1
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
2
|
Du J, Xue J, Tian X, Luo J, Ömür AD, Yang J, Li Y. Selenium-Enriched Aspergillus oryzae A02 Enhances Testicular Antioxidant Capacity in Mice by Regulating Intestinal Microbiota and Serum Metabolite. Biol Trace Elem Res 2024:10.1007/s12011-024-04496-8. [PMID: 39707080 DOI: 10.1007/s12011-024-04496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Selenium (Se) is a trace element that is essential for health. Organic Se created by Se-enriched microorganisms has the characteristics of low toxicity, high bioavailability, and regulation of physiological functions. Here, the regulatory effect of Se-enriched Aspergillus oryzae A02 on the reproductive function of male mice and its potential molecular mechanism was studied. Specifically, twenty-four male mice were randomly divided into a control group and a Se-enriched A. oryzae A02 (Nano-Se) (daily gavage of 0.5 mg/kg, dissolved in saline) for an 8-week experiment. The results showed that Nano-Se intervention did not affect body weight and testicular index, but increased sperm concentration and seminiferous epithelium height in experimental mice, indicating that Nano-Se has the potential to improve the reproductive performance of male mice. Mechanistically, Nano-Se intervention increased the levels of antioxidant-related indicators catalase (CAT) and glutathione peroxidase (GSH-Px) in mouse serum, and increased the relative mRNA expression of GSH-Px, heme oxygenase-1 (HO-1), and NADPH quinine oxidoreductase-1 (NQO-1) in testicular tissues. We identified 9,10,13-trihydroxyoctadecenoic acids (TriHOMEs), stearidonic acid and selenomethionine linked with alpha-linolenic acid metabolism, selenocompound metabolism, folate biosynthesis, ubiquinone, and other terpenoid-quinone biosynthesis and biosynthesis of cofactors. In addition, Nano-Se did not influence the fecal bacterial alpha and beta diversity (P > 0.05), but increased the abundance of the Actinobacteriota and Proteobacteria phyla and the Staphylococcus and Corynebacterium genera, and lowered the abundance of the Bacteroidota phylum and the Lactobacillus and norank_f_Muribaculaceae genera. Nano-Se is considered a novel and promising nutritional regulator to improve reproductive function.
Collapse
Affiliation(s)
- Jiajun Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junyu Xue
- College of Clinical Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xutong Tian
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
| | - Juyue Luo
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
| | - Ali Doğan Ömür
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Atatürk University, Erzurum, 25240, Türkiye
| | - Jianying Yang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China.
| |
Collapse
|
3
|
Smirnova EO, Lantsova NV, Hamberg M, Toporkova YY, Grechkin AN. The versatile CYP74 clan enzyme CYP440A19 from the European lancelet Branchiostoma lanceolatum biosynthesizes novel macrolactone, epoxydiene, and related oxylipins. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159507. [PMID: 38740178 DOI: 10.1016/j.bbalip.2024.159507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The present work reports the detection and cloning of a new CYP74 clan gene of the European lancelet (Branchiostoma lanceolatum) and the biochemical characterization of the recombinant protein CYP440A19. CYP440A19 possessed epoxyalcohol synthase (EAS) activity towards the 13-hydroperoxides of linoleic and α-linolenic acids, which were converted into oxiranylcarbinols, i.e., (11S,12R,13S)-11-hydroxy-12,13-epoxy derivatives. The conversion of 9-hydroperoxides produced distinct products. Linoleic acid 9(S)-hydroperoxide (9-HPOD) was mainly converted into 9,14-diol (10E,12E)-9,14-dihydroxy-10,12-octadecadienoic acid and macrolactone 9(S),10(R)-epoxy-11(E)-octadecen-13(S)-olide. In addition, (8Z)-colneleic acid was formed. Brief incubations of the enzyme with 9-HPOD in a biphasic system of hexane-water enabled the isolation of the short-lived 9,10-epoxydiene (9S,10R,11E,13E)-9,10-epoxy-11,13-octadecadienoic acid. The structure and stereochemistry of the epoxyalcohols, macrolactone, (8Z)-colneleic acid (Me), and 9,10-epoxydiene (Me) were confirmed by 1H-NMR, 1H-1H-COSY, 1H-13C-HSQC, and 1H-13C-HMBC spectroscopy. Macrolactone and cis-9,10-epoxydiene are novel products. The 9-hydroperoxide of α-linolenic acid was mainly converted into macrolactone 9(S),10(R)-epoxy-11(E),15(Z)-octadecadiene-13(S)-olide and a minority of divinyl ethers, particularly (8Z)-colnelenic acid. The versatility of enzyme catalysis, as well as the diversity of CYP74s and other enzymes involved in oxylipin biosynthesis, demonstrates the complexity of the lipoxygenase pathway in lancelets.
Collapse
Affiliation(s)
- Elena O Smirnova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia.
| | - Natalia V Lantsova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Mats Hamberg
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia.
| |
Collapse
|
4
|
Song C, Zhang T, Xu D, Zhu M, Mei S, Zhou B, Wang K, Chen C, Zhu E, Cheng Z. Impact of feeding dried distillers' grains with solubles diet on microbiome and metabolome of ruminal and cecal contents in Guanling yellow cattle. Front Microbiol 2023; 14:1171563. [PMID: 37789852 PMCID: PMC10543695 DOI: 10.3389/fmicb.2023.1171563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Dried distillers' grains with solubles (DDGS) are rich in nutrients, and partially alternative feeding of DDGS effectively reduces cost of feed and improves animals' growth. We used 16S rDNA gene sequencing and LC/MS-based metabolomics to explore the effect of feeding cattle with a basal diet (BD) and a Jiang-flavor DDGS diet (replaces 25% concentrate of the diet) on microbiome and metabolome of ruminal and cecal contents in Guanling yellow cattle. The results showed that the ruminal and cecal contents shared the same dominance of Bacteroidetes, Firmicutes and Proteobacteria in two groups. The ruminal dominant genera were Prevotella_1, Rikenellaceae_RC9_gut_group, and Ruminococcaceae_UCG-010; and the cecal dominant genera were Ruminococcaceae_UCG-005, Ruminococcaceae_UCG-010, and Rikenellaceae_RC9_gut_group. Linear discriminant analysis effect size analysis (LDA > 2, P < 0.05) revealed the significantly differential bacteria enriched in the DDGS group, including Ruminococcaceae_UCG_012, Prevotellaceae_UCG_004 and Anaerococcus in the ruminal contents, which was associated with degradation of plant polysaccharides. Besides, Anaerosporobacter, Anaerovibrio, and Caproiciproducens in the cecal contents were involved in fatty acid metabolism. Compared with the BD group, 20 significantly different metabolites obtained in the ruminal contents of DDGS group were down-regulated (P < 0.05), and based on them, 4 significantly different metabolic pathways (P < 0.05) were enriched including "Linoleic acid metabolism," "Biosynthesis of unsaturated fatty acids," "Taste transduction," and "Carbohydrate digestion and absorption." There were 65 significantly different metabolites (47 were upregulated, 18 were downregulated) in the cecal contents of DDGS group when compared with the BD group, and 4 significantly different metabolic pathways (P < 0.05) were enriched including "Longevity regulating pathway," "Bile secretion," "Choline metabolism