1
|
Dos Santos Neto JM, Worden LC, Boerman JP, Bradley CM, Lock AL. Long-term effects of abomasal infusion of linoleic and linolenic acids on the enrichment of n-6 and n-3 fatty acids into plasma lipid fractions of lactating cows. J Dairy Sci 2024:S0022-0302(24)00953-6. [PMID: 38908699 DOI: 10.3168/jds.2024-24907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
Our objective was to compare abomasal infusions of linoleic (18:2n-6) and α-linolenic (18:3n-3) acids on the enrichment of n-6 and n-3 fatty acids (FA) into the plasma lipid fractions of lactating dairy cows and evaluate their potential carryover effects in plasma lipid fractions post-infusion. Six rumen-cannulated multiparous Holstein cows (252 ± 33 d in milk) were fed the same diet and assigned to 1 of 2 treatments in a completely randomized design with repeated measures. Treatments were abomasal infusions (67 g/d total FA) of 1) n-6 FA blend (N6) to provide approximately 43 g/d 18:2n-6 and 8 g/d of 18:3n-3; or 2) n-3 FA blend (N3) providing 43 g/d 18:3n-3 and 8 g/d 18:2n-6. Treatments were dissolved in ethanol, and the daily dose for each treatment was divided into 4 equal infusions, occurring every 6 h. The treatment period lasted from d 1 to 20, and the carryover period lasted from d 21 to 40. Results are presented as FA contents within each of the 4 main plasma lipid fractions: cholesterol esters (CE), phospholipids (PL); triglycerides (TG), and plasma nonesterified fatty acids. Concentrations of individual lipid fractions in plasma were not quantified. Plasma CE and PL had the highest content of polyunsaturated FA (PUFA) during both the treatment and carryover periods. In plasma PL, N3 increased the contents of total n-3 FA (134%), 18:3n-3 (267%), and eicosapentaenoic acid (96.3%, 20:5n-3), and decreased total n-6 FA (8.14%) and 18:2n-6 (8.16%) from d 4 to 20 compared with N6. In plasma CE, N3 increased the contents of total n-3 FA (191%) from d 4 to 20, 18:3n-3 from d 2 to 20 (178%), and 20:5n-3 from d 6 to 20 (59.9%), while N3 decreased total n-6 FA from d 4 to 20 (11.2%) and 18:2n-6 from d 2 to 20 (10.5%) compared with N6. In addition, compared with N6, N3 decreased arachidonic acid (20:4n-6) at d 2 (45%) and from d 10 to 20 (14.7%) in PL and tended to decrease 20:4n-6 without interacting with time for CE. Phospholipids were the only lipid fraction with detectable levels of docosahexaenoic acid (22:3n-6) in all samples, but we did not observe differences between treatments. In plasma TG, N3 increased the contents of total n-3 FA (135%) and 18:3n-3 (146%) from d 4 to 20, increased 20:5n-3 from d 12 to 20 (89%), decreased or tended to decrease total n-6 FA content from d 6 and 8 (26.9%), and tended to decrease 18:2n-6 at d 8 compared with N6. A similar pattern was observed for plasma nonesterified fatty acids. We observed positive carryover effects for both N3 and N6 at different degrees in all lipid fractions, with N3 promoting more consistent outcomes and increasing total n-3 FA throughout the carryover period (from d 22 to 40) in both PL (52.8%) and CE (68.6%) compared with N6. It is important to emphasize that the higher magnitude responses observed for n-3 FA are also influenced by the content of n-3 FA being much lower than those of n-6 FA in all lipid fractions. While these data provide important and robust information, future research quantifying changes in concentrations of individual lipid fractions in plasma and the entry and exit rates of specific FA will further enhance our understanding. In conclusion, abomasally infusing N3 and N6 increased the contents of n-3 and n-6 FA, respectively, in all plasma lipid fractions. These responses were more evident in PL and CE. We also observed positive carryover effects in all lipid fractions, where N3 had more consistent outcomes than N6. Our results indicate that dairy cows have a robust mechanism to conserve essential FA, with a pronounced preference for n-3 FA.
Collapse
Affiliation(s)
- J M Dos Santos Neto
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - L C Worden
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - J P Boerman
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - C M Bradley
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - A L Lock
- Department of Animal Science, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
2
|
Akbar S, Rahman A, Ahmad N, Imran M, Hafeez Z. Understanding the Role of Polyunsaturated Fatty Acids in the Development and Prevention of Cancer. Cancer Treat Res 2024; 191:57-93. [PMID: 39133404 DOI: 10.1007/978-3-031-55622-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Polyunsaturated fatty acids (PUFAs), notably omega-3 (n-3) and omega-6 (n-6), have received much attention owing to their multifaceted effects not only in the management of diverse pathological conditions but also in the maintenance of overall health of an individual. A disproportionately high n-6 to n-3 ratio contributes to the development of various disorders including cancer, which ranks as a leading cause of death worldwide with profound social and economic burden. Epidemiological studies and clinical trials combined with the animal and cell culture models have demonstrated the beneficial effects of n-3 PUFAs in reducing the risk of various cancer types including breast, prostate and colon cancer. The anti-cancer actions of n-3 PUFAs are mainly attributed to their role in the modulation of a wide array of cellular processes including membrane dynamics, apoptosis, inflammation, angiogenesis, oxidative stress, gene expression and signal transduction pathways. On the contrary, n-6 PUFAs have been shown to exert pro-tumor actions; however, the inconsistent findings and controversial data emphasize upon the need to further investigation. Nevertheless, one of the biggest challenges in future is to optimize the n-6 to n-3 ratio despite the genetic predisposition, age, gender and disease severity. Moreover, a better understanding of the potential risks and benefits as well as the cellular and molecular mechanisms of the basic actions of these PUFAs is required to explore their role as adjuvants in cancer therapy. All these aspects will be reviewed in this chapter.
Collapse
Affiliation(s)
- Samina Akbar
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France.
| | - Abdur Rahman
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nazir Ahmad
- Faculty of Life Sciences, Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Sciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Zeeshan Hafeez
- CALBINOTOX, Université de Lorraine, 54000, Nancy, France
| |
Collapse
|
3
|
Khan I, Hussain M, Jiang B, Zheng L, Pan Y, Hu J, Khan A, Ashraf A, Zou X. Omega-3 long-chain polyunsaturated fatty acids: Metabolism and health implications. Prog Lipid Res 2023; 92:101255. [PMID: 37838255 DOI: 10.1016/j.plipres.2023.101255] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Recently, omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have gained substantial interest due to their specific structure and biological functions. Humans cannot naturally produce these fatty acids (FAs), making it crucial to obtain them from our diet. This comprehensive review details n-3 LC-PUFAs and their role in promoting and maintaining optimal health. The article thoroughly analyses several sources of n-3 LC-PUFAs and their respective bioavailability, covering marine, microbial and plant-based sources. Furthermore, we provide an in-depth analysis of the biological impacts of n-3 LC-PUFAs on health conditions, with particular emphasis on cardiovascular disease (CVD), gastrointestinal (GI) cancer, diabetes, depression, arthritis, and cognition. In addition, we highlight the significance of fortification and supplementation of n-3 LC-PUFAs in both functional foods and dietary supplements. Additionally, we conducted a detailed analysis of the several kinds of n-3 LC-PUFAs supplements currently available in the market, including an assessment of their recommended intake, safety, and effectiveness. The dietary guidelines associated with n-3 LC-PUFAs are also highlighted, focusing on the significance of maintaining a well-balanced intake of n-3 PUFAs to enhance health benefits. Lastly, we highlight future directions for further research in this area and their potential implications for public health.
Collapse
Affiliation(s)
- Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Adil Khan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Azqa Ashraf
- School of Food Science and Engineering, Ocean University of China, Qingdao 2666100, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
4
|
West AL, von Gerichten J, Irvine NA, Miles EA, Lillycrop KA, Calder PC, Fielding BA, Burdge GC. Fatty acid composition and metabolic partitioning of α-linolenic acid are contingent on life stage in human CD3 + T lymphocytes. Front Immunol 2022; 13:1079642. [PMID: 36582247 PMCID: PMC9792684 DOI: 10.3389/fimmu.2022.1079642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Immune function changes across the life course; the fetal immune system is characterised by tolerance while that of seniors is less able to respond effectively to antigens and is more pro-inflammatory than in younger adults. Lipids are involved centrally in immune function but there is limited information about how T cell lipid metabolism changes during the life course. Methods and Results We investigated whether life stage alters fatty acid composition, lipid droplet content and α-linolenic acid (18:3ω-3) metabolism in human fetal CD3+ T lymphocytes and in CD3+ T lymphocytes from adults (median 41 years) and seniors (median 70 years). Quiescent fetal T cells had higher saturated (SFA), monounsaturated fatty acid (MUFA), and ω-6 polyunsaturated fatty acid (PUFA) contents than adults or seniors. Activation-induced changes in fatty acid composition differed between life stages. The principal metabolic fates of [13C]18:3ω-3 were constitutive hydroxyoctadecatrienoic acid synthesis and β-oxidation and carbon recycling into SFA and MUFA. These processes declined progressively across the life course. Longer chain ω-3 PUFA synthesis was a relatively minor metabolic fate of 18:3ω-3 at all life stages. Fetal and adult T lymphocytes had similar lipid droplet contents, which were lower than in T cells from seniors. Variation in the lipid droplet content of adult T cells accounted for 62% of the variation in mitogen-induced CD69 expression, but there was no significant relationship in fetal cells or lymphocytes from seniors. Discussion Together these findings show that fatty acid metabolism in human T lymphocytes changes across the life course in a manner that may facilitate the adaptation of immune function to different life stages.
