PE) is a 16 kDa adhesin that induces a pro-inflammatory immune response in lung epithelial cells. The active epithelial binding region comprising amino acids PE 84-108 also interferes with complement-mediated bacterial killing by capturing vitronectin (Vn) that prevents complement deposition and formation of the membrane attack complex (MAC). Here, the interaction between PE and Vn was characterized using site-directed mutagenesis. Protein E variants were produced both in soluble forms and in surface-expressed molecules on Escherichia coli. Mutations within PE(84-108) in the full-length molecule revealed that K85 and R86 residues were important for the Vn binding. Bactericidal activity against H. influenzae was higher in human serum pre-treated with full-length PE as compared with serum incubated with PE(K85E, R86D) , suggesting that PE quenched Vn. A series of truncated Vn molecules revealed that the C-terminal domain comprising Vn(353-363) harboured the major binding region for PE. Interestingly, MAC deposition was significantly higher on mutants devoid of PE due to a decreased Vn-binding capacity when compared with wild-type H. influenzae. Our results define a fine-tuned interaction between H. influenzae and the innate immune system, and identify the mode of control of the MAC that is important for pathogen complement evasion.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology and Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Bali R, Harris AT. Biogenic Synthesis of Au Nanoparticles Using Vascular Plants. Ind Eng Chem Res 2010. [DOI: 10.1021/ie101600m] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Roza Bali
- Laboratory for Sustainable Technology, School of Chemical and Biomolecular Engineering, University of Sydney, NSW, 2006, Australia
| | - Andrew T. Harris
- Laboratory for Sustainable Technology, School of Chemical and Biomolecular Engineering, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
41
|
Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:1333-83. [PMID: 20156828 DOI: 10.1098/rsta.2009.0273] [Citation(s) in RCA: 895] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inorganic colloidal nanoparticles are very small, nanoscale objects with inorganic cores that are dispersed in a solvent. Depending on the material they consist of, nanoparticles can possess a number of different properties such as high electron density and strong optical absorption (e.g. metal particles, in particular Au), photoluminescence in the form of fluorescence (semiconductor quantum dots, e.g. CdSe or CdTe) or phosphorescence (doped oxide materials, e.g. Y(2)O(3)), or magnetic moment (e.g. iron oxide or cobalt nanoparticles). Prerequisite for every possible application is the proper surface functionalization of such nanoparticles, which determines their interaction with the environment. These interactions ultimately affect the colloidal stability of the particles, and may yield to a controlled assembly or to the delivery of nanoparticles to a target, e.g. by appropriate functional molecules on the particle surface. This work aims to review different strategies of surface modification and functionalization of inorganic colloidal nanoparticles with a special focus on the material systems gold and semiconductor nanoparticles, such as CdSe/ZnS. However, the discussed strategies are often of general nature and apply in the same way to nanoparticles of other materials.
Collapse
Affiliation(s)
- R A Sperling
- Institut Català de Nanotecnologia, Campus Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | |
Collapse
|
42
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|
43
|
Robinson JM, Takizawa T. Correlative fluorescence and electron microscopy in tissues: immunocytochemistry. J Microsc 2009; 235:259-72. [PMID: 19754721 DOI: 10.1111/j.1365-2818.2009.03221.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Correlative microscopy is a collection of procedures that rely upon two or more imaging modalities to examine the same specimen. The imaging modalities employed should each provide unique information and the combined correlative data should be more information rich than that obtained by any of the imaging methods alone. Currently the most common form of correlative microscopy combines fluorescence and electron microscopy. While much of the correlative microscopy in the literature is derived from studies of model cell culture systems we have focused, primarily, on correlative microscopy in tissue samples. The use of tissue, particularly human tissue, may add constraints not encountered in cell culture systems. Ultrathin cryosections, typically used for immunoelectron microscopy, have served as the substrate for correlative fluorescence and electron microscopic immunolocalization in our studies. In this work, we have employed the bifunctional reporter FluoroNanogold. This labeling reagent contains both a fluorochrome and a gold-cluster compound and can be imaged by sequential fluorescence and electron microscopy. This approach permits the examination of exactly the same sub-cellular structures in both fluorescence and electron microscopy with a high level of spatial resolution.
