1
|
Meneu L, Chapard C, Serizay J, Westbrook A, Routhier E, Ruault M, Perrot M, Minakakis A, Girard F, Bignaud A, Even A, Gourgues G, Libri D, Lartigue C, Piazza A, Thierry A, Taddei A, Beckouët F, Mozziconacci J, Koszul R. Sequence-dependent activity and compartmentalization of foreign DNA in a eukaryotic nucleus. Science 2025; 387:eadm9466. [PMID: 39913590 DOI: 10.1126/science.adm9466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/26/2024] [Accepted: 11/21/2024] [Indexed: 04/23/2025]
Abstract
In eukaryotes, DNA-associated protein complexes coevolve with genomic sequences to orchestrate chromatin folding. We investigate the relationship between DNA sequence and the spontaneous loading and activity of chromatin components in the absence of coevolution. Using bacterial genomes integrated into Saccharomyces cerevisiae, which diverged from yeast more than 2 billion years ago, we show that nucleosomes, cohesins, and associated transcriptional machinery can lead to the formation of two different chromatin archetypes, one transcribed and the other silent, independently of heterochromatin formation. These two archetypes also form on eukaryotic exogenous sequences, depend on sequence composition, and can be predicted using neural networks trained on the native genome. They do not mix in the nucleus, leading to a bipartite nuclear compartmentalization, reminiscent of the organization of vertebrate nuclei.
Collapse
Affiliation(s)
- Léa Meneu
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, College Doctoral
| | - Christophe Chapard
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Jacques Serizay
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Alex Westbrook
- Sorbonne Université, College Doctoral
- Laboratoire Structure et Instabilité des génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Etienne Routhier
- Sorbonne Université, College Doctoral
- Laboratoire Structure et Instabilité des génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, Paris, France
| | - Myriam Ruault
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664 Nuclear Dynamics, Paris, France
| | - Manon Perrot
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, College Doctoral
| | - Alexandros Minakakis
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Fabien Girard
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Amaury Bignaud
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, College Doctoral
| | - Antoine Even
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664 Nuclear Dynamics, Paris, France
| | - Géraldine Gourgues
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Aurèle Piazza
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Angela Taddei
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664 Nuclear Dynamics, Paris, France
| | - Frédéric Beckouët
- Molecular, Cellular and Developmental biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, Paris, France
- UAR 2700 2AD, Muséum National d'Histoire Naturelle, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| |
Collapse
|
2
|
Bourret J, Borvető F, Bravo IG. Subfunctionalisation of paralogous genes and evolution of differential codon usage preferences: The showcase of polypyrimidine tract binding proteins. J Evol Biol 2023; 36:1375-1392. [PMID: 37667674 DOI: 10.1111/jeb.14212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023]
Abstract
Gene paralogs are copies of an ancestral gene that appear after gene or full genome duplication. When two sister gene copies are maintained in the genome, redundancy may release certain evolutionary pressures, allowing one of them to access novel functions. Here, we focused our study on gene paralogs on the evolutionary history of the three polypyrimidine tract binding protein genes (PTBP) and their concurrent evolution of differential codon usage preferences (CUPrefs) in vertebrate species. PTBP1-3 show high identity at the amino acid level (up to 80%) but display strongly different nucleotide composition, divergent CUPrefs and, in humans and in many other vertebrates, distinct tissue-specific expression levels. Our phylogenetic inference results show that the duplication events leading to the three extant PTBP1-3 lineages predate the basal diversification within vertebrates, and genomic context analysis illustrates that local synteny has been well preserved over time for the three paralogs. We identify a distinct evolutionary pattern towards GC3-enriching substitutions in PTBP1, concurrent with enrichment in frequently used codons and with a tissue-wide expression. In contrast, PTBP2s are enriched in AT-ending, rare codons, and display tissue-restricted expression. As a result of this substitution trend, CUPrefs sharply differ between mammalian PTBP1s and the rest of PTBPs. Genomic context analysis suggests that GC3-rich nucleotide composition in PTBP1s is driven by local substitution processes, while the evidence in this direction is thinner for PTBP2-3. An actual lack of co-variation between the observed GC composition of PTBP2-3 and that of the surrounding non-coding genomic environment would raise an interrogation on the origin of CUPrefs, warranting further research on a putative tissue-specific translational selection. Finally, we communicate an intriguing trend for the use of the UUG-Leu codon, which matches the trends of AT-ending codons. Our results are compatible with a scenario in which a combination of directional mutation-selection processes would have differentially shaped CUPrefs of PTBPs in vertebrates: the observed GC-enrichment of PTBP1 in placental mammals may be linked to genomic location and to the strong and broad tissue-expression, while AT-enrichment of PTBP2 and PTBP3 would be associated with rare CUPrefs and thus, possibly to specialized spatio-temporal expression. Our interpretation is coherent with a gene subfunctionalisation process by differential expression regulation associated with the evolution of specific CUPrefs.