Collapse
Affiliation(s)
- Annette L. West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Johanna von Gerichten
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nicola A. Irvine
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom,National Institute for Health and Care Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, Hampshire, United Kingdom
| | - Barbara A. Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom,*Correspondence: Graham C. Burdge,
| |
Collapse
|
5
|
Khalid W, Gill P, Arshad MS, Ali A, Ranjha MMAN, Mukhtar S, Afzal F, Maqbool Z. Functional behavior of DHA and EPA in the formation of babies brain at different stages of age, and protect from different brain-related diseases. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2070642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Poonam Gill
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
| | | | - Shanza Mukhtar
- Department of Nutrition and Dietetics, The University of Faisalabad, Pakistan
| | - Fareed Afzal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
6
|
von Gerichten J, West AL, Irvine NA, Miles EA, Calder PC, Lillycrop KA, Fielding BA, Burdge GC. The Partitioning of Newly Assimilated Linoleic and α-Linolenic Acids Between Synthesis of Longer-Chain Polyunsaturated Fatty Acids and Hydroxyoctadecaenoic Acids Is a Putative Branch Point in T-Cell Essential Fatty Acid Metabolism. Front Immunol 2021; 12:740749. [PMID: 34675928 PMCID: PMC8523940 DOI: 10.3389/fimmu.2021.740749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Longer-chain polyunsaturated fatty acids (LCPUFAs) ≥20 carbons long are required for leukocyte function. These can be obtained from the diet, but there is some evidence that leukocytes can convert essential fatty acids (EFAs) into LCPUFAs. We used stable isotope tracers to investigate LCPUFA biosynthesis and the effect of different EFA substrate ratios in human T lymphocytes. CD3+ T cells were incubated for up to 48 h with or without concanavalin A in media containing a 18:2n-6:18:3n-3 (EFA) ratio of either 5:1 or 8:1 and [13C]18:3n-3 plus [d5]18:2n-6. Mitogen stimulation increased the amounts of 16:1n-7, 18:1n-9, 18:2n-6, 20:3n-6, 20:4n-6, 18:3n-3, and 20:5n-3 in T cells. Expression of the activation marker CD69 preceded increased FADS2 and FADS1 mRNA expression and increased amounts of [d5]20:2n-6 and [13C]20:3n-3 at 48 h. In addition, 22-carbon n-6 or n-3 LCPUFA synthesis was not detected, consistent with the absence of ELOVL2 expression. An EFA ratio of 8:1 reduced 18:3n-3 conversion and enhanced 20:2n-6 synthesis compared to a 5:1 ratio. Here, [d5]9- and [d5]-13-hydroxyoctadecadienoic (HODE) and [13C]9- and [13C]13-hydroxyoctadecatrienoic acids (HOTrE) were the major labelled oxylipins in culture supernatants; labelled oxylipins ≥20 carbons were not detected. An EFA ratio of 8:1 suppressed 9- and 13-HOTrE synthesis, but there was no significant effect on 9- and 13-HODE synthesis. These findings suggest that partitioning of newly assimilated EFA between LCPUFA synthesis and hydroxyoctadecaenoic acid may be a metabolic branch point in T-cell EFA metabolism that has implications for understanding the effects of dietary fats on T lymphocyte function.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom
| | - Annette L West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nicola A Irvine
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute of Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom
| | - Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
7
|
Crawford MA, Schmidt WF, Broadhurst CL, Wang Y. Lipids in the origin of intracellular detail and speciation in the Cambrian epoch and the significance of the last double bond of docosahexaenoic acid in cell signaling. Prostaglandins Leukot Essent Fatty Acids 2021; 166:102230. [PMID: 33588307 DOI: 10.1016/j.plefa.2020.102230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022]
Abstract
One of the great unanswered biological questions is the absolute necessity of the polyunsaturated lipid docosahexaenoic acid (DHA; 22:6n-3) in retinal and neural tissues. Everything from the simple eye spot of dinoflagellates to cephalopods to every class of vertebrates uses DHA, yet it is abundant only in cold water marine food chains. Docosapentaenoic acids (DPAs; 22:5n-6 and especially 22:5n-3) are fairly plentiful in food chains yet cannot substitute for DHA. About 600 million years ago, multi-cellular, air breathing systems evolved rapidly and 32 phyla came into existence in a short geological time span; the "Cambrian Explosion". Eukaryotic intracellular detail requires cell membranes, which are constructed of complex lipids, and proteins. Proteins and nucleic acids would have been abundant during the first 2.5-5 billion years of anaerobic life but lipids, especially unsaturated fatty acids, would not. We hypothesize lipid biology was a key driver of the Cambrian Explosion, because it alone provides for compartmentalization and specialization within cells DHA has six methylene interrupted double bonds providing controlled electron flow at precise energy levels; this is essential for visual acuity and truthful execution of the neural pathways which make up our recollections, information processing and consciousness. The last double bond is critical for the evolution and function of the photoreceptor and neuronal and synaptic signaling systems. It completes a quantum mechanical device for the regulation of current flow with absolute signal precision based on electron tunneling (ET). DHA's methylene interruption distance is < 6 Å, making ET transfer between the π-orbitals feasible throughout the molecule. The possibility fails if one double bond is removed and replaced by a saturated bond as in the DPAs. The molecular biophysical foundation of neural signaling can also include the discrete pattern of paired spin states that arise in the DHA double bond and methylene regions. The complexity depends upon the number of C13 and H1 molecular sites in which spin states are coupled. Electron wave harmonics with entanglement and cohesion provide a mechanism for learning and memory, and power cognition and complex human brain functions.
Collapse
Affiliation(s)
- Michael A Crawford
- The Department of Metabolism and Institute of Brain Cemistry and Human Nutrition, Digestion and Reproduction. Chelsea and Westminster Hospital Campus, Imperial College, London SW10 9NH, United Kingdom.
| | - Walter F Schmidt
- United States Department of Agriculture Agricultural Research Service, Beltsville, MD, USA
| | - C Leigh Broadhurst
- United States Department of Agriculture Agricultural Research Service, Beltsville, MD, USA
| | - Yiqun Wang
- The Department of Metabolism and Institute of Brain Cemistry and Human Nutrition, Digestion and Reproduction. Chelsea and Westminster Hospital Campus, Imperial College, London SW10 9NH, United Kingdom
| |
Collapse
|
8
|
Leung KS, Galano JM, Oger C, Durand T, Lee JCY. Enrichment of alpha-linolenic acid in rodent diet reduced oxidative stress and inflammation during myocardial infarction. Free Radic Biol Med 2021; 162:53-64. [PMID: 33271280 DOI: 10.1016/j.freeradbiomed.2020.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) is an irreversible event caused by cardiac ischemia and may be fatal. Studies reported that increased intake of n-3 polyunsaturated fatty acids (PUFA) namely, eicosapentaenoic acid and docosahexaenoic acid reduce the risk of cardiovascular disease and lower the incidence of MI. Nonetheless, the cardioprotective effect of plant n-3-PUFA such as α-linolenic acid (ALA) in the diet is not conclusive. In this study, Sprague Dawley rats were supplemented with isocaloric diets enriched with ALA rich flaxseed (FS) and flaxseed oil (FSO), and normal chow (Control) for 4 weeks. MI was induced by isoproterenol (ISO) injection. Results showed that all ALA-enriched diets displayed cardioprotection against MI. The heart to body weight ratio, plasma LDH activity and plasma cTnI were reduced compared to ISO and was prominent in FS diet. ALA and EPA were up-regulated in both tissues and plasma by ALA-diets compared to Control and remained higher than ISO groups. Notably, LOX-mediated HETEs decreased whereas LOX-mediated HDHAs were elevated in both tissues and plasma of ALA-enriched diets compared to ISO. In addition, non-enzymatic oxidized products from arachidonic acid including 15-F2t-IsoP were reduced in both tissues and plasma of MI rats supplemented with ALA-enriched diets while those from n-3 PUFAs including F4-NeuroPs, PhytoPs and PhytoFs were elevated compared to control. ALA-enriched diets particularly flaxseed reduced gene expressions of inflammatory cytokines namely IL-1β, IL-6 and TNFα and prevented the down regulation of antioxidant catalase in the heart tissues. In conclusion ALA-enriched diets potentially exerted cardioprotection through the regulation of anti-inflammatory and anti-oxidative mediators from n-3 PUFA autooxidation.
Collapse
Affiliation(s)
- Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
9
|
van Vliet S, Kronberg SL, Provenza FD. Plant-Based Meats, Human Health, and Climate Change. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00128] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Chen C, Wang S, Hu Y, Zhang M, He X, You C, Wen X, Monroig Ó, Tocher DR, Li Y. miR-26a mediates LC-PUFA biosynthesis by targeting the Lxrα-Srebp1 pathway in the marine teleost Siganus canaliculatus. J Biol Chem 2020; 295:13875-13886. [PMID: 32759307 DOI: 10.1074/jbc.ra120.014858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs have been recently shown to be important regulators of lipid metabolism. However, the mechanisms of microRNA-mediated regulation of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis in vertebrates remain largely unknown. Herein, we for the first time addressed the role of miR-26a in LC-PUFA biosynthesis in the marine rabbitfish Siganus canaliculatus The results showed that miR-26a was significantly down-regulated in liver of rabbitfish reared in brackish water and in S. canaliculatus hepatocyte line (SCHL) incubated with the LC-PUFA precursor α-linolenic acid, suggesting that miR-26a may be involved in LC-PUFA biosynthesis because of its abundance being regulated by factors affecting LC-PUFA biosynthesis. Opposite patterns were observed in the expression of liver X receptor α (lxrα) and sterol regulatory element-binding protein-1 (srebp1), as well as the LC-PUFA biosynthesis-related genes (Δ4 fads2, Δ6Δ5 fads2, and elovl5) in SCHL cells incubated with α-linolenic acid. Luciferase reporter assays revealed rabbitfish lxrα as a target of miR-26a, and overexpression of miR-26a in SCHL cells markedly reduced protein levels of Lxrα, Srebp1, and Δ6Δ5 Fads2 induced by the agonist T0901317. Moreover, increasing endogenous Lxrα by knockdown of miR-26a facilitated Srebp1 activation and concomitant increased expression of genes involved in LC-PUFA biosynthesis and consequently promoted LC-PUFA biosynthesis both in vitro and in vivo These results indicate a critical role of miR-26a in regulating LC-PUFA biosynthesis through targeting the Lxrα-Srebp1 pathway and provide new insights into the regulatory network controlling LC-PUFA biosynthesis and accumulation in vertebrates.
