1
|
Agramunt J, Parke B, Mena S, Ubels V, Jimenez F, Williams G, Rhodes ADY, Limbu S, Hexter M, Knight L, Hashemi P, Kozlov AS, Higgins CA. Mechanical stimulation of human hair follicle outer root sheath cultures activates adjacent sensory neurons. SCIENCE ADVANCES 2023; 9:eadh3273. [PMID: 37889977 PMCID: PMC10610912 DOI: 10.1126/sciadv.adh3273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Mechanical stimuli, such as stroking or pressing on the skin, activate mechanoreceptors transmitting information to the sensory nervous system and brain. It is well accepted that deflection of the hair fiber that occurs with a light breeze or touch directly activates the sensory neurons surrounding the hair follicle, facilitating transmission of mechanical information. Here, we hypothesized that hair follicle outer root sheath cells act as transducers of mechanical stimuli to sensory neurons surrounding the hair follicle. Using electrochemical analysis on human hair follicle preparations in vitro, we were able to show that outer root sheath cells release ATP and the neurotransmitters serotonin and histamine in response to mechanical stimulation. Using calcium imaging combined with pharmacology in a coculture of outer root sheath cells with sensory neurons, we found that the release of these three molecules from hair follicle cells leads to activation of sensory neurons.
Collapse
Affiliation(s)
- Julià Agramunt
- Department of Bioengineering, Imperial College London, London, UK
| | - Brenna Parke
- Department of Bioengineering, Imperial College London, London, UK
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, UK
| | - Victor Ubels
- Department of Bioengineering, Imperial College London, London, UK
| | - Francisco Jimenez
- Mediteknia Clinic, Las Palmas, Gran Canaria, Spain
- University Fernando Pessoa Canarias, Gran Canaria, Spain
| | | | - Anna DY Rhodes
- Department of Bioengineering, Imperial College London, London, UK
| | - Summik Limbu
- Department of Bioengineering, Imperial College London, London, UK
| | - Melissa Hexter
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Parastoo Hashemi
- Department of Bioengineering, Imperial College London, London, UK
| | - Andriy S. Kozlov
- Department of Bioengineering, Imperial College London, London, UK
| | | |
Collapse
|
2
|
Xu L, Gao W, Bai S, Duan H, Pan X, Wu W. MEF/KSF-conditioned culture medium: An effective method for in vitro culture of mouse dermal papilla cells with osteogenic differentiation potential. Exp Ther Med 2021; 22:828. [PMID: 34149874 PMCID: PMC8200806 DOI: 10.3892/etm.2021.10260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/08/2021] [Indexed: 11/06/2022] Open
Abstract
Hair follicle stem cells are pluripotent and have a self-renewal capacity and multi-differentiation potential in vitro. As hair follicle stem cells can be easily sampled from the skin and hair of clinical patients at a considerable quantity, these cells have potential applications in wound repair and skin tissue engineering. Effective approaches for the in vitro culture and amplification of mouse hair follicle stem cells, as well as the in vitro osteogenic differentiation potential and cell source when obtaining mouse-separated cells were examined. Serial subculture was performed in different culture systems. Cell source was detected based on the relevant surface markers derived from mouse hair follicles at the gene and protein levels, and the differential potential was determined. The proliferative ability of hair follicle-derived stem cells obtained from mouse embryonic fibroblast (MEF)/keratinocyte serum-free medium (KSF)-conditioned medium was the highest among all culture systems. The induced group had a stronger osteogenic differentiation potential compared with the non-induced group, indicating that the cells obtained from MEF/KSF-conditioned medium were cells derived from the hair follicle dermal papilla. Therefore, the strong osteogenic differentiation potential of the hair follicle-derived mesenchymal stem cells was screened with MEF/KSF-conditioned culture medium following amplification, and biological characteristics similar to those of hair follicle dermal papilla cells were observed.