Collapse
Affiliation(s)
- J M Robinson
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA.
| | | |
Collapse
|
44
|
Meisslitzer-Ruppitsch C, Röhrl C, Neumüller J, Pavelka M, Ellinger A. Photooxidation technology for correlated light and electron microscopy. J Microsc 2009; 235:322-35. [PMID: 19754726 DOI: 10.1111/j.1365-2818.2009.03220.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The combination of the capabilities of light microscopical techniques with the power of resolution of electron microscopy along with technical advances has led to a gradual decline of the gap between classical light and electron microscopy. Among the correlative techniques using the synergistic opportunities, photooxidation methods have been established as valuable tools for visualizing cell structures at both light and electron microscopic level. Fluorescent dyes are used to oxidize the substrate diaminobenzidine, which in its oxidized state forms fine granular precipitates. Stained with osmium, the diaminobenzidine precipitates are well discernible in the electron microscope, thus labelling and defining the cellular structures, which at light microscopy level are recorded by fluorescent probes. The underlying photooxidation reaction is based on the excitation of free oxygen radicals that form upon illumination of fluorochromes; this is a central step in the procedure, which mainly influences the success of the method. This article summarizes basic steps of the technology and progresses, shows efforts and elaborated pathways, and focuses on methodical solutions as to the applicability of different fluorochromes, as well as conditions for fine structural localizations of the reaction products.
Collapse
Affiliation(s)
- C Meisslitzer-Ruppitsch
- Department of Cell Biology and Ultrastructure Research, Centre for Anatomy and Cell Biology, Medical University Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
45
|
|
46
|
|
47
|
Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev 2008; 37:1896-908. [DOI: 10.1039/b712170a] [Citation(s) in RCA: 1408] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Abstract
Nanotechnology is increasingly applied to the field of medicine, particularly for the treatment of cancer. In this regard, gold nanoparticles can mediate hyperthermia induction and kill tumor cells upon laser irradiation, thereby functioning as a 'thermal scalpel'. Recent developments in gold nanoparticle design have resulted in their absorption of energy in the near-infrared wavelength spectrum, which is best suited to tissue penetration and, thus, clinical application. Furthermore, to ensure accumulation of nanoparticles in neoplastic tissue, targeting ligands are being incorporated into the thermal scalpel schema. Examples of targeting ligands include antibodies and targeted gene therapy vectors. Therapeutic efficacy has been established in cell culture models for several developed thermal scalpel systems and a small number have demonstrated a therapeutic effect in animal models of cancer. Future considerations include analysis of the biodistribution and therapeutic efficacy of thermal scalpels using stringent models of cancer. Furthermore, the immunogenicity and toxicity of thermal scalpels must be established before clinical translation can be achieved.
Collapse
Affiliation(s)
- Maaike Everts
- University of Alabama at Birmingham, 901 19th Street South, BMRII-#512, Birmingham, AL 35294-2180, USA.
| |
Collapse
|
49
|
Kampani K, Quann K, Ahuja J, Wigdahl B, Khan ZK, Jain P. A novel high throughput quantum dot-based fluorescence assay for quantitation of virus binding and attachment. J Virol Methods 2007; 141:125-32. [PMID: 17204339 PMCID: PMC1975807 DOI: 10.1016/j.jviromet.2006.11.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/18/2006] [Accepted: 11/27/2006] [Indexed: 12/11/2022]
Abstract
Quantum dots (QDots) are fluorescent semiconductor nanocrystals with a narrow emission spectrum, high quantum yield, and excellent photostability. These unique properties of QDots have been utilized to develop a fluorescent binding assay using biotinylated human T cell leukemia virus type 1 (biot-HTLV-1) conjugated with streptavidin-coated QDots that enabled both qualitative and quantitative analyses of viral binding. The specificity and linearity of the assay was demonstrated utilizing T cells, the primary HTLV-1-susceptible cell population. Furthermore, differential binding of HTLV-1 was analyzed in additional cell types of clinical relevance including primary CD4(+) and CD8(+) T cells, dendritic cells (DCs), monocytes, bone marrow progenitor cells, and epithelial cells. DCs exhibited maximum binding affinity when compared to other examined cell types except the Jurkat and SUP-T1 T cell lines. Finally, blocking antibodies directed against a putative HTLV-1 receptor on DCs; DC-SIGN (dendritic cell-specific ICAM-3-grabbing non-integrin), were utilized to study the inhibition of HTLV-1 binding to target cells. Overall, these results demonstrated that this novel high throughput assay can be utilized to study the binding of a biotinylated virus and has implications for screening of viral binding inhibitors as well as host membrane proteins that may serve as receptors for viral entry.
Collapse
Affiliation(s)
| | | | | | | | | | - Pooja Jain
- * Corresponding author Mailing address: Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, New College Building, Room #18311, 245 North 15 Street, Philadelphia, PA 19102, USA, Tel.: 215-762-8586; Fax: 215-762-1955, E-mail: , Web site: http://www.drexelmed.edu/
| |
Collapse
|
50
|
Sosinsky GE, Giepmans BNG, Deerinck TJ, Gaietta GM, Ellisman MH. Markers for correlated light and electron microscopy. Methods Cell Biol 2007; 79:575-91. [PMID: 17327175 DOI: 10.1016/s0091-679x(06)79023-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gina E Sosinsky
- National Center for Microscopy and Imaging Research and Center for Research in Biological Systems, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|