Collapse
Affiliation(s)
- Jérôme Bourret
- Laboratoire MIVEGEC (CNRS IRD Univ Montpellier), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Fanni Borvető
- Laboratoire MIVEGEC (CNRS IRD Univ Montpellier), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Ignacio G Bravo
- Laboratoire MIVEGEC (CNRS IRD Univ Montpellier), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| |
Collapse
|
3
|
Daron J, Bravo IG. Variability in Codon Usage in Coronaviruses Is Mainly Driven by Mutational Bias and Selective Constraints on CpG Dinucleotide. Viruses 2021; 13:v13091800. [PMID: 34578381 PMCID: PMC8473333 DOI: 10.3390/v13091800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third human-emerged virus of the 21st century from the Coronaviridae family, causing the ongoing coronavirus disease 2019 (COVID-19) pandemic. Due to the high zoonotic potential of coronaviruses, it is critical to unravel their evolutionary history of host species breadth, host-switch potential, adaptation and emergence, to identify viruses posing a pandemic risk in humans. We present here a comprehensive analysis of the composition and codon usage bias of the 82 Orthocoronavirinae members, infecting 47 different avian and mammalian hosts. Our results clearly establish that synonymous codon usage varies widely among viruses, is only weakly dependent on their primary host, and is dominated by mutational bias towards AU-enrichment and by CpG avoidance. Indeed, variation in GC3 explains around 34%, while variation in CpG frequency explains around 14% of total variation in codon usage bias. Further insight on the mutational equilibrium within Orthocoronavirinae revealed that most coronavirus genomes are close to their neutral equilibrium, the exception being the three recently infecting human coronaviruses, which lie further away from the mutational equilibrium than their endemic human coronavirus counterparts. Finally, our results suggest that, while replicating in humans, SARS-CoV-2 is slowly becoming AU-richer, likely until attaining a new mutational equilibrium.
Collapse
Affiliation(s)
- Josquin Daron
- Laboratoire MIVEGEC (CNRS, IRD, Université de Montpellier), 34394 Montpellier, France;
- Correspondence:
| | - Ignacio G. Bravo
- Laboratoire MIVEGEC (CNRS, IRD, Université de Montpellier), 34394 Montpellier, France;
- Center for Research on the Ecology and Evolution of Diseases (CREES), 34394 Montpellier, France
| |
Collapse
|
4
|
Srikulnath K, Ahmad SF, Singchat W, Panthum T. Why Do Some Vertebrates Have Microchromosomes? Cells 2021; 10:2182. [PMID: 34571831 PMCID: PMC8466491 DOI: 10.3390/cells10092182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
With more than 70,000 living species, vertebrates have a huge impact on the field of biology and research, including karyotype evolution. One prominent aspect of many vertebrate karyotypes is the enigmatic occurrence of tiny and often cytogenetically indistinguishable microchromosomes, which possess distinctive features compared to macrochromosomes. Why certain vertebrate species carry these microchromosomes in some lineages while others do not, and how they evolve remain open questions. New studies have shown that microchromosomes exhibit certain unique characteristics of genome structure and organization, such as high gene densities, low heterochromatin levels, and high rates of recombination. Our review focuses on recent concepts to expand current knowledge on the dynamic nature of karyotype evolution in vertebrates, raising important questions regarding the evolutionary origins and ramifications of microchromosomes. We introduce the basic karyotypic features to clarify the size, shape, and morphology of macro- and microchromosomes and report their distribution across different lineages. Finally, we characterize the mechanisms of different evolutionary forces underlying the origin and evolution of microchromosomes.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
5
|