Collapse
Affiliation(s)
- Liang Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wenlan Gao
- Department of Stomatology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Shanshan Bai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Huichuan Duan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaogang Pan
- Department of Orthodontics, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wei Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
3
|
Pharmacodynamic Therapeutic Drug Monitoring for Cancer: Challenges, Advances, and Future Opportunities. Ther Drug Monit 2019; 41:142-159. [DOI: 10.1097/ftd.0000000000000606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Randall KJ, Foster JR. The Demonstration of Immunohistochemical Biomarkers in Methyl Methacrylate-Embedded Plucked Human Hair Follicles. Toxicol Pathol 2016; 35:952-7. [DOI: 10.1080/01926230701748198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Plucked human hair follicles have been proposed as a potential surrogate for tumour tissue for measuring the effect of drugs on pharmacodynamic biomarkers in drug intervention studies. We describe a new technique of embedding plucked hair follicles in the acrylic resin, methyl methacrylate, and the immunohistochemical demonstration of six potential biomarkers (Ki67, EGFR, phospho-p27, phospho-histone H3, phospho-MAPK and phospho-Rb) in de-plasticised sections. The advantages of this technique over those that have been used in support of clinical drug trials, such as skin and tumour biopsies, whole blood and whole hair samples is discussed.
Collapse
Affiliation(s)
- Kevin J Randall
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - John R. Foster
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| |
Collapse
|
5
|
Plucked human hair shafts and biomolecular medical research. ScientificWorldJournal 2013; 2013:620531. [PMID: 24302865 PMCID: PMC3835906 DOI: 10.1155/2013/620531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/24/2013] [Indexed: 11/17/2022] Open
Abstract
The hair follicle is a skin integument at the boundary between an organism and its immediate environment. The biological role of the human hair follicle has lost some of its ancestral importance. However, an indepth investigation of this miniorgan reveals hidden complexity with huge research potential. An essential consideration when dealing with human research is the awareness of potential harm and thus the absolute need not to harm—a rule aptly qualified by the Latin term “primum non nocere” (first do no harm). The plucked hair shaft offers such advantages. The use of stem cells found in hair follicles cells is gaining momentum in the field of regenerative medicine. Furthermore, current diagnostic and clinical applications of plucked hair follicles include their use as autologous and/or three-dimensional epidermal equivalents, together with their utilization as surrogate tissue in pharmacokinetic and pharmacodynamics studies. Consequently, the use of noninvasive diagnostic procedures on hair follicle shafts, posing as a surrogate molecular model for internal organs in the individual patient for a spectrum of human disease conditions, can possibly become a reality in the near future.
Collapse
|
6
|
Golla K, Selokar NL, Saini M, Chauhan MS, Manik RS, Palta P, Singla SK. Production of Nuclear Transfer Embryos by Using Somatic Cells Isolated From Milk in Buffalo (Bubalus bubalis). Reprod Domest Anim 2012; 47:842-8. [DOI: 10.1111/j.1439-0531.2011.01978.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 2010; 5:371-82. [PMID: 20134422 DOI: 10.1038/nprot.2009.241] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ease of generating induced pluripotent stem (iPS) cells, and possibly their properties after reprogramming, depends on the origin of the somatic cell starting population. Reprogramming of keratinocytes is both faster and more efficient compared with fibroblasts, although more care is required when isolating, culturing and infecting these cells. In this study, we describe detailed protocols using both feeder-dependent and defined serum- and feeder-free conditions for culturing human keratinocytes from foreskin samples and punch biopsies, as well as how to isolate keratinocytes from plucked hair. We further describe culture techniques and approaches to efficiently infect and reprogram these cells for the purpose of generating iPS cells. The procedure of deriving keratinocytes takes 10-14 d, whereas reprogramming and the appearance of iPS cell colonies that can be isolated and established requires another 3-4 weeks.