Collapse
Affiliation(s)
- Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Research Center for Nutrition, Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou University, Shantou, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Research Center for Nutrition, Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou University, Shantou, China
| | - Yu Hu
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Research Center for Nutrition, Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou University, Shantou, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Research Center for Nutrition, Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou University, Shantou, China
| | - Xianda He
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Research Center for Nutrition, Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou University, Shantou, China
| | - Cuihong You
- Guangdong Provincial Key Laboratory of Marine Biotechnology and Research Center for Nutrition, Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou University, Shantou, China
| | - Xiaobo Wen
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal-Consejo Superior de Investigaciones Científicas, Castellón, Spain
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
11
|
Walchuk C, Suh M. Nutrition and the aging retina: A comprehensive review of the relationship between nutrients and their role in age-related macular degeneration and retina disease prevention. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 93:293-332. [PMID: 32711865 DOI: 10.1016/bs.afnr.2020.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of severe vision loss in developed countries and is highly common among aging individuals. Considering the rate at which the global population is aging, the increasing prevalence of AMD and age-related eye disease is cause for concern. AMD is associated with the degeneration of the macula, the most central region of the retina, leading to a loss of central vision. A wide array of research has focused on the ability of lipid soluble nutrients to prevent and mitigate the harmful effects of AMD. These nutrients in question tend to be highly saturated within retinal tissues including the carotenoids lutein and zeaxanthin and the polyunsaturated fatty acid docosahexaenoic acid (DHA). Additionally, the unique presence of very long chain polyunsaturated fatty acids (VLCPUFAs, C24-C36) in the retina may be essential to prevent retinal degeneration as demonstrated by abnormal retinal functioning in the absence of these novel fatty acids. Existing literature has suggested that lutein, zeaxanthin and DHA consumption tend to enhance the health of the retina, protecting against the development of AMD. However, little improvement to the previously deteriorated retina is demonstrated and more research is required to understand the role of these nutrients in the retina and for the prevention of AMD. Considering the global impact of AMD and age-related eye disease, utilizing nutrients to prevent the formation of these debilitating diseases is a highly affordable and promising strategy.
Collapse
Affiliation(s)
- Chelsey Walchuk
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Division of Neurodegenerative Disorders, Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Division of Neurodegenerative Disorders, Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.
| |
Collapse
|
12
|
Crozier SR, Godfrey KM, Calder PC, Robinson SM, Inskip HM, Baird J, Gale CR, Cooper C, Sibbons CM, Fisk HL, Burdge GC. Vegetarian Diet during Pregnancy Is Not Associated with Poorer Cognitive Performance in Children at Age 6-7 Years. Nutrients 2019; 11:nu11123029. [PMID: 31835868 PMCID: PMC6949927 DOI: 10.3390/nu11123029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
Compared with omnivorous mothers, vegetarian mothers have lower intakes of some nutrients required for neurological development. However, there is a lack of information about the impact of vegetarianism during pregnancy on subsequent cognitive function in children. The aim of this study was to investigate whether vegetarianism during pregnancy is associated with altered maternal nutritional status and with cognitive function in children at six to seven years of age. Women aged 20–34 years participating in a prospective observational study who provided dietary data and blood samples in early pregnancy (11 weeks; 78 vegetarians and 2144 omnivores) or late pregnancy (34 weeks; 91 vegetarians and 2552 omnivores). Compared with omnivorous women, vegetarian women had lower blood concentrations of arachidonic acid, docosahexaenoic acid, and cobalamin in early and late pregnancy. Vegetarianism in pregnancy was linked to higher maternal educational attainment, longer breastfeeding duration, lower incidence of smoking during pregnancy and a tendency towards higher IQ in the mothers. Concentrations of some nutrients required for neurodevelopment were lower in maternal blood during gestation; however, after controlling for confounders consuming a vegetarian diet during pregnancy was not associated with poorer neurocognitive development of the children in this study.
Collapse
Affiliation(s)
- Sarah R. Crozier
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Keith M. Godfrey
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Philip C. Calder
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Sian M. Robinson
- AGE Research Group, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Hazel M. Inskip
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Janis Baird
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Catharine R. Gale
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
- Centre for Cognitive Ageing & Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9AZ, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| | - Charlene M. Sibbons
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Helena L. Fisk
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Graham C. Burdge
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Correspondence: ; Tel.: +44-(0)23-812-05259
| |
Collapse
|
13
|
Irvine NA, Ruyter B, Østbye TK, Sonesson AK, Lillycrop KA, Berge G, Burdge GC. Dietary Fish Oil Alters DNA Methylation of Genes Involved in Polyunsaturated Fatty Acid Biosynthesis in Muscle and Liver of Atlantic Salmon (Salmo salar). Lipids 2019; 54:725-739. [PMID: 31658496 DOI: 10.1002/lipd.12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/16/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023]
Abstract
Adequate dietary supply of eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) is required to maintain health and growth of Atlantic salmon (Salmo salar). However, salmon can also convert α-linolenic acid (18:3n-3) into eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) by sequential desaturation and elongation reactions, which can be modified by 20:5n-3 and 22:6n-3 intake. In mammals, dietary 20:5n-3 + 22:6n-3 intake can modify Fads2 expression (Δ6 desaturase) via altered DNA methylation of its promoter. Decreasing dietary fish oil (FO) has been shown to increase Δ5fad expression in salmon liver. However, it is not known whether this is associated with changes in the DNA methylation of genes involved in polyunsaturated fatty acid synthesis. To address this, we investigated whether changing the proportions of dietary FO and vegetable oil altered the DNA methylation of Δ6fad_b, Δ5fad, Elovl2, and Elovl5_b promoters in liver and muscle from Atlantic salmon and whether any changes were associated with mRNA expression. Higher dietary FO content increased the proportions of 20:5n-3 and 22:6n-3 and decreased Δ6fad_b mRNA expression in liver, but there was no effect on Δ5fad, Elovl2, and Elovl5_b expression. There were significant differences between liver and skeletal muscle in the methylation of individual CpG loci in all four genes studied. Methylation of individual Δ6fad_b CpG loci was negatively related to its expression and to proportions of 20:5n-3 and 22:6n-3 in the liver. These findings suggest variations in dietary FO can induce gene-, CpG locus-, and tissue-related changes in DNA methylation in salmon.
Collapse
Affiliation(s)
- Nicola A Irvine
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210 1432, Ås, Norway
| | - Tone-Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210 1432, Ås, Norway
| | - Anna K Sonesson
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), PO Box 210 1432, Ås, Norway
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Gerd Berge
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Sjølsengveien 22, 6600 Sunndalsøra, Norway
| | - Graham C Burdge
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
14
|
Single-Dose SDA-Rich Echium Oil Increases Plasma EPA, DPAn3, and DHA Concentrations. Nutrients 2019; 11:nu11102346. [PMID: 31581725 PMCID: PMC6835614 DOI: 10.3390/nu11102346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 01/10/2023] Open
Abstract
The omega-3 (n3) polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with health benefits. The primary dietary source of EPA and DHA is seafood. Alpha-linoleic acid (ALA) has not been shown to be a good source for EPA and DHA; however, stearidonic acid (SDA)-which is naturally contained in echium oil (EO)-may be a more promising alternative. This study was aimed at investigating the short-term n3 PUFA metabolism after the ingestion of a single dose of EO. Healthy young male subjects (n = 12) ingested a single dose of 26 g of EO after overnight fasting. Plasma fatty acid concentrations and relative amounts were determined at baseline and 2, 4, 6, 8, 24, 48, and 72 h after the ingestion of EO. During the whole examination period, the participants received standardized nutrition. Plasma ALA and SDA concentrations increased rapidly after the single dose of EO. Additionally, EPA and DPAn3 concentrations both increased significantly by 47% after 72 h compared to baseline; DHA concentrations also significantly increased by 21% after 72 h. To conclude, EO increases plasma ALA, SDA, EPA, DPAn3, and DHA concentrations and may be an alternative source for these n3 PUFAs.
Collapse
|
15
|
Wang X, Martin GB, Liu S, Shi B, Guo X, Zhao Y, Yan S. The mechanism through which dietary supplementation with heated linseed grain increases n-3 long-chain polyunsaturated fatty acid concentration in subcutaneous adipose tissue of cashmere kids. J Anim Sci 2019; 97:385-397. [PMID: 30312437 DOI: 10.1093/jas/sky386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/11/2018] [Indexed: 11/14/2022] Open
Abstract
The aim of this study was to investigate the effects of dietary supplementation with heated linseed on the fatty acid (FA) composition of the plasma, liver, and subcutaneous adipose tissue (SADT) of Albas white cashmere kids, particularly the effect on n-3 long-chain polyunsaturated FA profiles and the mRNA expression of genes related to lipid metabolism in SADT. Sixty 4-month-old castrated male kids (average BW 18.6 ± 0.1 kg) were selected and randomly allocated into three groups in a randomized block design. Three dietary treatments were used: (1) basal diet without supplementation (Control), (2) basal diet supplemented with linseed oil (LSO), and (3) basal diet supplemented with heated linseed grain (HLS). The diets were fed for 104 d, consisting of 14 d for adaptation followed by 90 d of measurement. Different FA profiles were found in SADT between LSO and HLS. Kids fed HLS had more C18:3n3 (P < 0.0001), C22:6n3 (P = 0.007), and n-3 PUFA (P < 0.0001) and a less (P < 0.0001) n-6/n-3 ratio than LSO kids. These FA differences between LSO and HLS kids were due to the increased expression of elongation of very long chain FA protein 5 (P < 0.0001), delta-6 desaturase (P < 0.0001), and peroxisome proliferator-activated receptor α (P = 0.003) in SADT of HLS kids and was also associated with liver fat metabolism. Together, these results suggest that the consumption of HLS leads to more C22:6n3 than LSO in SADT by increasing liver C22:6n3 content and by increasing SADT mRNA expression of ELOVL5 and FADS2 through promoting PPARα expression.