in cancer," and "HIF-1 signaling pathway." Spearman analysis revealed close negative relationships between the top 20 significantly differential metabolites and Anaerococcus in the ruminal contents. Bacteria with high relevance to cecal differential metabolites were Erysipelotrichaceae_UCG-003, Dielma, and Solobacterium that affect specific metabolic pathways in cattle. Collectively, our results suggest that feeding cattle with a DDGS diet improves the microbial structure and the metabolic patterns of lipids and carbohydrates, thus contributing to the utilization efficiency of nutrients and physical health to some extent. Our findings will provide scientific reference for the utilization of DDGS as feed in cattle industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Erpeng Zhu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Keyes GS, Maiden K, Ramsden CE. Stable analogs of 13‑hydroxy-9,10-trans-epoxy-(11E)-octadecenoate (13,9-HEL), an oxidized derivative of linoleic acid implicated in the epidermal skin barrier. Prostaglandins Leukot Essent Fatty Acids 2021; 174:102357. [PMID: 34749189 PMCID: PMC8595794 DOI: 10.1016/j.plefa.2021.102357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/02/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022]
Abstract
Hydroxy-epoxy- and trihydroxy derivatives of linoleic acid are proposed to play an essential function in formation of the mammalian skin permeability barrier, which could account for the essential nature of its precursor, linoleic acid. Recent literature suggests that a specific oxidized enone derivative of LA esterified in ceramides facilitates binding to proteins, potentially serving a structural role in formation of the epidermal skin barrier. However, it is still to be established if other linoleic acid derivatives are also required for skin barrier formation, and whether the essential role is performed exclusively by an esterified, structural lipid or as an unesterified, labile signaling lipid, or by some combination of these derivatives. Progress in this domain is limited by lack of availability of hydroxy‑epoxy-and trihydroxy- and octadecenoate derivatives of linoleic acid and related compounds, and challenges in maintaining them in the unesterified lipid pool. Here we describe methods for the total synthesis of hydroxy‑epoxy-octadecenoate derivatives of linoleic acid (HEL1), and stable analogs that are designed to be resistant to inactivation by: (a) acylation/esterification (thus trapping these lipids in the free acid pool), (b) dehydrogenation, and (c) analogs combining both modifications. We further provide a total synthesis of corresponding hydroxy‑epoxy- derivatives of sebaleic acid (a regioisomer of linoleic acid present in skin), and of small molecule scaffolds containing the allylic and non-allylic epoxide 7-carbon substructures shared by both families of hydroxy‑epoxy-and trihydroxy- octadecenoates. Finally, we demonstrate that 2,2-dimethyl analogs of hydroxy‑epoxy-and trihydroxy- octadecenoates are resistant to esterification with an in vitro assay and thus provide a novel template for stabilizing labile, bioactive lipids as free acids by preventing acylation/esterification.
Collapse
Affiliation(s)
- Gregory S Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD, 21224, USA.
| | - Kristen Maiden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD, 21224, USA; Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Detection of the First Epoxyalcohol Synthase/Allene Oxide Synthase (CYP74 Clan) in the Lancelet ( Branchiostoma belcheri, Chordata). Int J Mol Sci 2021; 22:ijms22094737. [PMID: 33947016 PMCID: PMC8124189 DOI: 10.3390/ijms22094737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/04/2022] Open
Abstract
The CYP74 clan cytochromes (P450) are key enzymes of oxidative metabolism of polyunsaturated fatty acids in plants, some Proteobacteria, brown and green algae, and Metazoa. The CYP74 enzymes, including the allene oxide synthases (AOSs), hydroperoxide lyases, divinyl ether synthases, and epoxyalcohol synthases (EASs) transform the fatty acid hydroperoxides to bioactive oxylipins. A novel CYP74 clan enzyme CYP440A18 of the Asian (Belcher’s) lancelet (Branchiostoma belcheri, Chordata) was biochemically characterized in the present work. The recombinant CYP440A18 enzyme was active towards all substrates used: linoleate and α-linolenate 9- and 13-hydroperoxides, as well as with eicosatetraenoate and eicosapentaenoate 15-hydroperoxides. The enzyme specifically converted α-linolenate 13-hydroperoxide (13-HPOT) to the oxiranyl carbinol (9Z,11R,12R,13S,15Z)-11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid (EAS product), α-ketol, 12-oxo-13-hydroxy-9,15-octadecadienoic acid (AOS product), and cis-12-oxo-10,15-phytodienoic acid (AOS product) at a ratio of around 35:5:1. Other hydroperoxides were converted by this enzyme to the analogous products. In contrast to other substrates, the 13-HPOT and 15-HPEPE yielded higher proportions of α-ketols, as well as the small amounts of cyclopentenones, cis-12-oxo-10,15-phytodienoic acid and its higher homologue, dihomo-cis-12-oxo-3,6,10,15-phytotetraenoic acid, respectively. Thus, the CYP440A18 enzyme exhibited dual EAS/AOS activity. The obtained results allowed us to ascribe a name “B. belcheri EAS/AOS” (BbEAS/AOS) to this enzyme. BbEAS/AOS is a first CYP74 clan enzyme of Chordata species possessing AOS activity.
Collapse
|
7
|
Fuchs D, Tang X, Johnsson AK, Dahlén SE, Hamberg M, Wheelock CE. Eosinophils synthesize trihydroxyoctadecenoic acids (TriHOMEs) via a 15-lipoxygenase dependent process. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158611. [PMID: 31918007 DOI: 10.1016/j.bbalip.2020.158611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/04/2019] [Accepted: 12/31/2019] [Indexed: 11/17/2022]
Abstract
Trihydroxyoctadecenoic acids (TriHOMEs) are linoleic acid-derived lipid mediators reported to be dysregulated in obstructive lung disease. In contrast to many other oxylipins, TriHOME biosynthesis in humans is still poorly understood. The association of TriHOMEs with inflammation prompted the current investigation into the ability of human granulocytes to synthesize the 16 different 9,10,13-TriHOME and 9,12,13-TriHOME isomers and of the TriHOME biosynthetic pathway. Following incubation with linoleic acid, eosinophils and (to a lesser extent) the mast cell line LAD2, but not neutrophils, formed TriHOMEs. Stereochemical analysis revealed that TriHOMEs produced by eosinophils predominantly evidenced the 13(S) configuration, suggesting 15-lipoxygenase (15-LOX)-mediated synthesis. TriHOME formation was blocked following incubation with the 15-LOX inhibitor BLX-3887 and was shown to be largely independent of soluble epoxide hydrolase and cytochrome P450 activities. TriHOME synthesis was abolished when linoleic acid was replaced with 13-HODE, but increased in incubations with 13-HpODE, indicating the intermediary role of epoxy alcohols in TriHOME formation. In contrast to eosinophils, LAD2 cells formed TriHOMEs having predominantly the 13(R) configuration, demonstrating that there are multiple synthetic routes for TriHOME formation. These findings provide for the first-time insight into the synthetic route of TriHOMEs in humans and expand our understanding of their formation in inflammatory diseases.