Collapse
|
8
|
Drewa T, Joachimiak R, Kaznica A, Sarafian V, Sir J. Primary cultures from rat vibrissae as a potential cell source for in vitro construction of urinary bladder wall grafts. Transplant Proc 2009; 41:1932-5. [PMID: 19545759 DOI: 10.1016/j.transproceed.2009.02.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/19/2008] [Accepted: 02/23/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND In vitro-constructed grafts can be used for human bladder augmentation. There are many diseases in which autologous cells cannot be used for this purpose. The aim of the present study was to examine the potential of rat vibrissae hair follicle cells to form cultures, which could serve as a source for in vitro creation of urinary bladder wall grafts. METHODS Two hundred vibrissae were excised from young Wistar male rats. Two different digestions were performed, in dispase and in collagenase. All follicles were additionally incubated in trypsin and ethylenediamine tetraacetic acid. Two different culture media based on DMEM (Dulbecco's Modified Eagle's Medium) were used: the first was supplemented with keratinocyte growth factor (KGF) and the second with epidermal growth factor. Immunocytochemical detection of cytokeratin, CD34, p63, Ki-67 (proliferation index), and HMB45 (Human Melanoma Black 45) was performed. RESULTS Forty-eight primary cultures of rat follicle vibrissae cells were established from 200 hair follicles (24% successful rate). Twenty-four primary cultures were obtained after dispase digestion and 24 after collagenase treatment. Each group was cultured in 2 different media. A heterogeneity of primary cultures was observed. Cells formed a monolayer within a period of 2 to 4 weeks. The 24 primary cultures established after dispase treatment exhibited monolayers of small cuboid cells expressing cytokeratin and CD34. In the 40th passage 20%-40% of cells expressed p63; 85% of these cells from late passages were positive for Ki-67, indicating preserved mitotic potential. Epithelial-like phenotype was observed after dispase digestion and cultivation in KGF-supplemented medium. After 3 weeks, the morphology of these cells changed into fibroblast-like. These cultures were negative for CD34. Fibroblast-like cell growth was observed after collagenase treatment in both KGF- and EGF-supplemented media. These cells were positive for the melanocyte cell marker (HMB45). CONCLUSIONS Culture media and isolation conditions influence hair follicle stem cell differentiation. The stem cell niche within the hair follicles is a reservoir of cells, which can be potentially used for in vitro creation of urinary bladder wall grafts.
Collapse
Affiliation(s)
- T Drewa
- Department of Tissue Engineering, CM UMK, Bydgoszcz, Poland.
| | | | | | | | | |
Collapse
|
9
|
Expression and function of glycogen synthase kinase-3 in human hair follicles. Arch Dermatol Res 2009; 302:263-70. [PMID: 19705135 DOI: 10.1007/s00403-009-0987-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/02/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
Beta-catenin is involved in the hair follicle morphogenesis and stem cell differentiation, and inhibition of glycogen synthase kinase-3 (GSK-3) increases beta-catenin concentration in the cytoplasm. To examine the effects of GSK-3 inhibition on the hair follicle epithelium, we first examined the expression of GSK-3 in plucked human hair follicles by RT-PCR and found GSK-3 expression in hair follicles. Western blotting with a GSK-3beta-specific antibody, Y174, also demonstrated GSK-3beta expression in the follicles. Moreover, GSK-3beta immunostaining with Y174 showed that GSK-3beta colocalized with hair follicle bulge markers. Contrary to GSK-3beta, GSK-3 alpha was widely expressed throughout the follicles when immunostained with a specific antibody, EP793Y. We then investigated the influence of GSK-3 inhibition. A GSK-3 inhibitor, BIO, promoted the growth of human outer root sheath cells, which could be cultured for up to four passages. The BIO-treated cells exhibited smaller and more undifferentiated morphology than control cells. Moreover, in organ culture of plucked human hair, outer root sheath cells in the middle of a hair follicle proliferated when cultured with BIO. These results indicate that GSK-3beta is expressed in hair bulge stem cells and BIO promotes the growth of ORS cells, possibly by regulating the GSK-3 signaling pathway.
Collapse
|
10
|
Koçer SS, Djurić PM, Bugallo MF, Simon SR, Matic M. Transcriptional profiling of putative human epithelial stem cells. BMC Genomics 2008; 9:359. [PMID: 18667080 PMCID: PMC2536675 DOI: 10.1186/1471-2164-9-359] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 07/30/2008] [Indexed: 12/30/2022] Open
Abstract
Background Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC) class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells. Results Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells. Conclusion This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells may be enriched for stem cells. This study is the first comprehensive gene expression profile of putative human epithelial stem cells and their progeny that were isolated directly from neonatal foreskin tissue. Our study is important for understanding self renewal and differentiation of epidermal stem cells, and for elucidating signaling pathways involved in those processes. The generated data base may serve those working with other human epithelial tissue progenitors.