Collapse
Affiliation(s)
- Xue Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Graeme B Martin
- UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Shulin Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Xiaoyu Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Yanli Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, PR China
| |
Collapse
|
16
|
Zárate R, el Jaber-Vazdekis N, Tejera N, Pérez JA, Rodríguez C. Significance of long chain polyunsaturated fatty acids in human health. Clin Transl Med 2017; 6:25. [PMID: 28752333 PMCID: PMC5532176 DOI: 10.1186/s40169-017-0153-6] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
In the last decades, the development of new technologies applied to lipidomics has revitalized the analysis of lipid profile alterations and the understanding of the underlying molecular mechanisms of lipid metabolism, together with their involvement in the occurrence of human disease. Of particular interest is the study of omega-3 and omega-6 long chain polyunsaturated fatty acids (LC-PUFAs), notably EPA (eicosapentaenoic acid, 20:5n-3), DHA (docosahexaenoic acid, 22:6n-3), and ARA (arachidonic acid, 20:4n-6), and their transformation into bioactive lipid mediators. In this sense, new families of PUFA-derived lipid mediators, including resolvins derived from EPA and DHA, and protectins and maresins derived from DHA, are being increasingly investigated because of their active role in the "return to homeostasis" process and resolution of inflammation. Recent findings reviewed in the present study highlight that the omega-6 fatty acid ARA appears increased, and omega-3 EPA and DHA decreased in most cancer tissues compared to normal ones, and that increments in omega-3 LC-PUFAs consumption and an omega-6/omega-3 ratio of 2-4:1, are associated with a reduced risk of breast, prostate, colon and renal cancers. Along with their lipid-lowering properties, omega-3 LC-PUFAs also exert cardioprotective functions, such as reducing platelet aggregation and inflammation, and controlling the presence of DHA in our body, especially in our liver and brain, which is crucial for optimal brain functionality. Considering that DHA is the principal omega-3 FA in cortical gray matter, the importance of DHA intake and its derived lipid mediators have been recently reported in patients with major depressive and bipolar disorders, Alzheimer disease, Parkinson's disease, and amyotrophic lateral sclerosis. The present study reviews the relationships between major diseases occurring today in the Western world and LC-PUFAs. More specifically this review focuses on the dietary omega-3 LC-PUFAs and the omega-6/omega-3 balance, in a wide range of inflammation disorders, including autoimmune diseases. This review suggests that the current recommendations of consumption and/or supplementation of omega-3 FAs are specific to particular groups of age and physiological status, and still need more fine tuning for overall human health and well being.
Collapse
Affiliation(s)
- Rafael Zárate
- Canary Islands Cancer Research Institute (ICIC), Ave. La Trinidad 61, Torre A. Arévalo, 7th floor, 38204 La Laguna, Tenerife Spain
| | - Nabil el Jaber-Vazdekis
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
| | - Noemi Tejera
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7UQ UK
| | - José A. Pérez
- Department of Animal Biology, Soil Science and Geology (Animal Physiology Unit), Faculty of Sciences, Universidad de La Laguna, Ave. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife Spain
| | - Covadonga Rodríguez
- Department of Animal Biology, Soil Science and Geology (Animal Physiology Unit), Faculty of Sciences, Universidad de La Laguna, Ave. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife Spain
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, Campus de Ofra, 38071 La Laguna, Tenerife Spain
| |
Collapse
|
17
|
Goncharova K, Kirko S, Grujic D, Kardas M, Grochowska-Niedworok E, Prykhodko O, Woliński J, Ushakova G, Lozinska L, Pierzynowski SG. Enhanced absorption of long-chain polyunsaturated fatty acids following consumption of functional milk formula, pre-digested with immobilized lipase ex vivo , in an exocrine pancreatic insufficient (EPI) pig model. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
18
|
Domenichiello AF, Kitson AP, Metherel AH, Chen CT, Hopperton KE, Stavro PM, Bazinet RP. Whole-Body Docosahexaenoic Acid Synthesis-Secretion Rates in Rats Are Constant across a Large Range of Dietary α-Linolenic Acid Intakes. J Nutr 2017; 147:37-44. [PMID: 27852871 DOI: 10.3945/jn.116.232074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/22/2016] [Accepted: 10/18/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) is an ω-3 (n-3) polyunsaturated fatty acid (PUFA) thought to be important for brain function. Although the main dietary source of DHA is fish, DHA can also be synthesized from α-linolenic acid (ALA), which is derived from plants. Enzymes involved in DHA synthesis are also active toward ω-6 (n-6) PUFAs to synthesize docosapentaenoic acid n-6 (DPAn-6). It is unclear whether DHA synthesis from ALA is sufficient to maintain brain DHA. OBJECTIVE The objective of this study was to determine how different amounts of dietary ALA would affect whole-body DHA and DPAn-6 synthesis rates. METHODS Male Long-Evans rats were fed an ALA-deficient diet (ALA-D), an ALA-adequate (ALA-A) diet, or a high-ALA (ALA-H) diet for 8 wk from weaning. Dietary ALA concentrations were 0.07%, 3%, and 10% of the fatty acids, and ALA was the only dietary PUFA that differed between the diets. After 8 wk, steady-state stable isotope infusion of labeled ALA and linoleic acid (LA) was performed to determine the in vivo synthesis-secretion rates of DHA and DPAn-6. RESULTS Rats fed the ALA-A diet had an ∼2-fold greater capacity to synthesize DHA than did rats fed the ALA-H and ALA-D diets, and a DHA synthesis rate that was similar to that of rats fed the ALA-H diet. However, rats fed the ALA-D diet had a 750% lower DHA synthesis rate than rats fed the ALA-A and ALA-H diets. Despite enrichment into arachidonic acid, we did not detect any labeled LA appearing as DPAn-6. CONCLUSIONS Increasing dietary ALA from 3% to 10% of fatty acids did not increase DHA synthesis rates, because of a decreased capacity to synthesize DHA in rats fed the ALA-H diet. Tissue concentrations of DPAn-6 may be explained at least in part by longer plasma half-lives.
Collapse
Affiliation(s)
| | - Alex P Kitson
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; and
| | - Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; and
| | - Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; and
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; and
| | | | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada; and
| |
Collapse
|
19
|
Baker EJ, Miles EA, Burdge GC, Yaqoob P, Calder PC. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog Lipid Res 2016; 64:30-56. [DOI: 10.1016/j.plipres.2016.07.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
|
20
|
Whole-body DHA synthesis-secretion kinetics from plasma eicosapentaenoic acid and alpha-linolenic acid in the free-living rat. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:997-1004. [DOI: 10.1016/j.bbalip.2016.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/10/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
|
21
|
Meesapyodsuk D, Qiu X. Biosynthetic mechanism of very long chain polyunsaturated fatty acids in Thraustochytrium sp. 26185. J Lipid Res 2016; 57:1854-1864. [PMID: 27527703 DOI: 10.1194/jlr.m070136] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/30/2022] Open
Abstract
Thraustochytrium, a unicellular marine protist, has been used as a commercial source of very long chain PUFAs (VLCPUFAs) such as DHA (22:6n-3). Our recent work indicates coexistence of a Δ4-desaturation-dependent pathway (aerobic) and a polyketide synthase-like PUFA synthase pathway (anaerobic) to synthesize the fatty acids in Thraustochytrium sp. 26185. Heterologous expression of the Thraustochytrium PUFA synthase along with a phosphopantetheinyl transferase in Escherichia coli showed the anaerobic pathway was highly active in the biosynthesis of VLCPUFAs. The amount of Δ4 desaturated VLCPUFAs produced reached about 18% of the total fatty acids in the transformant cells at day 6 in a time course of the induced expression. In Thraustochytrium, the expression level of the PUFA synthase gene was much higher than that of the Δ4 desaturase gene, and also highly correlated with the production of VLCPUFAs. On the other hand, Δ9 and Δ12 desaturations in the aerobic pathway were either ineffective or absent in the species, as evidenced by the genomic survey, heterologous expression of candidate genes, and in vivo feeding experiments. These results indicate that the anaerobic pathway is solely responsible for the biosynthesis for VLCPUFAs in Thraustochytrium.