Collapse
Affiliation(s)
- David Fuchs
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiao Tang
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Karin Johnsson
- Unit of Lung and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Unit of Lung and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats Hamberg
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
He Z, Sleighter RL, Hatcher PG, Liu S, Wu F, Zou H, Olanya OM. Molecular level comparison of water extractives of maple and oak with negative and positive ion ESI FT-ICR mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:655-666. [PMID: 31177597 DOI: 10.1002/jms.4379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Soluble extractives in wood function to protect living trees from destructive agents and also contribute to wood color and fragrance. Some extractive components have biological activities with medical applications. They also play important roles in wood processing and related applications. To increase the knowledge of wood chemistry, maple and oak were extracted by water. Ultraviolet/visible (UV/vis) spectroscopy indicated the presence of a phenolic compound, resorcinol, in maple extractives having higher molecular mass and more aromatic components than oak extractives. Negative and positive electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) identified thousands of formulas in the two samples in the m/z range of 200 to 800. They mainly fall into the lignin-like, carbohydrate-like, and tannin-like compound categories. The top 25 peaks (ie, formulas) with the highest relative magnitude in negative ESI represented nearly 50% of the summed total spectral magnitude of all formulas assigned in the maple and oak extractives. Furthermore, the base peak (ie, most abundant peak) accounted for about 14% of the total abundance in each wood sample. Literature comparisons identified 17 of 20 formulas in the top five peaks of the four spectra as specific bioactive compounds in trees and other plants, implying the potential to explore utilization of maple and oak extractives for functional and medicinal applications. The various profiling of the top 25 peaks from the two samples also suggested the possible application of FT-ICR-MS for detecting chemical markers useful in profiling and identification of wood types and sources.
Collapse
Affiliation(s)
- Zhongqi He
- Southern Regional Research Center, USDA Agricultural Research Service, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Rachel L Sleighter
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Patrick G Hatcher
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Shasha Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haixuan Zou
- Department of Chemical and Biological Engineering, the University of Maine, Orono, ME, 04469, USA
| | - O Modesto Olanya
- Eastern Regional Research Center, USDA Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| |
Collapse
|
9
|
Fuchs D, Hamberg M, Sköld CM, Wheelock ÅM, Wheelock CE. An LC-MS/MS workflow to characterize 16 regio- and stereoisomeric trihydroxyoctadecenoic acids. J Lipid Res 2018; 59:2025-2033. [PMID: 30065010 DOI: 10.1194/jlr.d087429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/28/2018] [Indexed: 12/15/2022] Open
Abstract
Trihydroxyoctadecenoic acids (TriHOMEs) are linoleic acid-derived oxylipins with potential physiological relevance in inflammatory processes as well as in maintaining an intact skin barrier. Due to the high number of possible TriHOME isomers with only subtle differences in their physicochemical properties, the stereochemical analysis is challenging and usually involves a series of laborious analytical procedures. We herein report a straightforward analytical workflow that includes reversed-phase ultra-HPLC-MS/MS for rapid quantification of 9,10,13- and 9,12,13-TriHOME diastereomers and a chiral LC-MS method capable of resolving all sixteen 9,10,13-TriHOME and 9,12,13-TriHOME regio- and stereoisomers. We characterized the workflow (accuracy, 98-120%; precision, coefficient of variation ≤6.1%; limit of detection, 90-98 fg on column; linearity, R2 = 0.998) and used it for stereochemical profiling of TriHOMEs in bronchoalveolar lavage fluid (BALF) of individuals with chronic obstructive pulmonary disease (COPD). All TriHOME isomers were increased in the BALF of COPD patients relative to that of smokers (P ≤ 0.06). In both COPD patients and smokers with normal lung function, TriHOMEs with the 13(S) configuration were enantiomerically enriched relative to the corresponding 13(R) isomers, suggesting at least partial enzymatic control of TriHOME synthesis. This method will be useful for understanding the synthetic sources of these compounds and for elucidating disease mechanisms.
Collapse
Affiliation(s)
- David Fuchs
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden
| | - C Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden.,Lung-Allergy Clinic, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine (CMM), Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Toporkova YY, Gorina SS, Mukhitova FK, Hamberg M, Ilyina TM, Mukhtarova LS, Grechkin AN. Identification of CYP443D1 (CYP74 clan) of Nematostella vectensis as a first cnidarian epoxyalcohol synthase and insights into its catalytic mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1099-1109. [PMID: 28774820 DOI: 10.1016/j.bbalip.2017.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/16/2017] [Accepted: 07/29/2017] [Indexed: 01/08/2023]
Abstract
The CYP74 clan enzymes are responsible for the biosynthesis of numerous bioactive oxylipins in higher plants, some Proteobacteria, brown and green algae, and Metazoa. A novel putative CYP74 clan gene CYP443D1 of the starlet sea anemone (Nematostella vectensis, Cnidaria) has been cloned, and the properties of the corresponding recombinant protein have been studied in the present work. The recombinant CYP443D1 was incubated with the 9- and 13-hydroperoxides of linoleic and α-linolenic acids (9-HPOD, 13-HPOD, 9-HPOT, and 13-HPOT, respectively), as well as with the 9-hydroperoxide of γ-linolenic acid (γ-9-HPOT) and 15-hydroperoxide of eicosapentaenoic acid (15-HPEPE). The enzyme was active towards all C18-hydroperoxides with some preference to 9-HPOD. In contrast, 15-HPEPE was a poor substrate. The CYP443D1 specifically converted 9-HPOD into the oxiranyl carbinol 1, (9S,10R,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acid. Both 18O atoms from [18O2-hydroperoxy]9-HPOD were virtually quantitatively incorporated into product 1. Thus, the CYP443D1 exhibited epoxyalcohol synthase (EAS) activity. The 18O labelling data demonstrated that the reaction mechanism included three sequential steps: (1) hydroperoxyl homolysis, (2) oxy radical rearrangement into epoxyallylic radical, (3) hydroxyl rebound, resulting in oxiranyl carbinol formation. The 9-HPOT and γ-9-HPOT were also specifically converted into the oxiranyl carbinols, 15,16- and 6,7-dehydro analogues of compound 1, respectively. The 13-HPOD was converted into erythro- and threo-isomers of oxiranyl carbinol, as well as oxiranyl vinyl carbinols. The obtained results allow assignment of the name "N. vectensis EAS" (NvEAS) to CYP443D1. The NvEAS is a first EAS detected in Cnidaria.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Fakhima K Mukhitova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Tatyana M Ilyina
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia.
| |
Collapse
|
11
|
Chiba T, Thomas CP, Calcutt MW, Boeglin WE, O'Donnell VB, Brash AR. The Precise Structures and Stereochemistry of Trihydroxy-linoleates Esterified in Human and Porcine Epidermis and Their Significance in Skin Barrier Function: IMPLICATION OF AN EPOXIDE HYDROLASE IN THE TRANSFORMATIONS OF LINOLEATE. J Biol Chem 2016; 291:14540-54. [PMID: 27151221 PMCID: PMC4938176 DOI: 10.1074/jbc.m115.711267] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/02/2022] Open
Abstract
Creation of an intact skin water barrier, a prerequisite for life on dry land,
requires the lipoxygenase-catalyzed oxidation of the essential fatty acid linoleate,
which is esterified to the ω-hydroxyl of an epidermis-specific ceramide.