Collapse
Affiliation(s)
- Salih S Koçer
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY, USA.
| | | | | | | | | |
Collapse
|
11
|
Gho CG, Neumann HM. Hair Transplantation of Plucked Hair Biopsies. Dermatol Surg 2008. [DOI: 10.1111/j.1524-4725.2001.01168.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Commo S, Gaillard O, Bernard B. The human hair follicle contains two distinct K19 positive compartments in the outer root sheath: a unifying hypothesis for stem cell reservoir? Differentiation 2008. [DOI: 10.1111/j.1432-0436.2000.660401.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Paus R, Arck P, Tiede S. (Neuro-)endocrinology of epithelial hair follicle stem cells. Mol Cell Endocrinol 2008; 288:38-51. [PMID: 18423849 DOI: 10.1016/j.mce.2008.02.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 12/17/2022]
Abstract
The hair follicle is a repository of different types of somatic stem cells. However, even though the hair follicle is both a prominent target organ and a potent, non-classical site of production and/or metabolism of numerous polypetide- and steroid hormones, neuropeptides, neurotransmitters and neurotrophins, the (neuro-)endocrine controls of hair follicle epithelial stem cell (HFeSC) biology remain to be systematically explored. Focussing on HFeSCs, we attempt here to offer a "roadmap through terra incognita" by listing key open questions, by exploring endocrinologically relevant HFeSC gene profiling and mouse genomics data, and by sketching several clinically relevant pathways via which systemic and/or locally generated (neuro-)endocrine signals might impact on HFeSC. Exemplarily, we discuss, e.g. the potential roles of glucocorticoid and vitamin D receptors, the hairless gene product, thymic hormones, bone morphogenic proteins (BMPs) and their antagonists, and Skg-3 in HFeSC biology. Furthermore, we elaborate on the potential role of nerve growth factor (NGF) and substance P-dependent neurogenic inflammation in HFeSC damage, and explore how neuroendocrine signals may influence the balance between maintenance and destruction of hair follicle immune privilege, which protects these stem cells and their progeny. These considerations call for a concerted research effort to dissect the (neuro-)endocrinology of HFeSCs much more systematically than before.
Collapse
Affiliation(s)
- Ralf Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | | | | |
Collapse
|
14
|
Braun KM, Prowse DM. Distinct epidermal stem cell compartments are maintained by independent niche microenvironments. ACTA ACUST UNITED AC 2007; 2:221-31. [PMID: 17625258 DOI: 10.1007/s12015-006-0050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/17/2022]
Abstract
The mammalian epidermis is a stratified, multilayered epithelium, consisting of the interfollicular epidermis and associated appendages, which extend into the dermis and include hair follicles, sebaceous glands, and sweat glands. Stem cells are essential for the maintenance of this tissue and are also potential sources of multipotent adult precursor cells. Stem cell populations occupying specific locations or niches have been identified in the interfollicular epidermis, the hair follicle and the sebaceous gland. Recent research has focused on how the stem cell niches provide specific sites where stem cells can reside indefinitely and undergo self-renewal or differentiation into specific cell lineages, as required for epidermal replenishment or hair follicle growth.
Collapse
Affiliation(s)
- Kristin M Braun
- Centre for Cutaneous Research, Barts and The London Queen Mary's School of Medicine and Dentistry, Institute of Cell and Molecular Science, 4 Newark Street, London E1 2AT
| | | |
Collapse
|
15
|
Ohyama M. Advances in the Study of Stem-Cell-Enriched Hair Follicle Bulge Cells: A Review Featuring Characterization and Isolation of Human Bulge Cells. Dermatology 2007; 214:342-51. [PMID: 17460410 DOI: 10.1159/000100889] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hair follicles repeatedly regress and reconstitute themselves, suggesting the presence of intrinsic tissue stem cells. Using label-retaining cell technique to detect slow-cycling stem cells, hair follicle stem cells were detected in the bulge region of the outer root sheath, which provides the insertion point for the arrector pili muscle and marks the bottom of the permanent portion of hair follicles. Later studies elucidated important stem cell characteristics of the bulge cells, including high proliferative capacity and multipotency to regenerate the pilosebaceous unit as well as epidermis. Isolation of living bulge cells is now feasible. In addition, microarray analyses revealed the global gene expression profile of the bulge cells. However, most of those studies were performed in mouse hair follicles and our understanding of human bulge cells has been limited. Recently, remarkable progress was made in human bulge cell biology. The morphologically ill-defined human bulge boundary was precisely determined by the distribution of label-retaining cells. Laser capture microdissection enabled accurate isolation of human bulge cells and control cell populations. Microarray comparison analyses between isolated bulge and nonbulge cells elucidated the molecular signature of human bulge cells and identified cell surface markers for living bulge cell isolation. Importantly, isolated living human bulge cells demonstrated stem cell characteristics in vitro. In this review, recent advances in hair follicle bulge cell research are summarized, especially focusing on the characterization and isolation of human bulge cells.