Characterization of microsatellites in the endangered snow leopard based on the chromosome-level genome. MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Pantier R, Chhatbar K, Quante T, Skourti-Stathaki K, Cholewa-Waclaw J, Alston G, Alexander-Howden B, Lee HY, Cook AG, Spruijt CG, Vermeulen M, Selfridge J, Bird A. SALL4 controls cell fate in response to DNA base composition. Mol Cell 2021; 81:845-858.e8. [PMID: 33406384 PMCID: PMC7895904 DOI: 10.1016/j.molcel.2020.11.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/23/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Mammalian genomes contain long domains with distinct average compositions of A/T versus G/C base pairs. In a screen for proteins that might interpret base composition by binding to AT-rich motifs, we identified the stem cell factor SALL4, which contains multiple zinc fingers. Mutation of the domain responsible for AT binding drastically reduced SALL4 genome occupancy and prematurely upregulated genes in proportion to their AT content. Inactivation of this single AT-binding zinc-finger cluster mimicked defects seen in Sall4 null cells, including precocious differentiation of embryonic stem cells (ESCs) and embryonic lethality in mice. In contrast, deletion of two other zinc-finger clusters was phenotypically neutral. Our data indicate that loss of pluripotency is triggered by downregulation of SALL4, leading to de-repression of a set of AT-rich genes that promotes neuronal differentiation. We conclude that base composition is not merely a passive byproduct of genome evolution and constitutes a signal that aids control of cell fate.
Collapse
Affiliation(s)
- Raphaël Pantier
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Kashyap Chhatbar
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK; Informatics Forum, School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | - Timo Quante
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Konstantina Skourti-Stathaki
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Justyna Cholewa-Waclaw
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Grace Alston
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Beatrice Alexander-Howden
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Heng Yang Lee
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Jim Selfridge
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Adrian Bird
- The Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, The King's Buildings, Edinburgh EH9 3BF, UK.
| |
Collapse
|
7
|
Matoulek D, Borůvková V, Ocalewicz K, Symonová R. GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics. Genes (Basel) 2020; 12:50. [PMID: 33396302 PMCID: PMC7823971 DOI: 10.3390/genes12010050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
The study of fish cytogenetics has been impeded by the inability to produce G-bands that could assign chromosomes to their homologous pairs. Thus, the majority of karyotypes published have been estimated based on morphological similarities of chromosomes. The reason why chromosome G-banding does not work in fish remains elusive. However, the recent increase in the number of fish genomes assembled to the chromosome level provides a way to analyse this issue. We have developed a Python tool to visualize and quantify GC percentage (GC%) of both repeats and unique DNA along chromosomes using a non-overlapping sliding window approach. Our tool profiles GC% and simultaneously plots the proportion of repeats (rep%) in a color scale (or vice versa). Hence, it is possible to assess the contribution of repeats to the total GC%. The main differences are the GC% of repeats homogenizing the overall GC% along fish chromosomes and a greater range of GC% scattered along fish chromosomes. This may explain the inability to produce G-banding in fish. We also show an occasional banding pattern along the chromosomes in some fish that probably cannot be detected with traditional qualitative cytogenetic methods.