Oxidation of the linoleate moiety by lipoxygenases is proposed to facilitate
enzymatic cleavage of the ester bond, releasing free ω-hydroxyceramide for
covalent binding to protein, thus forming the corneocyte lipid envelope, a key
component of the epidermal barrier. Herein, we report the transformations of
esterified linoleate proceed beyond the initial steps of oxidation and epoxyalcohol
synthesis catalyzed by the consecutive actions of 12R-LOX and
epidermal LOX3. The major end product in human and porcine epidermis is a trihydroxy
derivative, formed with a specificity that implicates participation of an epoxide
hydrolase in converting epoxyalcohol to triol. Of the 16 possible triols arising from
hydrolysis of 9,10-epoxy-13-hydroxy-octadecenoates, using LC-MS and chiral analyses,
we identify and quantify specifically
9R,10S,13R-trihydroxy-11E-octadecenoate
as the single major triol esterified in porcine epidermis and the same isomer with
lesser amounts of its 10R diastereomer in human epidermis. The
9R,10S,13R-triol is formed by
SN2 hydrolysis of the
9R,10R-epoxy-13R-hydroxy-octadecenoate
product of the LOX enzymes, a reaction specificity characteristic of epoxide
hydrolase. The high polarity of triol over the primary linoleate products enhances
the concept that the oxidations disrupt corneocyte membrane lipids, promoting release
of free ω-hydroxyceramide for covalent binding to protein and sealing of the
waterproof barrier.
Collapse
Affiliation(s)
| | - Christopher P Thomas
- the Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | - M Wade Calcutt
- Biochemistry and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | | | - Valerie B O'Donnell
- the Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | | |
Collapse
|
12
|
Blée E, Boachon B, Burcklen M, Le Guédard M, Hanano A, Heintz D, Ehlting J, Herrfurth C, Feussner I, Bessoule JJ. The reductase activity of the Arabidopsis caleosin RESPONSIVE TO DESSICATION20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress. PLANT PHYSIOLOGY 2014; 166:109-24. [PMID: 25056921 PMCID: PMC4149700 DOI: 10.1104/pp.114.245316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/22/2014] [Indexed: 05/20/2023]
Abstract
Contrasting with the wealth of information available on the multiple roles of jasmonates in plant development and defense, knowledge about the functions and the biosynthesis of hydroxylated oxylipins remains scarce. By expressing the caleosin RESPONSIVE TO DESSICATION20 (RD20) in Saccharomyces cerevisiae, we show that the recombinant protein possesses an unusual peroxygenase activity with restricted specificity toward hydroperoxides of unsaturated fatty acid. Accordingly, Arabidopsis (Arabidopsis thaliana) plants overexpressing RD20 accumulate the product 13-hydroxy-9,11,15-octadecatrienoic acid, a linolenate-derived hydroxide. These plants exhibit elevated levels of reactive oxygen species (ROS) associated with early gibberellin-dependent flowering and abscisic acid hypersensitivity at seed germination. These phenotypes are dependent on the presence of active RD20, since they are abolished in the rd20 null mutant and in lines overexpressing RD20, in which peroxygenase was inactivated by a point mutation of a catalytic histidine residue. RD20 also confers tolerance against stress induced by Paraquat, Rose Bengal, heavy metal, and the synthetic auxins 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid. Under oxidative stress, 13-hydroxy-9,11,15-octadecatrienoic acid still accumulates in RD20-overexpressing lines, but this lipid oxidation is associated with reduced ROS levels, minor cell death, and delayed floral transition. A model is discussed where the interplay between fatty acid hydroxides generated by RD20 and ROS is counteracted by ethylene during development in unstressed environments.
Collapse
Affiliation(s)
- Elizabeth Blée
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Benoît Boachon
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Michel Burcklen
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Marina Le Guédard
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Abdulsamie Hanano
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Jürgen Ehlting
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Cornelia Herrfurth
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Ivo Feussner
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Jean-Jacques Bessoule
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| |
Collapse
|
13
|
Huang FC, Schwab W. Molecular characterization of NbEH1 and NbEH2, two epoxide hydrolases from Nicotiana benthamiana. PHYTOCHEMISTRY 2013; 90:6-15. [PMID: 23562372 DOI: 10.1016/j.phytochem.2013.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/28/2013] [Indexed: 06/02/2023]
Abstract
Plant epoxide hydrolases (EH) form two major clades, named EH1 and EH2. To gain a better understanding of the biochemical roles of the two classes, NbEH1.1 and NbEH2.1 were isolated from Nicotiana benthamiana and StEH from potato and heterologously expressed in Escherichia coli. The purified recombinant proteins were assayed with a variety of substrates. NbEH1.1 only accepted some aromatic epoxides, and displayed the highest enzyme activity towards phenyl glycidyl ether. In contrast, NbEH2.1 displayed a broad substrate range and similar substrate specificity as StEH. The latter enzymes showed activity towards all fatty acid epoxides examined. The activity (Vmax) of NbEH1.1 towards phenyl glycidyl ether was 10 times higher than that of NbEH2.1. On the contrary, NbEH2.1 converted cis-9,10-epoxystearic acid with Vmax of 3.83μmolminmg(-1) but NbEH1.1 could not hydrolyze cis-9,10-epoxystearic acid. Expression analysis revealed that NbEH1.1 is induced by infection with tobacco mosaic virus (TMV) and wounding, whereas NbEH2.1 is present at a relatively constant level, not influenced by treatment with TMV and wounding. NbEH1.1 transcripts were present predominantly in roots, whereas NbEH2.1 mRNAs were detected primarily in leaves and stems. Overall, these two types of tobacco EH enzymes are distinguished not only by their gene expression, but also by different substrate specificities. EH1 seems not to participate in cutin biosynthesis and it may play a role in generating signals for activation of certain defence and stress responses in tobacco. However, members of the EH2 group hydrate fatty acid epoxides and may be involved in cutin monomer production in plants.
Collapse
Affiliation(s)
- Fong-Chin Huang
- Technische Universität München, Biotechnology of Natural Products, Liesel-Beckmann-Str. 1, Freising D-85354, Germany
| | | |
Collapse
|
14
|
Thomas CP, Boeglin WE, Garcia-Diaz Y, O'Donnell VB, Brash AR. Steric analysis of epoxyalcohol and trihydroxy derivatives of 9-hydroperoxy-linoleic acid from hematin and enzymatic synthesis. Chem Phys Lipids 2013; 167-168:21-32. [PMID: 23352713 DOI: 10.1016/j.chemphyslip.2013.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/06/2012] [Accepted: 01/06/2013] [Indexed: 11/19/2022]
Abstract
We characterize the allylic epoxyalcohols and their trihydroxy hydrolysis products generated from 9R- and 9S-hydroperoxy-octadecenoic acid (HPODE) under non-enzymatic conditions, reaction with hematin and subsequent acid hydrolysis, and enzymatic conditions, incubation with Beta vulgaris containing a hydroperoxide isomerase and epoxide hydrolase. The products were resolved by HPLC and the regio and stereo-chemistry of the transformations were determined through a combination of (1)H NMR and GC-MS analysis of dimethoxypropane derivatives. Four trihydroxy isomers were identified upon mild acid hydrolysis of 9S,10S-trans-epoxy-11E-13S-hydroxyoctadecenoate: 9S,10R,13S, 9S,12R,13S, 9S,10S,13S and 9S,12S,13S-trihydroxy-octadecenoic acids, in the ratio 40:26:22:12. We also identified a prominent δ-ketol rearrangement product from the hydrolysis as mainly the 9-hydroxy-10E-13-oxo isomer. Short incubation (5 min) of 9R- and 9S-HPODE with B. vulgaris extract yielded the 9R- and 9S-hydroxy-10E-12R,13S-cis-epoxy products respectively. Longer incubation (60 min) gave one specific hydrolysis product via epoxide hydrolase, the 9R/S,12S,13S-trihydroxyoctadecenoate. These studies provide a practical approach for the isolation and characterization of allylic epoxy alcohol and trihydroxy products using a combination of HPLC, GC-MS and (1)H NMR.