Collapse
Affiliation(s)
- Dauenpen Meesapyodsuk
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada; and National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada; and National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.
| |
Collapse
|
22
|
The expression of genes encoding enzymes regulating fat metabolism is affected by maternal nutrition when lambs are fed algae high in omega-3. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Domenichiello AF, Kitson AP, Chen CT, Trépanier MO, Stavro PM, Bazinet RP. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats. J Nutr Biochem 2016; 30:167-76. [DOI: 10.1016/j.jnutbio.2015.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/07/2015] [Accepted: 11/20/2015] [Indexed: 11/30/2022]
|
24
|
Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing. Nutrients 2015; 7:6405-24. [PMID: 26247968 PMCID: PMC4555128 DOI: 10.3390/nu7085289] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 05/12/2015] [Accepted: 07/24/2015] [Indexed: 01/29/2023] Open
Abstract
α-Linolenic acid (ALA) is the precursor of docosahexaenoic acid (DHA) in humans, which is fundamental for brain and visual function. Western diet provides low ALA and DHA, which is reflected in low DHA in maternal milk. Chia oil extracted from chia (Salvia hispanica L.), a plant native to some Latin American countries, is high in ALA (up to 60%) and thereby is an alternative to provide ALA with the aim to reduce DHA deficits. We evaluated the modification of the fatty acid profile of milk obtained from Chilean mothers who received chia oil during gestation and nursing. Forty healthy pregnant women (22–35 years old) tabulated for food consumption, were randomly separated into two groups: a control group with normal feeding (n = 21) and a chia group (n = 19), which received 16 mL chia oil daily from the third trimester of pregnancy until the first six months of nursing. The fatty acid profile of erythrocyte phospholipids, measured at six months of pregnancy, at time of delivery and at six months of nursing, and the fatty acid profile of the milk collected during the first six months of nursing were assessed by gas-chromatography. The chia group, compared to the control group, showed (i) a significant increase in ALA ingestion and a significant reduction of linoleic acid (LA) ingestion, no showing modification of arachidonic acid (AA), eicosapentaenoic acid (EPA) and DHA; (ii) a significant increase of erythrocyte ALA and EPA and a reduction of LA. AA and DHA were not modified; (iii) a increased milk content of ALA during the six months of nursing, whereas LA showed a decrease. AA and EPA were not modified, however DHA increased only during the first three months of nursing. Consumption of chia oil during the last trimester of pregnancy and the first three months of nursing transiently increases the milk content of DHA.
Collapse
|
25
|
Domenichiello AF, Kitson AP, Bazinet RP. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog Lipid Res 2015; 59:54-66. [DOI: 10.1016/j.plipres.2015.04.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
|
26
|
Wood KE, Mantzioris E, Gibson RA, Ramsden CE, Muhlhausler BS. The effect of modifying dietary LA and ALA intakes on omega-3 long chain polyunsaturated fatty acid (n-3 LCPUFA) status in human adults: a systematic review and commentary. Prostaglandins Leukot Essent Fatty Acids 2015; 95:47-55. [PMID: 25687496 PMCID: PMC9406118 DOI: 10.1016/j.plefa.2015.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/19/2014] [Accepted: 01/05/2015] [Indexed: 11/18/2022]
Abstract
This paper presents a systematic review of human studies investigating the effect of altering dietary omega-3 polyunsaturated fatty acid (n-3 PUFA) alpha-linolenic acid (ALA) and omega-6 polyunsaturated fatty acid (n-6 PUFA) linoleic acid (LA) intakes on n-3 long-chain polyunsaturated fatty acid (LCPUFA) status in adult humans. The results suggest that it is possible to increase n-3 LCPUFA status by reducing LA and/or increasing ALA intake in humans, although decreasing LA intake to below 2.5%E may be required to specifically increase levels of the n-3 LCPUFA docosahexaenoic acid (DHA). The majority of studies in this area to date have been relatively poor in quality, which limits the ability to draw robust conclusions, and we present a series of recommendations to improve the quality of future studies in fatty acid nutrition in humans.
Collapse
Affiliation(s)
- K E Wood
- FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, Australia
| | - E Mantzioris
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - R A Gibson
- FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, Australia
| | - C E Ramsden
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - B S Muhlhausler
- FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, Australia.
| |
Collapse
|
27
|
Alvarenga TIRC, Chen Y, Furusho-Garcia IF, Perez JRO, Hopkins DL. Manipulation of Omega-3 PUFAs in Lamb: Phenotypic and Genotypic Views. Compr Rev Food Sci Food Saf 2015; 14:189-204. [DOI: 10.1111/1541-4337.12131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/19/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Tharcilla Isabella Rodrigues Costa Alvarenga
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
- NSW Dept. of Primary Industries; Centre for Red Meat and Sheep Development; Cowra NSW 2794 Australia
| | - Yizhou Chen
- NSW Dept. of Primary Industries; Elizabeth Macarthur Agricultural Inst; Menangle NSW 2568 Australia
| | - Iraides Ferreira Furusho-Garcia
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
| | - Juan Ramon Olalquiaga Perez
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
| | - David L. Hopkins
- Dept. of Animal Science, Federal Univ. of Lavras; Campus Universitário; Caixa Postal 3037 37200-000 Lavras Minas Gerais Brazil
- NSW Dept. of Primary Industries; Centre for Red Meat and Sheep Development; Cowra NSW 2794 Australia
| |
Collapse
|
28
|
Clouard C, Gerrits WJJ, van Kerkhof I, Smink W, Bolhuis JE. Dietary linoleic and α-linolenic acids affect anxiety-related responses and exploratory activity in growing pigs. J Nutr 2015; 145:358-64. [PMID: 25644359 DOI: 10.3945/jn.114.199448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Growing evidence suggests that the dietary ratio of linoleic acid (LA) to α-linolenic acid (ALA), the precursors of arachidonic acid (AA) and docosahexaenoic acid (DHA), respectively, may affect behavior in mammals. OBJECTIVE This study aimed at evaluating the impact of dietary LA and ALA intake on behaviors of growing pigs, a pertinent model for human nutrition. METHODS At 7 wk of age, 32 pigs were allocated to 4 dietary treatments varying in daily intake of LA (1.3 and 2.6 g · kg body weight(-0.75) · d(-1) for low- and high-LA groups, respectively) and ALA (0.15 and 1.5 g · kg body weight(-0.75) · d(-1) for low- and high-ALA groups, respectively) for 4 wk. Between days 12 and 18, general behavior in the home pen was observed and pigs were subjected to an open field and novel object test. At 11 wk of age, brain fatty acid composition was analyzed. RESULTS Compared with high LA intake, low LA intake increased the time spent on exploration, particularly nosing in the home pen (P < 0.05) and the open field (P < 0.05), and tended to reduce the time spent lying with eyes open in the home pen (P = 0.09). Time spent lying with eyes open also tended to be affected by the interaction between LA and ALA (P = 0.08). A high-LA/high-ALA intake (ratio of 2; P < 0.05) and a low-LA/high-ALA intake (ratio of 1; P = 0.06) decreased the latency to approach the novel object compared with a low-LA/low-ALA intake (ratio of 9). DHA in the frontal cortex was positively correlated with exploratory behaviors in the home pen (rs = 0.56, P < 0.01), whereas AA was negatively correlated with time spent lying with eyes closed (rs = -0.48, P < 0.01). CONCLUSIONS Low LA intake and a low dietary LA:ALA ratio increased exploration and decreased anxiety-related behaviors in pigs. It is suggested that changes in brain DHA and AA induced by dietary LA and ALA intake mediate these behavioral changes.
Collapse
Affiliation(s)
| | - Walter J J Gerrits
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | | | - Willem Smink
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
29
|
Ruiz-Lopez N, Usher S, Sayanova OV, Napier JA, Haslam RP. Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA. Appl Microbiol Biotechnol 2015; 99:143-54. [PMID: 25417743 PMCID: PMC4286622 DOI: 10.1007/s00253-014-6217-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/05/2023]
Abstract
Omega-3 fatty acids are characterized by a double bond at the third carbon atom from the end of the carbon chain. Latterly, long chain polyunsaturated omega-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5Δ5,8,11,14,17) and docosahexanoic acid (DHA; 22:6 Δ4,7,10,13,16,19), which typically only enter the human diet via the consumption of oily fish, have attracted much attention. The health benefits of the omega-3 LC-PUFAs EPA and DHA are now well established. Given the desire for a sustainable supply of omega-LC-PUFA, efforts have focused on enhancing the composition of vegetable oils to include these important fatty acids. Specifically, EPA and DHA have been the focus of much study, with the ultimate goal of producing a terrestrial plant-based source of these so-called fish oils. Over the last decade, many genes encoding the primary LC-PUFA biosynthetic activities have been identified and characterized. This has allowed the reconstitution of the LC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate omega-3 LC-PUFA to levels similar to that found in fish oil. In this review, we will describe the most recent developments in this field and the challenges of overwriting endogenous seed lipid metabolism to maximize the accumulation of these important fatty acids.
Collapse
Affiliation(s)
- Noemi Ruiz-Lopez
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Sarah Usher
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Olga V. Sayanova
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Johnathan A. Napier
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Richard P. Haslam
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| |
Collapse
|
30
|
Mennitti LV, Oliveira JL, Morais CA, Estadella D, Oyama LM, Oller do Nascimento CM, Pisani LP. Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring. J Nutr Biochem 2014; 26:99-111. [PMID: 25459884 DOI: 10.1016/j.jnutbio.2014.10.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/19/2014] [Accepted: 10/04/2014] [Indexed: 12/25/2022]
Abstract
During pregnancy and/or lactation, maternal nutrition is related to the adequate development of the fetus, newborn and future adult, likely by modifications in fetal programming and epigenetic regulation. Fetal programming is characterized by adaptive responses to specific environmental conditions during early life stages, which may alter gene expression and permanently affect the structure and function of several organs and tissues, thus influencing the susceptibility to metabolic disorders. Regarding lipid metabolism during the first two trimesters of pregnancy, the maternal body accumulates fat, whereas in late pregnancy, the lipolytic activity in the maternal adipose tissue is increased. However, an excess or deficiency of certain fatty acids may lead to adverse consequences to the fetuses and newborns. Fetal exposure to trans fatty acids appears to promote early deleterious effects in the offspring's health, thereby increasing the individual risk for developing metabolic diseases throughout life. Similarly, the maternal intake of saturated fatty acids seems to trigger alterations in the liver and adipose tissue function associated with insulin resistance and diabetes. The polyunsaturated fatty acids (PUFAs), particularly long-chain PUFAs (long-chain PUFA-arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid), play an important and beneficial physiologic role in the offspring who receive this fatty acid during critical periods of development. Therefore, the maternal nutritional condition and fatty acid intake during pregnancy and/or lactation are critical factors that are strongly associated with normal fetal and postnatal development, which influence the modifications in fetal programming and in the individual risk for developing metabolic diseases throughout life.