Collapse
Affiliation(s)
- Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
16
|
Nel-Themaat L, Gómez MC, Damiani P, Wirtu G, Dresser BL, Bondioli KR, Lyons LA, Pope CE, Godke RA. Isolation, culture and characterisation of somatic cells derived from semen and milk of endangered sheep and eland antelope. Reprod Fertil Dev 2007; 19:576-84. [PMID: 17524303 DOI: 10.1071/rd06153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 03/19/2007] [Indexed: 11/23/2022] Open
Abstract
Semen and milk are potential sources of somatic cells for genome banks. In the present study, we cultured and characterised cells from: (1) cooled sheep milk; (2) fresh, cooled and frozen–thawed semen from Gulf Coast native (GCN) sheep (Ovis aries); and (3) fresh eland (Taurotragus oryx) semen. Cells attached to the culture surface from fresh (29%), cooled (43%) and slow-frozen (1°C/min; 14%) ram semen, whereas no attachment occurred in the fast-frozen (10°C/min) group. Proliferation occurred in fresh (50%) and cooled (100%) groups, but no cells proliferated after passage 1 (P1). Eland semen yielded cell lines (100%) that were cryopreserved at P1. In samples from GCN and cross-bred milk, cell attachment (83% and 95%, respectively) and proliferation (60% and 37%, respectively) were observed. Immunocytochemical detection of cytokeratin indicated an epithelial origin of semen-derived cells, whereas milk yielded either fibroblasts, epithelial or a mixture of cell types. Deoxyribonucleic acid microsatellite analysis using cattle-derived markers confirmed that eland cells were from the semen donor. Eland epithelial cells were transferred into eland oocytes and 12 (71%), six (35%) and two (12%) embryos cleaved and developed to morulae or blastocyst stages, respectively. In conclusion, we have developed a technique for obtaining somatic cells from semen. We have also demonstrated that semen-derived cells can serve as karyoplast donors for nuclear transfer.
Collapse
Affiliation(s)
- L Nel-Themaat
- Department of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Camidge DR, Pemberton M, Growcott J, Amakye D, Wilson D, Swaisland H, Forder C, Wilkinson R, Byth K, Hughes A. A phase I pharmacodynamic study of the effects of the cyclin-dependent kinase-inhibitor AZD5438 on cell cycle markers within the buccal mucosa, plucked scalp hairs and peripheral blood mononucleocytes of healthy male volunteers. Cancer Chemother Pharmacol 2006; 60:479-88. [PMID: 17143601 DOI: 10.1007/s00280-006-0387-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 11/06/2006] [Indexed: 11/24/2022]
Abstract
PURPOSE AZD5438 is a novel, orally bioavailable, cyclin-dependent kinase (CDK) inhibitor demonstrating preclinical pharmacodynamic (PD) effects on CDK substrates and active growth inhibition of human tumour xenografts. Clinical pharmacokinetic (PK) data shows its plasma t1/2 to be 1-3 h. The main purpose of the current study was to evaluate PD activity of single oral doses of AZD5438 in healthy volunteers. Twelve healthy male subjects received 10, 40 or 60 mg AZD5438 or placebo in a rotating placebo crossover study design. Rapidly proliferating normal tissues [buccal mucosa, peripheral blood mononucleocytes (PBMCs) and plucked scalp hair] were sampled pre-dosing, 1.5 h (tmax), +/-6 h post-dosing. The primary PD endpoint, phospho-retinoblastoma protein (pRb) levels in buccal biopsies (unit length labelling index) assessed by immunohistochemistry, was used as a biomarker of CDK activity. RESULTS Phospho-pRb levels were demonstrated to decrease in an epitope, dose- and time-dependent manner. Statistically significant reductions in the ratio phospho-pRb/total pRb were detected at 1.5 h post-dose compared to placebo for both 40 mg [S807-S811 epitope geometric least-squares mean (glsmean) ratio = 0.75, P = 0.014] and 60 mg AZD5438 (S807-S811 epitope glsmean ratio = 0.74, P = 0.011; T821 epitope glsmean ratio = 0.72, P = 0.031). No statistically significant differences were noted at 6 h post-dosing, indicating a close PK-PD relationship between AZD5438 and target inhibition. No effects attributable to AZD5438 were detectable on phospho-p27, p27, Ki67 in the buccal mucosa; or on phospho-pRb (S249-T252 epitope), phospho-p27 or Ki67 in the sheath cells of plucked scalp hair, raising issues about the appropriateness of different detection methods/tissues for use as PD biomarkers. In ex vivo stimulated PBMCs, statistically and near-statistically significant anti-proliferative effects, with the suggestion of a dose-response effect, were noted on the incorporation of [3H]-thymidine (stimulated/non-stimulated) at 10, 40 and 60 mg, compared to placebo, at 1.5 h post-dosing (glsmean ratio = 0.65, P = 0.019; 0.70, P = 0.056; 0.51, P = 0.001, respectively). CONCLUSIONS The modest PD effect, short plasma t1/2 and close PK-PD relationship suggest that multiple daily dosing or sustained release formulations at higher doses will be necessary for AZD5438 to achieve sustained inhibition of CDK in human cancers.