Collapse
Affiliation(s)
- Christopher P Thomas
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232-6602, USA
| | | | | | | | | |
Collapse
|
15
|
Huang FC, Schwab W. Overexpression of hydroperoxide lyase, peroxygenase and epoxide hydrolase in tobacco for the biotechnological production of flavours and polymer precursors. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1099-109. [PMID: 22967031 DOI: 10.1111/j.1467-7652.2012.00739.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/30/2012] [Accepted: 08/04/2012] [Indexed: 06/01/2023]
Abstract
Plants produce short-chain aldehydes and hydroxy fatty acids, which are important industrial materials, through the lipoxygenase pathway. Based on the information that lipoxygenase activity is up-regulated in tobacco leaves upon infection with tobacco mosaic virus (TMV), we introduced a melon hydroperoxide lyase (CmHPL) gene, a tomato peroxygenase (SlPXG) gene and a potato epoxide hydrolase (StEH) into tobacco leaves using a TMV-based viral vector system to afford aldehyde and hydroxy fatty acid production. Ten days after infiltration, tobacco leaves infiltrated with CmHPL displayed high enzyme activities of 9-LOX and 9-HPL, which could efficiently transform linoleic acid into C(9) aldehydes. Protein extracts prepared from 1 g of CmHPL-infiltrated tobacco leaves (fresh weight) in combination with protein extracts prepared from 1 g of control vector-infiltrated tobacco leaves (as an additional 9-LOX source) produced 758 ± 75 μg total C(9) aldehydes in 30 min. The yield of C(9) aldehydes from linoleic acid was 60%. Besides, leaves infiltrated with SlPXG and StEH showed considerable enzyme activities of 9-LOX/PXG and 9-LOX/EH, respectively, enabling the production of 9,12,13-trihydroxy-10(E)-octadecenoic acid from linoleic acid. Protein extracts prepared from 1 g of SlPXG-infiltrated tobacco leaves (fresh weight) in combination with protein extracts prepared from 1 g of StEH-infiltrated tobacco leaves produced 1738 ± 27 μg total 9,12,13-trihydroxy-10(E)-octadecenoic acid isomers in 30 min. The yield of trihydroxyoctadecenoic acids from linoleic acid was 58%. C(9) aldehydes and trihydroxy fatty acids could likely be produced on a larger scale using this expression system with many advantages including easy handling, time-saving and low production cost.
Collapse
Affiliation(s)
- Fong-Chin Huang
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | | |
Collapse
|
16
|
Selected Extracts of Chinese Herbal Medicines: Their Effect on NF-κB, PPARα and PPARγ and the Respective Bioactive Compounds. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:983023. [PMID: 22675394 PMCID: PMC3366346 DOI: 10.1155/2012/983023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/13/2012] [Indexed: 11/17/2022]
Abstract
Chinese herbal medicinal (CHM) extracts from fourteen plants were investigated in cell-based in vitro assays for their effect on nuclear factor κB (NF-κB), a key regulator of inflammation, as well as on peroxisome proliferator-activated receptors (PPARs) being key regulators of genes involved in lipid and glucose metabolism. 43% of the investigated CHMs showed NF-κB inhibitory and 50% PPARα and PPARγ activating effects. Apolar extracts from cortex and flos of Albizia julibrissin Durazz. and processed rhizomes of Arisaema sp. and Pinellia ternata (Thunb.) Breit. that effectively inhibited TNF-α-induced NF-κB activation and dose-dependently activated PPARα and PPARγ were further investigated. Bioassay-guided fractionation and analysis by GC-MS led to the identification of fatty acids as PPAR agonists, including linoleic and palmitic acid.
Collapse
|
17
|
Efficient and specific conversion of 9-lipoxygenase hydroperoxides in the beetroot. Formation of pinellic acid. Lipids 2011; 46:873-8. [PMID: 21744276 DOI: 10.1007/s11745-011-3592-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
The linoleate 9-lipoxygenase product 9(S)-hydroperoxy-10(E),12(Z)-octadecadienoic acid was stirred with a crude enzyme preparation from the beetroot (Beta vulgaris ssp. vulgaris var. vulgaris) to afford a product consisting of 95% of 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid (pinellic acid). The linolenic acid-derived hydroperoxide 9(S)-hydroperoxy-10(E),12(Z),15(Z)-octadecatrienoic acid was converted in an analogous way into 9(S),12(S),13(S)-trihydroxy-10(E),15(Z)-octadecadienoic acid (fulgidic acid). On the other hand, the 13-lipoxygenase-generated hydroperoxides of linoleic or linolenic acids failed to produce significant amounts of trihydroxy acids. Short-time incubation of 9(S)-hydroperoxy-10(E),12(Z)-octadecadienoic acid afforded the epoxy alcohol 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid as the main product indicating the sequence 9-hydroperoxide → epoxy alcohol → trihydroxy acid catalyzed by epoxy alcohol synthase and epoxide hydrolase activities, respectively. The high capacity of the enzyme system detected in beetroot combined with a simple isolation protocol made possible by the low amounts of endogenous lipids in the enzyme preparation offered an easy access to pinellic and fulgidic acids for use in biological and medical studies.
Collapse
|
18
|
Sabitha G, Bhikshapathi M, Reddy E, Yadav J. Synthesis of (−)-Pinellic Acid and Its (9R,12S,13S)-Diastereoisomer. Helv Chim Acta 2009. [DOI: 10.1002/hlca.200900095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Partridge M, Murphy DJ. Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:796-806. [PMID: 19467604 DOI: 10.1016/j.plaphy.2009.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/15/2009] [Accepted: 04/27/2009] [Indexed: 05/20/2023]
Abstract
We report here the localisation and properties of a new membrane-bound isoform of caleosin and its putative role as a peroxygenase involved in oxylipin metabolism during biotic and abiotic stress responses in Arabidopsis. Caleosins are a family of lipid-associated proteins that are ubiquitous in plants and true fungi. Previous research has focused on lipid-body associated, seed-specific caleosins that have peroxygenase activity. Here, we demonstrate that a separate membrane-bound constitutively expressed caleosin isoform (Clo-3) is highly upregulated following exposure to abiotic stresses, such as salt and drought, and to biotic stress such as pathogen infection. The Clo-3 protein binds one atom of calcium per molecule, is phosphorylated in response to stress, and has a similar peroxygenase activity to the seed-specific Clo-1 isoform. Clo-3 is present in microsomal and chloroplast envelope fractions and has a type I membrane orientation with about 2 kDa of the C terminal exposed to the cytosol. Analysis of Arabidopsis ABA and related mutant lines implies that Clo-3 is involved in the generation of oxidised fatty acids in stress related signalling pathways involving both ABA and salicylic acid. We propose that Clo-3 is part of an oxylipin pathway induced by multiple stresses and may also generate fatty acid derived anti-fungal compounds for plant defence.