Collapse
Affiliation(s)
- Laís V Mennitti
- Departamento de Biociências, Universidade Federal de São Paulo, Santos/SP, Brazil
| | - Juliana L Oliveira
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | - Carina A Morais
- Departamento de Biociências, Universidade Federal de São Paulo, Santos/SP, Brazil
| | - Débora Estadella
- Departamento de Biociências, Universidade Federal de São Paulo, Santos/SP, Brazil
| | - Lila M Oyama
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo/SP, Brazil
| | | | - Luciana P Pisani
- Departamento de Biociências, Universidade Federal de São Paulo, Santos/SP, Brazil.
| |
Collapse
|
31
|
Muhlhausler BS, Gibson RA, Yelland LN, Makrides M. Heterogeneity in cord blood DHA concentration: towards an explanation. Prostaglandins Leukot Essent Fatty Acids 2014; 91:135-40. [PMID: 25123061 DOI: 10.1016/j.plefa.2014.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 07/09/2014] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
Abstract
This paper aimed to identify the dietary and non-dietary determinants of docosahexaenoic acid (DHA) levels in umbilical cord blood at delivery. DHA was measured in cord blood plasma phospholipids of 1571 participants from the DOMInO (DHA to Optimize Mother Infant Outcome) randomized controlled trial. Socioeconomic, lifestyle and clinical data relating to the mother and current pregnancy were obtained from all women and their relationships with cord blood DHA assessed. DHA concentrations in the cord plasma phospholipids at delivery covered a 3-4 fold range in both control and DHA groups. The total number of DHA-rich intervention supplement capsules consumed over the course of pregnancy and gestational age at delivery individually explained 21% and 16% respectively of the variation in DHA abundance in the cord blood plasma phospholipids at delivery, but no other clinical or life-style factors explored in this study could account for >2% of the variation. Indeed, more than 65% of the variation remained unaccounted for even when all factors were included in the analysis. These data suggest that factors other than maternal DHA intake have an important role in determining cord blood DHA concentrations at delivery, and may at least partially explain the variation in the response of infants to maternal DHA supplementation reported in published trials.
Collapse
Affiliation(s)
- B S Muhlhausler
- FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide, Australia; Child Nutrition Research Centre, Women׳s and Children׳s Health Research Institute, Women׳s and Children׳s Hospital, 72 King William Road, North Adelaide SA 5006, Australia
| | - R A Gibson
- FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Adelaide, Australia; Child Nutrition Research Centre, Women׳s and Children׳s Health Research Institute, Women׳s and Children׳s Hospital, 72 King William Road, North Adelaide SA 5006, Australia
| | - L N Yelland
- Child Nutrition Research Centre, Women׳s and Children׳s Health Research Institute, Women׳s and Children׳s Hospital, 72 King William Road, North Adelaide SA 5006, Australia; School of Population Health, The University of Adelaide, Adelaide, Australia
| | - M Makrides
- Child Nutrition Research Centre, Women׳s and Children׳s Health Research Institute, Women׳s and Children׳s Hospital, 72 King William Road, North Adelaide SA 5006, Australia; School of Pediatrics & Reproductive Health, The University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
32
|
Dittrich M, Jahreis G, Bothor K, Drechsel C, Kiehntopf M, Blüher M, Dawczynski C. Benefits of foods supplemented with vegetable oils rich in α-linolenic, stearidonic or docosahexaenoic acid in hypertriglyceridemic subjects: a double-blind, randomized, controlled trail. Eur J Nutr 2014; 54:881-93. [PMID: 25216712 DOI: 10.1007/s00394-014-0764-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/26/2014] [Indexed: 12/23/2022]
Abstract
PURPOSE The aim of the study was to investigate the influence of foods enriched with vegetable oils varying in their n-3 polyunsaturated fatty acids profile on cardiovascular risk factors for hypertriglyceridemic subjects. METHODS Fifty-nine hypertriglyceridemic subjects (triglycerides ≥ 1.5 mmol/L) were included in the randomized, double-blind, placebo-controlled, crossover study. The placebo group received sunflower oil [linoleic acid (LA) group; 10 g LA/day]. The intervention groups received linseed oil [α-linolenic acid (ALA) group; 7 g ALA/day], echium oil [stearidonic acid (SDA) group; 2 g SDA/day] or microalgae oil [docosahexaenoic acid (DHA) group; 2 g DHA/day] over 10 weeks. Blood samples were collected at baseline and at the end of each period. RESULTS Total cholesterol (TC) and low-density-lipoprotein cholesterol decreased significantly in the LA and ALA groups (LA: P ≤ 0.01, ALA: P ≤ 0.05). No changes in blood lipids were observed in the SDA group. Significant increases in TC and high-density-lipoprotein cholesterol occurred in the DHA group (P ≤ 0.05). In the ALA and SDA groups, the content of eicosapentaenoic acid in erythrocyte lipids increased significantly (P ≤ 0.05) after 10 weeks (ALA group: 38 ± 37 %, SDA group: 73 ± 59 %). CONCLUSION Foods enriched with different vegetable oils rich in ALA or SDA are able to increase the n-3 long-chain polyunsaturated fatty acids content in erythrocyte lipids; echium oil is more potent in comparison with linseed oil. Blood lipids were beneficially modified through the consumption of food products enriched with sunflower, linseed and microalgae oils, whereas echium oil did not affect blood lipids. ClinicalTrials.gov: NCT01437930.
Collapse
Affiliation(s)
- Manja Dittrich
- Department of Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated fatty acids. Prog Lipid Res 2014; 56:19-35. [PMID: 25107699 DOI: 10.1016/j.plipres.2014.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/14/2014] [Indexed: 12/28/2022]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) have received growing attention due to their significant roles in human health. Currently the main source of these nutritionally and medically important fatty acids is marine fish, which has not met ever-increasing global demand. Microorganisms are an important alternative source also being explored. Although many microorganisms accumulate omega-3 LC-PUFAs naturally, metabolic engineering might still be necessary for significantly improving their yields. Here, we review recent research involving the engineering of microorganisms for production of omega-3 LC-PUFAs, including eicospentaenoic acid and docosohexaenoic acid. Both reconstitution of omega-3 LC-PUFA biosynthetic pathways and modification of existing pathways in microorganisms have demonstrated the potential to produce high levels of omega-3 LC-PUFAs. However, the yields of omega-3 LC-PUFAs in host systems have been substantially limited by potential metabolic bottlenecks, which might be caused partly by inefficient flux of fatty acid intermediates between the acyl-CoA and different lipid class pools. Although fatty acid flux in both native and heterologous microbial hosts might be controlled by several acyltransferases, evidence has suggested that genetic manipulation of one acyltransferase alone could significantly increase the accumulation of LC-PUFAs. The number of oleaginous microorganisms that can be genetically transformed is increasing, which will advance engineering efforts to maximize LC-PUFA yields in microbial strains.
Collapse
|
34
|
Kim KB, Nam YA, Kim HS, Hayes AW, Lee BM. α-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food Chem Toxicol 2014; 70:163-178. [PMID: 24859185 DOI: 10.1016/j.fct.2014.05.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
α-Linolenic acid (ALA), a carboxylic acid with 18 carbons and three cis double bonds, is an essential fatty acid needed for human health and can be acquired via regular dietary intake of foods that contain ALA or dietary supplementation of foods high in ALA, for example flaxseed. ALA has been reported to have cardiovascular-protective, anti-cancer, neuro-protective, anti-osteoporotic, anti-inflammatory, and antioxidative effects. ALA is the precursor of longer chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), but its beneficial effects on risk factors for cardiovascular diseases are still inconclusive. The recommended intake of ALA for cardiovascular health is reported to be 1.1-2.2g/day. Although there are limited toxicological data for ALA, no serious adverse effects have been reported. The evidence on an increased prostate cancer risk in association with dietary ALA is not conclusive. Based on the limited data currently available, it may be concluded that ALA may be beneficial as a nutraceutical/pharmaceutical candidate and is safe for use as a food ingredient.
Collapse
Affiliation(s)
- Kyu-Bong Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, Chungnam 330-714, Republic of Korea
| | - Yoon A Nam
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | - A Wallace Hayes
- Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea.
| |
Collapse
|
35
|
Abedi E, Sahari MA. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci Nutr 2014; 2:443-63. [PMID: 25473503 PMCID: PMC4237475 DOI: 10.1002/fsn3.121] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/19/2023] Open
Abstract
Recent studies have clearly shown the importance of polyunsaturated fatty acids (as essential fatty acids) and their nutritional value for human health. In this review, various sources, nutritional properties, and metabolism routes of long-chain polyunsaturated fatty acids (LC-PUFA) are introduced. Since the conversion efficiency of linoleic acid (LA) to arachidonic acid (AA) and also α-linolenic acid (ALA) to docosahexaenoic acid (DHA) and eicosatetraenoic acid (EPA) is low in humans, looking for the numerous sources of AA, EPA and EPA fatty acids. The sources include aquatic (fish, crustaceans, and mollusks), animal sources (meat, egg, and milk), plant sources including 20 plants, most of which were weeds having a good amount of LC-PUFA, fruits, herbs, and seeds; cyanobacteria; and microorganisms (bacteria, fungi, microalgae, and diatoms).
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University Tehran, Iran
| | - Mohammad Ali Sahari
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University Tehran, Iran
| |
Collapse
|
36
|
Prins ML, Matsumoto JH. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury. J Lipid Res 2014; 55:2450-7. [PMID: 24721741 DOI: 10.1194/jlr.r046706] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans.