Collapse
Affiliation(s)
- D Ross Camidge
- Edinburgh Cancer Centre, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Putative epithelial stem cells were identified in the hair follicle bulge as quiescent "label retaining cells". The study of these cells was hindered until the identification of bulge cell molecular markers, such as CD34 expression and K15 promoter activity. This allowed for the isolation and characterization of bulge cells from mouse follicles. Bulge cells possess stem cell characteristics, including multipotency, high proliferative potential, and their cardinal feature of quiescence. Lineage analysis demonstrated that all epithelial layers within the adult follicle and hair originated from bulge cells. Bulge cells only contribute to the epidermis during wound healing, but after isolation, when combined with neonatal dermal cells, they regenerate new hair follicles, epidermis, and sebaceous glands. Bulge cells maintain their stem cell characteristics after propagation in vitro, thus ultimately they may be useful for tissue engineering applications. Understanding the signals important for directing movement and differentiation of bulge cells into different lineages will be important for developing treatments based on stem cells as well as clarifying their role in skin disease.
Collapse
Affiliation(s)
- George Cotsarelis
- Department of Dermatology, Kligman Laboratories, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
19
|
Ohyama M, Terunuma A, Tock CL, Radonovich MF, Pise-Masison CA, Hopping SB, Brady JN, Udey MC, Vogel JC. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 2006; 116:249-60. [PMID: 16395407 PMCID: PMC1323261 DOI: 10.1172/jci26043] [Citation(s) in RCA: 457] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 10/11/2005] [Indexed: 12/17/2022] Open
Abstract
The human hair follicle bulge is an important niche for keratinocyte stem cells (KSCs). Elucidation of human bulge cell biology could be facilitated by analysis of global gene expression profiles and identification of unique cell-surface markers. The lack of distinctive bulge morphology in human hair follicles has hampered studies of bulge cells and KSCs. In this study, we determined the distribution of label-retaining cells to define the human anagen bulge. Using navigated laser capture microdissection, bulge cells and outer root sheath cells from other follicle regions were obtained and analyzed with cDNA microarrays. Gene transcripts encoding inhibitors of WNT and activin/bone morphogenic protein signaling were overrepresented in the bulge, while genes responsible for cell proliferation were underrepresented, consistent with the existence of quiescent noncycling KSCs in anagen follicles. Positive markers for bulge cells included CD200, PHLDA1, follistatin, and frizzled homolog 1, while CD24, CD34, CD71, and CD146 were preferentially expressed by non-bulge keratinocytes. Importantly, CD200+ cells (CD200hiCD24loCD34loCD71loCD146lo) obtained from hair follicle suspensions demonstrated high colony-forming efficiency in clonogenic assays, indicating successful enrichment of living human bulge stem cells. The stem cell behavior of enriched bulge cells and their utility for gene therapy and hair regeneration will need to be assessed in in vivo assays.