Collapse
Affiliation(s)
- Mark Partridge
- Biotechnology Unit, Division of Biological Sciences, University of Glamorgan, Treforest, CF37 1DL, United Kingdom
| | | |
Collapse
|
20
|
Naidu SV, Gupta P, Kumar P. Enantioselective syntheses of (−)-pinellic acid, α- and β-dimorphecolic acid. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.05.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Yu Z, Schneider C, Boeglin WE, Brash AR. Epidermal lipoxygenase products of the hepoxilin pathway selectively activate the nuclear receptor PPARalpha. Lipids 2007; 42:491-7. [PMID: 17436029 DOI: 10.1007/s11745-007-3054-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 02/16/2007] [Indexed: 02/03/2023]
Abstract
Arachidonic acid can be transformed into a specific epoxyalcohol product via the sequential action of two epidermal lipoxygenases, 12R-LOX and eLOX3. Functional impairment of either lipoxygenase gene (ALOX12B or ALOXE3) results in ichthyosis, suggesting a role for the common epoxyalcohol product or its metabolites in the differentiation of normal human skin. Here we tested the ability of products derived from the epidermal LOX pathway to activate the peroxisome proliferator-activated receptors PPARalpha, gamma, and delta, which have been implicated in epidermal differentiation. Using a dual luciferase reporter assay in PC3 cells, the 12R-LOX/eLOX3-derived epoxyalcohol, 8R-hydroxy-11R,12R-epoxyeicosa-5Z,9E,14Z-trienoic acid, activated PPARalpha with similar in potency to the known natural ligand, 8S-hydroxyeicosatetraenoic acid (8S-HETE) (both at 10 microM concentration). In contrast, the PPARgamma and PPARdelta receptor isoforms were not activated by the epoxyalcohol. Activation of PPARalpha was also observed using the trihydroxy hydrolysis products (trioxilins) of the unstable epoxyalcohol. Of the four trioxilins isolated and characterized, the highest activation was observed with the isomer that is also formed by enzymatic hydrolysis of the epoxyalcohol. Formation of a ligand for the nuclear receptor PPARalpha may be one possibility by which 12R-LOX and eLOX3 contribute to epidermal differentiation.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/metabolism
- Arachidonate Lipoxygenases/metabolism
- Cell Differentiation
- Cell Line
- Epidermal Cells
- Epidermis/enzymology
- Genes, Reporter
- Humans
- Hydroxyeicosatetraenoic Acids/metabolism
- Lipoxygenase/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- PPAR alpha/metabolism
- PPAR delta/metabolism
- PPAR gamma/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Zheyong Yu
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University School of Medicine, 23rd Ave. at Pierce, Nashville, TN 37232-6602, USA
| | | | | | | |
Collapse
|
22
|
|
23
|
Shirahata T, Sunazuka T, Yoshida K, Yamamoto D, Harigaya Y, Kuwajima I, Nagai T, Kiyohara H, Yamada H, Ōmura S. Total synthesis, elucidation of absolute stereochemistry, and adjuvant activity of trihydroxy fatty acids. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.06.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Hanano A, Burcklen M, Flenet M, Ivancich A, Louwagie M, Garin J, Blée E. Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem 2006; 281:33140-51. [PMID: 16956885 DOI: 10.1074/jbc.m605395200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A growing body of evidence indicates that phytooxylipins play important roles in plant defense responses. However, many enzymes involved in the biosynthesis of these metabolites are still elusive. We have purified one of these enzymes, the peroxygenase (PXG), from oat microsomes and lipid droplets. It is an integral membrane protein requiring detergent for its solubilization. Proteinase K digestion showed that PXG is probably deeply buried in lipid droplets or microsomes with only about 2 kDa at the C-terminal region accessible to proteolytic digestion. Sequencing of the N terminus of the purified protein showed that PXG had no sequence similarity with either a peroxidase or a cytochrome P450 but, rather, with caleosins, i.e. calcium-binding proteins. In agreement with this finding, we demonstrated that recombinant thale cress and rice caleosins, expressed in yeast, catalyze hydroperoxide-dependent mono-oxygenation reactions that are characteristic of PXG. Calcium was also found to be crucial for peroxygenase activity, whereas phosphorylation of the protein had no impact on catalysis. Site-directed mutagenesis studies revealed that PXG catalytic activity is dependent on two highly conserved histidines, the 9 GHz EPR spectrum being consistent with a high spin pentacoordinated ferric heme.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Laboratoire des Phytooxlipines, Institut de Biologie Moléculaire des Plantes-CNRS-UPR 2357, 67083 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Morita M, Tokita M. The real radical generator other than main-product hydroperoxide in lipid autoxidation. Lipids 2006; 41:91-5. [PMID: 16555477 DOI: 10.1007/s11745-006-5075-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The theory of initiation in lipid autoxidation, which deals with the supply of radicals to the chain reaction, has not been substantively advanced for several decades. Most researchers have long assumed a mechanism of initiation in which main-product hydroperoxide is centrally responsible for autocatalytic radical generation. However, this paper, in which we investigate autoxidizing methyl linoleate, presents decisive evidence against such an assumption: Autoxidation-accelerating activity under mild conditions was not found in the chromatographically separated main-product hydroperoxide fraction but was found in other fractions; and highly active substances with structures containing a peroxide-linked dimer with two hydroperoxy groups were actually obtained.
Collapse
Affiliation(s)
- Makio Morita
- Department of Health and Nutrition, Niigata University of Health and Welfare, 950-3198 Niigata City, Japan
| | | |
Collapse
|
26
|
Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerré-Tugayé MT, Rosahl S, Castresana C, Hamberg M, Fournier J. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. PLANT PHYSIOLOGY 2005; 139:1902-13. [PMID: 16299186 PMCID: PMC1310568 DOI: 10.1104/pp.105.066274] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant oxylipins are a large family of metabolites derived from polyunsaturated fatty acids. The characterization of mutants or transgenic plants affected in the biosynthesis or perception of oxylipins has recently emphasized the role of the so-called oxylipin pathway in plant defense against pests and pathogens. In this context, presumed functions of oxylipins include direct antimicrobial effect, stimulation of plant defense gene expression, and regulation of plant cell death. However, the precise contribution of individual oxylipins to plant defense remains essentially unknown. To get a better insight into the biological activities of oxylipins, in vitro growth inhibition assays were used to investigate the direct antimicrobial activities of 43 natural oxylipins against a set of 13 plant pathogenic microorganisms including bacteria, oomycetes, and fungi. This study showed unequivocally that most oxylipins are able to impair growth of some plant microbial pathogens, with only two out of 43 oxylipins being completely inactive against all the tested organisms, and 26 oxylipins showing inhibitory activity toward at least three different microbes. Six oxylipins strongly inhibited mycelial growth and spore germination of eukaryotic microbes, including compounds that had not previously been ascribed an antimicrobial activity, such as 13-keto-9(Z),11(E),15(Z)-octadecatrienoic acid and 12-oxo-10,15(Z)-phytodienoic acid. Interestingly, this first large-scale comparative assessment of the antimicrobial effects of oxylipins reveals that regulators of plant defense responses are also the most active oxylipins against eukaryotic microorganisms, suggesting that such oxylipins might contribute to plant defense through their effects both on the plant and on pathogens, possibly through related mechanisms.