Collapse
Affiliation(s)
- Mayumi L Prins
- Department of Neurosurgery, Brain Injury Research Center University of California, Los Angeles, Los Angeles, CA
| | - Joyce H Matsumoto
- Department of Pediatrics, Division of Pediatric Neurology, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
37
|
Tai EKK, Wang XB, Chen ZY. An update on adding docosahexaenoic acid (DHA) and arachidonic acid (AA) to baby formula. Food Funct 2013; 4:1767-75. [PMID: 24150114 DOI: 10.1039/c3fo60298b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Human milk is the ideal food providing optimal nutrition for healthy term infants. Its complex lipid composition is critical for infant growth and serves as a golden standard for baby formula development. Docosahexaenoic acid (C22:6 n- 3, DHA) and arachidonic acid (C20:4 n- 6, AA) are the two major long chain polyunsaturated fatty acids (PUFAs) in human milk. In humans, they are fundamental components of the cell membrane and play an important role in neurite growth and signal transmission. Their importance for both preterm and term infants has been demonstrated by various clinical trials. DHA and AA supplementation shows desirable influences on visual and cognitive development in early life and is additionally associated with potential benefits on later health. Further clinical data revealed that supplementing both DHA and AA instead of DHA alone during infancy is important to deliver the optimal outcome. In this review, we summarize current research and scientific evidence of DHA and AA on baby development.
Collapse
Affiliation(s)
- Emily K K Tai
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | |
Collapse
|
38
|
Association between plasma nonesterified fatty acids species and adipose tissue fatty acid composition. PLoS One 2013; 8:e74927. [PMID: 24098359 PMCID: PMC3788793 DOI: 10.1371/journal.pone.0074927] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 08/06/2013] [Indexed: 12/18/2022] Open
Abstract
Fatty acid composition of adipose tissue (AT) is an established long-term biomarker for fatty acid (FA) intake and status, but AT samples are not easily available. Nonesterified FA composition in plasma (pNEFA) may be a good indicator of AT FA composition, because pNEFA are mainly generated by AT lipolysis. We investigated the correlation of 42 pNEFA and subcutaneous as well as visceral AT FA in 27 non-diabetic women with a median BMI of 36 kg/m2 (Q0.25: 25 kg/m2; Q0.75: 49 kg/m2). Close correlations of pNEFA and AT FA were found for odd-chain FA (15∶0 r = 0.838 and 0.862 for subcutaneous and visceral AT, respectively) and omega-3 FA (22∶6 r = 0.719/0.535), while no significant or low correlations were found for other FA including 18∶1 (r = 0.384/0.325) and 20∶4 (r = 0.386/0.266). Close correlations of pNEFA and AT FA were found for essential fatty acids, like 18∶2 (r = 0.541/0.610) and 20∶5 (r = 0.561/0.543). The lower correlation for some pNEFA species with AT FA indicates that the variation of most pNEFA is significantly affected by other FA sources and flux of FA to tissue, in addition to release from AT. A relevant influence of BMI on the level of correlation was shown for saturated FA. NEFA analysis in fasted plasma can serve as a virtual AT biopsy for some FA, and as a biomarker for intake of dairy products and sea fish.
Collapse
|
39
|
Martin DA, McCutcheon D, Wainwright PE. Prenatal Dietary Docosahexaenoic Acid Supplementation in Combination with Protein Restriction Does Not Affect Blood Pressure in Adult Wistar Rats. Nutr Neurosci 2013; 7:141-50. [PMID: 15526988 DOI: 10.1080/10284150400002407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recent findings indicate that prenatal protein restriction, which leads to elevated blood pressure in adult rats, results in decreased levels of docosahexaenoic acid (DHA) in neonatal rat brain. In light of the evidence of a relationship between dietary DHA and adult blood pressure, the purpose of this study was to ascertain whether prenatal dietary supplementation with DHA would prevent the development of hypertension associated with maternal protein restriction. Throughout gestation, female Wistar rats were fed isocaloric diets containing either 18% casein + 10% corn oil (CON; control), 9% casein + 10% corn oil (LP; low-protein) or 9% casein + 8.5% corn oil + 1.5% DHASCO (LP + 0.6% DHA). DHA increased levels of DHA in neonatal forebrain but there were no effects of LP. At 10 weeks there were no dietary effects on blood pressure measured on four consecutive days using tail-cuff plethysmography. There were also no significant effects measured at 30 weeks, using femoral artery catheterisation, despite adequate power to detect a 10 mm Hg difference. Trends in corticosterone measurements suggested higher stress reactivity in the LP group. These results do not provide strong support for the prenatal low protein model of hypertension and a relation with dietary DHA.
Collapse
Affiliation(s)
- D A Martin
- Department of Health Studies and Gerontology, University of Waterloo, 200 University Avenue W, Waterloo, Ont., Canada N2L 3G1
| | | | | |
Collapse
|
40
|
Haslam RP, Ruiz-Lopez N, Eastmond P, Moloney M, Sayanova O, Napier JA. The modification of plant oil composition via metabolic engineering--better nutrition by design. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:157-68. [PMID: 23066823 DOI: 10.1111/pbi.12012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 05/08/2023]
Abstract
This article will focus on the modification of plant seed oils to enhance their nutritional composition. Such modifications will include C18 Δ6-desaturated fatty acids such as γ-linolenic and stearidonic acid, omega-6 long-chain polyunsaturated fatty acids such as arachidonic acid, as well as the omega-3 long-chain polyunsaturated fatty acids (often named 'fish oils') such as eicosapentaenoic acid and docosahexaenoic acid. We will consider how new technologies (such as synthetic biology, next-generation sequencing and lipidomics) can help speed up and direct the development of desired traits in transgenic oilseeds. We will also discuss how manipulating triacylglycerol structure can further enhance the nutritional value of 'designer' oils. We will also consider how advances in model systems have translated into crops and the potential end-users for such novel oils (e.g. aquaculture, animal feed, human nutrition).
Collapse
Affiliation(s)
- Richard P Haslam
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts, UK
| | | | | | | | | | | |
Collapse
|
41
|
Gibson RA, Neumann MA, Lien EL, Boyd KA, Tu WC. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 2013; 88:139-46. [PMID: 22515943 DOI: 10.1016/j.plefa.2012.04.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
Abstract
The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07-17.1 en%) and ALA (0.02-12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1-3 en% ALA and 1-2 en% LA but was suppressed to basal levels (∼2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%).
Collapse
MESH Headings
- Algorithms
- Animals
- Diet, Fat-Restricted
- Diet, High-Fat/adverse effects
- Docosahexaenoic Acids/blood
- Docosahexaenoic Acids/metabolism
- Eicosapentaenoic Acid/blood
- Eicosapentaenoic Acid/metabolism
- Fatty Acids, Essential/blood
- Fatty Acids, Essential/deficiency
- Fatty Acids, Essential/metabolism
- Fatty Acids, Omega-6/adverse effects
- Fatty Acids, Omega-6/blood
- Fatty Acids, Omega-6/chemistry
- Fatty Acids, Omega-6/metabolism
- Fatty Acids, Unsaturated/administration & dosage
- Fatty Acids, Unsaturated/adverse effects
- Fatty Acids, Unsaturated/analysis
- Fatty Acids, Unsaturated/blood
- Linoleic Acid/administration & dosage
- Linoleic Acid/adverse effects
- Linoleic Acid/blood
- Linoleic Acid/metabolism
- Linseed Oil/administration & dosage
- Linseed Oil/chemistry
- Linseed Oil/metabolism
- Male
- Phospholipids/blood
- Phospholipids/chemistry
- Phospholipids/metabolism
- Plant Oils/administration & dosage
- Plant Oils/adverse effects
- Plant Oils/chemistry
- Plant Oils/metabolism
- Rats
- Rats, Wistar
- Safflower Oil/administration & dosage
- Safflower Oil/adverse effects
- Safflower Oil/chemistry
- Safflower Oil/metabolism
- Sunflower Oil
- Weaning
- alpha-Linolenic Acid/administration & dosage
- alpha-Linolenic Acid/analysis
- alpha-Linolenic Acid/blood
- alpha-Linolenic Acid/metabolism
Collapse
Affiliation(s)
- R A Gibson
- FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
42
|
Gupta A, Barrow CJ, Puri M. Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 2012; 30:1733-45. [DOI: 10.1016/j.biotechadv.2012.02.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/03/2012] [Accepted: 02/21/2012] [Indexed: 12/01/2022]
|
43
|
Ruiz-López N, Sayanova O, Napier JA, Haslam RP. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2397-410. [PMID: 22291131 DOI: 10.1093/jxb/err454] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.