Collapse
Affiliation(s)
- Manabu Ohyama
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang Y, Xiang M, Wang Y, Yan J, Zeng Y, Yu J, Yang T. Bulge cells of human hair follicles: segregation, cultivation and properties. Colloids Surf B Biointerfaces 2006; 47:50-6. [PMID: 16387478 DOI: 10.1016/j.colsurfb.2005.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 10/12/2005] [Accepted: 11/21/2005] [Indexed: 11/22/2022]
Abstract
The bulge region of hair follicle has been reported as a putative reservoir of hair follicle stem cell (HFSC) for years; however, few studies were done about the characteristics of bulge-originated cells in vitro up to now. In this experiment, the bulge cells isolated from human hair follicles by enzymatic digestion and microdissection were cultured and passaged, and the morphological and biological features of cultured bulge cells were investigated by microscopy and immunocytochemistry. The result showed that new-proliferated cells could be observed on the second day after inoculation, and the quantity of the cells with a greater proliferation potential, reached a peak at the 6th day and maintained this higher level for several days. The mitotic figures of bulge cells were seen and these cells showed undifferentiated morphologic features. The bulge cells strongly expressed K19 and beta1-integrin, which are the markers of HFSC, in a descensive way with the culture time. The result indicates that the cultured bulge cell from human hair follicle possesses the properties of primitive cells and supports the hypothesis that HFSC resides in the bulge area.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, PR China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Camidge DR, Randall KR, Foster JR, Sadler CJ, Wright JA, Soames AR, Laud PJ, Smith PD, Hughes AM. Plucked human hair as a tissue in which to assess pharmacodynamic end points during drug development studies. Br J Cancer 2005; 92:1837-41. [PMID: 15886708 PMCID: PMC2361775 DOI: 10.1038/sj.bjc.6602558] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
We have demonstrated the feasibility of detecting and quantifying six cell-cycle-related nuclear markers (Ki67, pRb, p27, phospho-p27 (phosphorylated p27), phospho-pRb (phosphorylated pRb), phospho-HH3 (phosphorylated histone H3)) in plucked human scalp and eyebrow hair. Estimates of the proportion of plucked hairs that are lost or damaged during processing plus the intra- and intersubject variability of each nuclear marker with these techniques are provided to inform sizing decisions for intervention studies with drugs potentially impacting on these markers in the future.
Collapse
Affiliation(s)
- D R Camidge
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh EH4 2XU, UK
| | - K R Randall
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - J R Foster
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - C J Sadler
- Syngenta, CTL, Alderley Park, Macclesfield, Cheshire SK10 4TJ, UK
| | - J A Wright
- Syngenta, CTL, Alderley Park, Macclesfield, Cheshire SK10 4TJ, UK
| | - A R Soames
- Syngenta, CTL, Alderley Park, Macclesfield, Cheshire SK10 4TJ, UK
| | - P J Laud
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - P D Smith
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK. E-mail:
| | - A M Hughes
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| |
Collapse
|
22
|
Ghali L, Wong ST, Tidman N, Quinn A, Philpott MP, Leigh IM. Epidermal and Hair Follicle Progenitor Cells Express Melanoma-Associated Chondroitin Sulfate Proteoglycan Core Protein. J Invest Dermatol 2004; 122:433-42. [PMID: 15009727 DOI: 10.1046/j.0022-202x.2004.22207.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Basal keratinocytes in the epidermis and hair follicle are biologically heterogeneous but must include a stable subpopulation of epidermal stem cells. In animal models these can be identified by their retention of radioactive label due to their slow cycle (label-retaining cells) but human studies largely depend on in vitro characterization of colony forming efficiency and clonogenicity. Differential integrin expression has been used to detect cells of increased proliferative potential but further stem cell markers are urgently required for in vivo and in vitro characterization. Using LHM2, a monoclonal antibody reacting with a high molecular weight melanoma-associated proteoglycan core protein, a subset of basal keratinocytes in both the interfollicular epidermis and the hair follicle has been identified. Coexpression of melanoma-associated chondroitin sulfate proteoglycan with keratins 15 and 19 as well as beta 1 and alpha 6 integrins has been examined in adult and fetal human skin from hair bearing, nonhair bearing, and palmoplantar regions. Although melanoma-associated chondroitin sulfate proteoglycan coexpression with a subset of beta 1 integrin bright basal keratinocytes within the epidermis suggests that melanoma-associated chondroitin sulfate proteoglycan colocalizes with epidermal stem cells, melanoma-associated chondroitin sulfate proteoglycan expression within the hair follicle was more complex and multiple subpopulations of basal outer root sheath keratinocytes are described. These data suggest that epithelial compartmentalization of the outer root sheath is more complex than interfollicular epidermis and further supports the hypothesis that more than one hair follicle stem cell compartment may exist.