Collapse
Affiliation(s)
- Isabelle Prost
- Unité Mixte de Recherche 5546 Centre National de la Recherche Scientifique-Université Paul Sabatier, Pôle de Biotechnologie Végétale, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Göbel C, Feussner I, Hamberg M, Rosahl S. Oxylipin profiling in pathogen-infected potato leaves. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1584:55-64. [PMID: 12213493 DOI: 10.1016/s1388-1981(02)00268-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants respond to pathogen attack with a multicomponent defense response. Synthesis of oxylipins via the lipoxygenase (LOX) pathway appears to be an important factor for establishment of resistance in a number of pathosystems. In potato cells, pathogen-derived elicitors preferentially stimulate the 9-LOX-dependent metabolism of polyunsaturated fatty acids (PUFAs). Here we show by oxylipin profiling that potato plants react to pathogen infection with increases in the amounts of the 9-LOX-derived 9,10,11- and 9,12,13-trihydroxy derivatives of linolenic acid (LnA), the divinyl ethers colnelenic acid (CnA) and colneleic acid (CA) as well as 9-hydroxy linolenic acid. Accumulation of these compounds is faster and more pronounced during the interaction of potato with the phytopathogenic bacterium Pseudomonas syringae pv. maculicola, which does not lead to disease, compared to the infection of potato with Phytophthora infestans, the causal agent of late blight disease. Jasmonic acid (JA), a 13-LOX-derived oxylipin, accumulates in potato leaves after infiltration with P. syringae pv. maculicola, but not after infection with P. infestans.
Collapse
Affiliation(s)
- Cornelia Göbel
- Department of Stress and Developmental Biology, Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle/Saale, Germany
| | | | | | | |
Collapse
|
28
|
Sunazuka T, Shirahata T, Yoshida K, Yamamoto D, Harigaya Y, Nagai T, Kiyohara H, Yamada H, Kuwajima I, Ōmura S. Total synthesis of pinellic acid, a potent oral adjuvant for nasal influenza vaccine. Determination of the relative and absolute configuration. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(01)02348-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Lederer MO, Schuler A, Ohmenhäuser M. Reactivity of lysine moieties toward an epoxyhydroxylinoleic acid derivative: aminolysis versus hydrolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 1999; 47:4611-4620. [PMID: 10552859 DOI: 10.1021/jf990383o] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Epoxyols are generally accepted as crucial intermediates in lipid oxidation. The reactivity of tert-butyl (9R,10S,11E,13S)-9, 10-epoxy-13-hydroxy-11-octadecenoate (11a,b) toward lysine moieties is investigated, employing N(2)-acetyllysine 4-methylcoumar-7-ylamide (12) as a model for protein-bound lysine. The prefixes R and S denote the relative configuration at the respective stereogenic centers. Independent synthesis and unequivocal structural characterization are reported for 11a,b, its precursors, and tert-butyl (9R,10R,11E, 13S)-10-(¿5-(acetylamino)-6-[(4-methyl-2-oxo-2H-chromen-7-yl)amino ]-6 -oxohexyl¿amino)-9,13-dihydroxy-11-octadecenoate (13a-d). Reactions of 11a,b and 12 in 1-methyl-2-pyrrolidone (MP) and MP/water mixtures at pH 7.4 and 37 degrees C for 56 days show formation of the aminols 13a-d to be favored by an increased water content. The same trend is observed for hydrolytic cleavage of 11a,b to tert-butyl (E)-9,10, 13-trihydroxy-11-octadecenoate (14) and tert-butyl (E)-9,12, 13-trihydroxy-10-octadecenoate (15). Under the given conditions, aminolysis proceeds via an S(N)2 substitution, in contrast with the S(N)1 process for hydrolysis. In the MP/water (8:2) incubation, 15. 8% of 12 has been transformed to 13a-d and 10.5% of 11a,b hydrolyzed to the regioisomers 14 and 15 after 8 weeks, respectively. Aminolysis of alpha,beta-unsaturated epoxides by lysine moieties therefore is expected to be an important mode of interaction between proteins and lipid oxidation products.
Collapse
Affiliation(s)
- M O Lederer
- Institut für Lebensmittelchemie (170), Universität Hohenheim, Garbenstrasse 28, D-70593 Stuttgart, Germany.
| | | | | |
Collapse
|
30
|
Hamberg M. An epoxy alcohol synthase pathway in higher plants: biosynthesis of antifungal trihydroxy oxylipins in leaves of potato. Lipids 1999; 34:1131-42. [PMID: 10606035 DOI: 10.1007/s11745-999-0464-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[1-14C]Linoleic acid was incubated with a whole homogenate preparation of potato leaves (Solanum tuberosum L., var. Bintje). The methyl-esterified product was subjected to straight-phase high-performance liquid chromatography and was found to contain four major radioactive oxidation products, i.e., the epoxy alcohols methyl 10(S),11(S)-epoxy-9(S)-hydroxy-12(Z)-octadecenoate (14% of the recovered radioactivity) and methyl 12(R), 13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoate (14%), and the trihydroxy derivatives methyl 9(S),10(S),11(R)-trihydroxy-12(Z)-octadecenoate (18%)and methyl 9(S), 12(S),13(S)-trihydroxy-10(E)-octadecenoate (30%). The structures and stereochemical configurations of these oxylipins were determined by chemical and spectral methods using the authentic compounds as references. Incubations performed in the presence of glutathione peroxidase revealed that lipoxygenase activity of potato leaves generated the 9- and 13-hydroperoxides of linoleic acid in a ratio of 95:5. Separate incubations of these hydroperoxides showed that linoleic acid 9(S)-hydroperoxide was metabolized into epoxy alcohols by particle-bound epoxy alcohol synthase activity, whereas the 13-hydroperoxide was metabolized into alpha- and gamma-ketols by a particle-bound allene oxide synthase. It was concluded that the main pathway of linoleic acid metabolism in potato leaves involved 9-lipoxygenase-catalyzed oxygenation into linoleic acid 9(S)-hydroperoxide followed by rapid conversion of this hydroperoxide into epoxy alcohols and a slower, epoxide hydrolase-catalyzed conversion of the epoxy alcohols into trihydroxy-octadecenoates. Trihydroxy derivatives of linoleic and linolenic acids have previously been reported to be growth-inhibitory to plant-pathogenic fungi, and a role of the new pathway of linoleic acid oxidation in defense reactions against pathogens is conceivable.