Collapse
Affiliation(s)
- Noemi Ruiz-López
- Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | | | | | |
Collapse
|
44
|
Barramundi (Lates calcarifer) desaturase with Δ6/Δ8 dual activities. Biotechnol Lett 2012; 34:1283-96. [DOI: 10.1007/s10529-012-0891-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
45
|
Crawford MA, Broadhurst CL. The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenge for human sustainability. Nutr Health 2012; 21:17-39. [PMID: 22544773 DOI: 10.1177/0260106012437550] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Life originated on this planet about 3 billion years ago. For the first 2.5 billion years of life there was ample opportunity for DNA modification. Yet there is no evidence of significant change in life forms during that time. It was not until about 600 million years ago, when the oxygen tension rose to a point where air-breathing life forms became thermodynamically possible, that a major change can be abruptly seen in the fossil record. The sudden appearance of the 32 phyla in the Cambrian fossil record was also associated with the appearance of intracellular detail not seen in previous life forms. That detail was provided by cell membranes made with lipids (membrane fats) as structural essentials. Lipids thus played a major, as yet unrecognised, role as determinants in evolution. The compartmentalisation of intracellular, specialist functions as in the nucleus, mitochondria, reticulo-endothelial system and plasma membrane led to cellular specialisation and then speciation. Thus, not only oxygen but also the marine lipids were drivers in the Cambrian explosion. Docosahexaenoic acid (DHA) (all-cis-docosa-4,7,10,13,16,19-hexaenoic acid, C22:6ω3 or C22:6, n-3, DHA) is a major feature of marine lipids. It requires six oxygen atoms to insert its six double bonds, so it would not have been abundant before oxidative metabolism became plentiful. DHA provided the membrane backbone for the emergence of new photoreceptors that converted photons into electricity, laying the foundation for the evolution of other signalling systems, the nervous system and the brain. Hence, the ω3 DHA from the marine food web must have played a critical role in human evolution. There is also clear evidence from molecular biology that DHA is a determinant of neuronal migration, neurogenesis and the expression of several genes involved in brain growth and function. That same process was essential to the ultimate cerebral expansion in human evolution. There is now incontrovertible support of this hypothesis from fossil evidence of human evolution taking advantage of the marine food web. Lipids are still modifying the present evolutionary phase of our species; their signature is evident in the changing panorama of non-communicable diseases. The most worrying change in disease pattern is the sharp rise in brain disorders, which, in the European Union, has overtaken the cost of all other burdens of ill health at €386 billion for the 25 member states at 2004 prices. In 2007, the UK cost was estimated at £77 billion and confirmed in 2010 at £105 billion - greater than heart disease and cancer combined. The rise in mental ill health is now being globalised. The solution to the rising vascular disorders in the last century and now brain disorders in this century lies in a radical reappraisal of the food system, which last century was focussed on protein and calories, with little attention paid to the requirements of the brain - the very organ that was the determinant of human evolution. With the marine fish catch having plateaued 20 years ago and its sustainability now under threat, a critical aspect of this revision is the development of marine agriculture from estuarine, coastal and oceanic resources. Such action is likely to play a key role in future health and intelligence.
Collapse
|
46
|
Navidshad B, Boo LJ, Akhlaghi A. Effect of dietary fish oil on n-3 fatty acid content of meat from broiler chickens fed low protein diets. ANIMAL PRODUCTION SCIENCE 2012. [DOI: 10.1071/an12011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An experiment was carried out to evaluate the effects of dietary fish oil and crude protein (CP) levels on fatty acid composition of the thigh and breast tissues of broiler chickens. Four hundred and fifty, 1-day-old mixed-sex broiler chicks were used in a completely randomised design with factorial arrangement consisting of two dietary CP levels (21 v. 18.0% and 19 v. 17.1% for grower and finisher diets, respectively), and three levels of fish oil inclusion (0, 2 or 4%). Specific increases in eicosapentaenoic acid (EPA, 20 : 5) and docosahexaenoic acid (DHA, 22 : 6) were observed in breast and thigh tissues as a response to increased fish oil supplementation. The n-6 : n-3 fatty acid ratio in breast and thigh meat samples decreased (P < 0.05) in birds fed low protein diets, but dietary protein level led to no alteration in the total n-3 fatty acids of the tissues (P > 0.05). Thigh tissue of chickens fed low protein diets had a higher concentration of DHA (P < 0.05), while the DHA and EPA concentrations in breast tissue were not affected by dietary protein level (P > 0.05). Results of the present study showed that fish oil can be used to fortify EPA and DHA levels in chicken meat and there is an interaction between dietary fatty acids and protein level on meat oxidative stability, and a reduction in dietary protein level may lead to a better oxidative stability of chicken meat.
Collapse
|
47
|
Bousquet M, Calon F, Cicchetti F. Impact of ω-3 fatty acids in Parkinson's disease. Ageing Res Rev 2011; 10:453-63. [PMID: 21414422 DOI: 10.1016/j.arr.2011.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 01/29/2023]
Abstract
Current epidemiological, preclinical and clinical data suggest that omega-3 polyunsaturated fatty acids (n-3 PUFAs) may constitute therapeutic strategy for several disorders of the central nervous system, including Parkinson's disease (PD). PD is a neurodegenerative disorder primarily characterized by motor symptoms but which also includes several other pathological features such as autonomic system failures, mood disorders, and cognitive deficits. Current pharmacological options for the disease are limited to symptom management and their long-term use leads to important side effects. In this review, we discuss the evidence for the effects of n-3 PUFAs in PD both from an epidemiological perspective as well as in light of data gathered on various pathological features of the disease. Effects of n-3 PUFAs on the dopaminergic system, α-synucleinopathy, their possible mechanisms of action as well as their therapeutic potential for PD patients are also reviewed. n-3 PUFAs are inexpensive, readily transferable to the clinical setting and their use could represent a neuroprotective strategy or a disease-modifying option to delay the appearance of symptoms. It could also be beneficial as a symptomatologic treatment or serve as an add-on therapy to current pharmacological approaches. Review of the current literature as well as the undertaking of future clinical trials will shed light on these possibilities.
Collapse
|
48
|
Analysis of expressed sequence tags from the marine microalga Pseudochattonella farcimen (Dictyochophyceae). Protist 2011; 163:143-61. [PMID: 21820956 DOI: 10.1016/j.protis.2011.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/28/2011] [Indexed: 01/31/2023]
Abstract
Pseudochattonella farcimen (Eikrem, Edvardsen, et Throndsen) is a unicellular alga belonging to the Dictyochophyceae (Heterokonta). It forms recurring blooms in Scandinavian coastal waters, and has been associated to fish mortality. Here we report the sequencing and analysis of 10,368 expressed sequence tags (ESTs) corresponding to 8,149 unique gene models from this species. Compared to EST libraries from other heterokonts, P. farcimen contains a high number of genes with functions related to cell communication and signaling. We found several genes encoding proteins related to fatty acid metabolism, including eight fatty acid desaturases and two phospholipase A2 genes. Three desaturases are highly similar to Δ4-desaturases from haptophytes. P. farcimen also possesses three putative polyketide synthases (PKSs), belonging to two different families. Some of these genes may have been acquired via horizontal gene transfer by a common ancestor of brown algae and dictyochophytes, together with genes involved in mannitol metabolism, which are also present in P. farcimen. Our findings may explain the unusual fatty acid profile previously observed in P. farcimen, and are discussed from an evolutionary perspective and in relation to the ichthyotoxicity of this alga.
Collapse
|
49
|
Gibson RA, Muhlhausler B, Makrides M. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. MATERNAL AND CHILD NUTRITION 2011; 7 Suppl 2:17-26. [PMID: 21366864 DOI: 10.1111/j.1740-8709.2011.00299.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the past two decades, there has been a marked shift in the fatty acid composition of the diets of industrialized nations towards increased intake of the n-6 fatty acid linoleic acid (LA, 18:2n-6), largely as a result of the replacement of saturated fats with plant-based polyunsaturated fatty acid (PUFA). While health agencies internationally continue to advocate for high n-6 PUFA intake combined with increased intakes of preformed n-3 long-chain PUFAs (LCPUFA) docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) to reduce the incidence of cardiovascular disease (CVD), there are questions as to whether this is the best approach. LA competes with alpha-linolenic acid (18:3n-3) for endogenous conversion to the LC derivatives EPA and DHA, and LA also inhibits incorporation of DHA and EPA into tissues. Thus, high-LA levels in the diet generally result in low n-3 LCPUFA status. Pregnancy and infancy are developmental periods during which the fatty acid supply is particularly critical. The importance of an adequate supply of n-3 LCPUFA for ensuring optimal development of infant brain and visual systems is well established, and there is now evidence that the supply of n-3 LCPUFA also influences a range of growth, metabolic and immune outcomes in childhood. This review will re-evaluate the health benefits of modern Western diets and pose the question of whether the introduction of similar diets to nations with emerging economies is the most prudent public health strategy for improving health in these populations.
Collapse
Affiliation(s)
- Robert A Gibson
- Child Nutrition Research Centre, Women's and Children's Health Research Institute, Children, Youth and Women's Health Service, North Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
50
|
Oresti GM, Reyes JG, Luquez JM, Osses N, Furland NE, Aveldaño MI. Differentiation-related changes in lipid classes with long-chain and very long-chain polyenoic fatty acids in rat spermatogenic cells. J Lipid Res 2010; 51:2909-21. [PMID: 20610732 DOI: 10.1194/jlr.m006429] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In rat seminiferous tubules (ST), cells that contain polar and neutral lipids with long-chain polyenoic fatty acids (PUFA) and sphingomyelins (SM) and ceramides (Cer) with very long chain (VLC) PUFA of the n-6 series coexist. In this study, pachytene spermatocytes and round spermatids were isolated to determine how these lipids change during spermatogenesis. As the amount per cell of PUFA-rich glycerophospholipids (GPL) decreased with cell size, the 22:5/20:4 ratio increased with cell differentiation. The elovl2 and elovl5 genes, required for 22:5 formation, were expressed (mRNA) in both cell types. Residual bodies- particles with compacted organelles and materials discarded from late spermatids-concentrated cholesterol, 22:5-rich triacylglycerols, and GPL, including plasmalogens and phosphatidylserine. Species of SM and Cer with nonhydroxylated (n-) VLCPUFA (28:4, 30:5, and 32:5) predominated in pachytene spermatocytes, whereas species with the corresponding 2-hydroxy (2-OH) VLCPUFA prevailed in round spermatids. Thus, a dramatic increase in the 2-OH/n-VLCPUFA ratio in SM and Cer was a hallmark of differentiation. A substantial decrease of 2-OH SM occurred between spermatids and mature spermatozoa and 2-OH SM species were collected in residual bodies "en route" to Sertoli cells. Notably, spermatids and spermatozoa gained a significant amount of ceramides devoid of n-VLCPUFA but having 2-OH VLCPUFA as their main fatty acids.
Collapse
Affiliation(s)
- Gerardo M Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | | | | | | | | | | |
Collapse
|