Collapse
Affiliation(s)
- Lucy Ghali
- Center for Cutaneous Research, Barts, and the London, Queen Mary's School of Medicine and Dentistry, London, UK
| | | | | | | | | | | |
Collapse
|
23
|
Botchkarev VA, Paus R. Molecular biology of hair morphogenesis: development and cycling. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 298:164-80. [PMID: 12949776 DOI: 10.1002/jez.b.33] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, hair follicles produce hairs that fulfill a number of functions including thermoregulation, collecting sensory information, protection against environmental trauma, social communication, and mimicry. Hair follicles develop as a result of epithelial-mesenchymal interactions between epidermal keratinocytes committed to hair-specific differentiation and cluster of dermal fibroblasts that form follicular papilla. During postnatal life, hair follicles show patterns of cyclic activity with periods of active growth and hair production (anagen), apoptosis-driven involution (catagen), and relative resting (telogen). During last decade, substantial progress has been achieved in delineating molecular mechanisms that control hair follicle development and cyclic activity. In this review, we summarize the data demonstrating that regulation of hair follicle development in the embryo and control of hair follicle growth during postnatal life are highly conserved and both require involvement of similar molecular mechanisms. Since many of the molecules that control hair follicle development and cycling are also involved in regulating morphogenesis and postnatal biology of other ectodermal derivatives, such as teeth, feathers, and mammary glands, basic principles and molecular mechanisms that govern hair follicle development and growth may also be applicable for other developmental systems.
Collapse
|
24
|
Abstract
There is still extensive disparity in our understanding of how estrogens exert their actions, particularly in non-reproductive tissues such as the skin. Although it has been recognized for some time that estrogens have significant effects on many aspects of skin physiology and pathophysiology, studies on estrogen action in skin have been limited. However, estrogens clearly have an important function in many components of human skin including the epidermis, dermis, vasculature, hair follicle and the sebaceous, eccrine and apocrine glands, having significant roles in skin aging, pigmentation, hair growth, sebum production and skin cancer. The recent discovery of a second intracellular estrogen receptor (ERbeta) with different cell-specific roles to the classic estrogen receptor (ERalpha), and the identification of cell surface estrogen receptors, has provided further challenges to understanding the mechanism of estrogen action. It is now time to readdress many of the outstanding questions regarding the role of estrogens in skin and improve our understanding of the physiology and interaction of steroid hormones and their receptors in human skin. Not only will this lead to a better understanding of estrogen action, but may also provide a basis for further interventions in pathological processes that involve dysregulation of estrogen action.
Collapse
Affiliation(s)
- M J Thornton
- Department of Biomedical Sciences, University of Bradford, Bradford, West Yorkshire, UK.
| |
Collapse
|
25
|
Hair Transplantation of Plucked Hair Biopsies. Dermatol Surg 2001. [DOI: 10.1097/00042728-200110000-00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Lyle S, Christofidou-Solomidou M, Liu Y, Elder DE, Albelda S, Cotsarelis G. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J Cell Sci 1998; 111 ( Pt 21):3179-88. [PMID: 9763512 DOI: 10.1242/jcs.111.21.3179] [Citation(s) in RCA: 365] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stem cells are vital for the homeostasis of self-renewing tissues such as the hair follicle. Epithelial stem cells have been implicated in tumorigenesis and wound healing, and their manipulation may have wide ranging applications including gene therapy and tissue transplantation. Rodent hair follicle stem cells have been localized to an area of the follicle called the bulge, however, the identification and characterization of human hair follicle stem cells has been hampered by a lack of cellular markers for this area. We have determined that the C8/144B monoclonal antibody, originally generated against a short intracytoplasmic peptide of CD8, preferentially immunostains hair follicle bulge keratinocytes without staining the remaining hair follicle. Using expression cloning, we identified cytokeratin 15 as the keratinocyte protein recognized by the C8/144B monoclonal antibody. By delineating the bulge using this antibody, we demonstrated that bulge cells possess a stem cell phenotype characterized by their slowly-cycling nature, preferential proliferation at the onset of new hair follicle growth, high level of beta1 integrin expression, and expression of cytokeratin 19.
Collapse
Affiliation(s)
- S Lyle
- University of Pennsylvania Medical Center, Departments of Pathology and Laboratory Medicine, Medicine and Dermatology, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|