Collapse
Affiliation(s)
- M Hamberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
31
|
|
32
|
Beuerle T, Schwab W. Metabolic profile of linoleic acid in stored apples: formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid. Lipids 1999; 34:375-80. [PMID: 10443970 DOI: 10.1007/s11745-999-0375-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During our ongoing project on the biosynthesis of R-(+)-octane-1,3-diol the metabolism of linoleic acid was investigated in stored apples after injection of [1-14C]-, [9,10,12,13-3H]-,13C18- and unlabeled substrates. After different incubation periods the products were analyzed by gas chromatography-mass spectroscopy (MS), high-performance liquid chromatography-MS/MS, and HPLC-radiodetection. Water-soluble compounds and CO2 were the major products whereas 13(R)-hydroxy- and 13-keto-9(Z),11(E)-octadecadienoic acid, 9(S)-hydroxy- and 9-keto-10(E),12(Z)-octadecadienoic acid, and the stereoisomers of the 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids were identified as the major metabolites found in the diethyl ether extracts. Hydroperoxides were not detected. The ratio of 9/13-hydroxy- and 9/13-keto-octadecadienoic acid was 1:4 and 1:10, respectively. Chiral phase HPLC of the methyl ester derivatives showed enantiomeric excesses of 75% (R) and 65% (S) for 13-hydroxy-9(Z),11(E)-octadecadienoic acid and 9-hydroxy-10(E),12(Z)-octadecadienoic acid, respectively. Enzymatically active homogenates from apples were able to convert unlabeled linoleic acid into the metabolites. Radiotracer experiments showed that the transformation products of linoleic acid were converted into (R)-octane-1,3-diol. 13(R)-Hydroxy-9(Z),11(E)-octadecadienoic acid is probably formed in stored apples from 13-hydroperoxy-9(Z),11(E)-octadecadienoic acid. It is possible that the S-enantiomer of the hydroperoxide is primarily degraded by enzymatic side reactions, resulting in an enrichment of the R-enantiomer and thus leading to the formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid.
Collapse
Affiliation(s)
- T Beuerle
- Lehrstuhl für Lebensmittelchemie, Universität Würzburg, Germany
| | | |
Collapse
|
33
|
Spiteller G. Linoleic acid peroxidation--the dominant lipid peroxidation process in low density lipoprotein--and its relationship to chronic diseases. Chem Phys Lipids 1998; 95:105-62. [PMID: 9853364 DOI: 10.1016/s0009-3084(98)00091-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modern separation and identification methods enable detailed insight in lipid peroxidation (LPO) processes. The following deductions can be made: (1) Cell injury activates enzymes: lipoxygenases generate lipid hydroperoxides (LOOHs), proteases liberate Fe ions--these two processes are prerequisites to produce radicals. (2) Radicals attack any activated CH2-group of polyunsaturated fatty acids (PUFAs) with about a similar probability. Since linoleic acid (LA) is the most abundant PUFA in mammals, its LPO products dominate. (3) LOOHs are easily reduced in biological surroundings to corresponding hydroxy acids (LOHs). LOHs derived from LA, hydroxyoctadecadienoic acids (HODEs), surmount other markers of LPO. HODEs are of high physiological relevance. (4) In some diseases characterized by inflammation or cell injury HODEs are present in low density lipoproteins (LDL) at 10-100 higher concentration, compared to LDL from healthy individuals.
Collapse
Affiliation(s)
- G Spiteller
- Lehrstuhl Organische Chemie I, Universität Bayreuth, Germany.
| |
Collapse
|
34
|
Jie MSFLK, Pasha MK, Syed-Rahmatullah MSK. Fatty acids, fatty acid analogues and their derivatives. Nat Prod Rep 1997. [DOI: 10.1039/np9971400163] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Hou CT. A novel compound, 12,13,17-trihydroxy-9(Z)-Octadecenoic acid, from linoleic acid by a new microbial isolateClavibactersp. ALA2. J AM OIL CHEM SOC 1996. [DOI: 10.1007/bf02523497] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ching T. Hou
- ; Oil Chemical Research, NCAUR, ARS; USDA; Peoria Illinois 61604
| |
Collapse
|
36
|
|
37
|
Gardner HW, Simpson TD, Hamberg M. Transformation of fatty acid hydroperoxides by alkali and characterization of products. Lipids 1993. [DOI: 10.1007/bf02536079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Hamberg M. A method for determination of the absolute stereochemistry of α,β-epoxy alcohols derived from fatty acid hydroperoxides. Lipids 1992; 27:1042-6. [DOI: 10.1007/bf02535585] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/1992] [Revised: 08/25/1992] [Accepted: 09/02/1992] [Indexed: 12/01/2022]
|
39
|
Hamberg M, Gardner HW. Oxylipin pathway to jasmonates: biochemistry and biological significance. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1165:1-18. [PMID: 1420338 DOI: 10.1016/0005-2760(92)90069-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- M Hamberg
- Department of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
40
|
Hámberg M, Gerwick WH, Åsen PA. Linoleic acid metabolism in the red algaLithothamnion corallioides: Biosynthesis of 11(R)-hydroxy-9(Z),12(Z)-octadecadienoic acid. Lipids 1992. [DOI: 10.1007/bf02536128] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
A linoleic acid (8R)-dioxygenase and hydroperoxide isomerase of the fungus Gaeumannomyces graminis. Biosynthesis of (8R)-hydroxylinoleic acid and (7S,8S)-dihydroxylinoleic acid from (8R)-hydroperoxylinoleic acid. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42102-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Gerwick WH, Moghaddam M, Hamberg M. Oxylipin metabolism in the red alga Gracilariopsis lemaneiformis: mechanism of formation of vicinal dihydroxy fatty acids. Arch Biochem Biophys 1991; 290:436-44. [PMID: 1929410 DOI: 10.1016/0003-9861(91)90563-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Conversion of arachidonic acid into the vicinal diol fatty acid 12R,13S-dihydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid using an acetone powder of the marine red alga, Gracilariopsis lemaneiformis, occurred via intermediate formation of 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid. Incubations of the linoleic acid-derived 13S- and 13R-hydroperoxy-9Z,11E-octadecadienoic acids led to the formation of 13R,14S-dihydroxy-9Z,11E-octadecadienoic acid and 13S,14S-dihydroxy-9Z,11E-octadecadienoic acid, respectively, whereas incubation of 9S-hydroperoxy-10E,12Z-octadecadienoic acid resulted in the formation of 8S,9R-dihydroxy-10E,12Z-octadecadienoic acid. Experiments with 18O2-labeled 13S-hydroperoxyoctadecadienoic acid demonstrated that the oxygens of the two hydroxyl groups of 13R,14S-dihydroxy-9Z,11E-octadecadienoic acid originated in the hydroperoxy group of the substrate. Furthermore, experiments with mixtures of unlabeled and 18O2-labeled 13S-hydroperoxyoctadecadienoic acid showed that conversion into 13R,14S-dihydroxyoctadecadienoic acid occurred by a reaction involving an intramolecular hydroxylation at C-14 by the distal hydroperoxide oxygen. The existence of a hydroperoxide isomerase in G. lemaneiformis which catalyzes the conversion of fatty acid hydroperoxides into vicinal diol fatty acids is postulated.
Collapse
Affiliation(s)
- W H Gerwick
- Department of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|