Collapse
Affiliation(s)
- Dominik Matoulek
- Faculty of Science, University of Hradec Kralove, 500 03 Hradec Králové, Czech Republic; (D.M.); (V.B.)
| | - Veronika Borůvková
- Faculty of Science, University of Hradec Kralove, 500 03 Hradec Králové, Czech Republic; (D.M.); (V.B.)
| | - Konrad Ocalewicz
- Department of Marine Biology and Ecology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, 80-309 Gdansk, Poland;
| | - Radka Symonová
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, 80333 Freising, Germany
| |
Collapse
|
8
|
Evolution and diversity of transposable elements in fish genomes. Sci Rep 2019; 9:15399. [PMID: 31659260 PMCID: PMC6817897 DOI: 10.1038/s41598-019-51888-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are genomic sequences that can move, multiply, and often form sizable fractions of vertebrate genomes. Fish belong to a unique group of vertebrates, since their karyotypes and genome sizes are more diverse and complex, with probably higher diversity and evolution specificity of TE. To investigate the characteristics of fish TEs, we compared the mobilomes of 39 species, and observed significant variation of TE content in fish (from 5% in pufferfish to 56% in zebrafish), along with a positive correlation between fish genome size and TE content. In different classification hierarchies, retrotransposons (class), long terminal repeat (order), as well as Helitron, Maverick, Kolobok, CMC, DIRS, P, I, L1, L2, and 5S (superfamily) were all positively correlated with fish genome size. Consistent with previous studies, our data suggested fish genomes to not always be dominated by DNA transposons; long interspersed nuclear elements are also prominent in many species. This study suggests CR1 distribution in fish genomes to be obviously regular, and provides new clues concerning important events in vertebrate evolution. Altogether, our results highlight the importance of TEs in the structure and evolution of fish genomes and suggest fish species diversity to parallel transposon content diversification.
Collapse
|
9
|
Smith TCA, Arndt PF, Eyre-Walker A. Large scale variation in the rate of germ-line de novo mutation, base composition, divergence and diversity in humans. PLoS Genet 2018; 14:e1007254. [PMID: 29590096 PMCID: PMC5891062 DOI: 10.1371/journal.pgen.1007254] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/09/2018] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
It has long been suspected that the rate of mutation varies across the human genome at a large scale based on the divergence between humans and other species. However, it is now possible to directly investigate this question using the large number of de novo mutations (DNMs) that have been discovered in humans through the sequencing of trios. We investigate a number of questions pertaining to the distribution of mutations using more than 130,000 DNMs from three large datasets. We demonstrate that the amount and pattern of variation differs between datasets at the 1MB and 100KB scales probably as a consequence of differences in sequencing technology and processing. In particular, datasets show different patterns of correlation to genomic variables such as replication time. Never-the-less there are many commonalities between datasets, which likely represent true patterns. We show that there is variation in the mutation rate at the 100KB, 1MB and 10MB scale that cannot be explained by variation at smaller scales, however the level of this variation is modest at large scales-at the 1MB scale we infer that ~90% of regions have a mutation rate within 50% of the mean. Different types of mutation show similar levels of variation and appear to vary in concert which suggests the pattern of mutation is relatively constant across the genome. We demonstrate that variation in the mutation rate does not generate large-scale variation in GC-content, and hence that mutation bias does not maintain the isochore structure of the human genome. We find that genomic features explain less than 40% of the explainable variance in the rate of DNM. As expected the rate of divergence between species is correlated to the rate of DNM. However, the correlations are weaker than expected if all the variation in divergence was due to variation in the mutation rate. We provide evidence that this is due the effect of biased gene conversion on the probability that a mutation will become fixed. In contrast to divergence, we find that most of the variation in diversity can be explained by variation in the mutation rate. Finally, we show that the correlation between divergence and DNM density declines as increasingly divergent species are considered.
Collapse
Affiliation(s)
| | - Peter F. Arndt
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
10
|
Vinogradov AE. NUCLEOTYPIC EFFECT IN HOMEOTHERMS: BODY-MASS-CORRECTED BASAL METABOLIC RATE OF MAMMALS IS RELATED TO GENOME SIZE. Evolution 2017; 49:1249-1259. [DOI: 10.1111/j.1558-5646.1995.tb04451.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/1993] [Accepted: 07/22/1994] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander E. Vinogradov
- Institute of Cytology, Russian Academy of Sciences; Tikhoretsky Avenue 4 St. Petersburg 194064 Russia
| |
Collapse
|
11
|
Symonová R, Majtánová Z, Arias-Rodriguez L, Mořkovský L, Kořínková T, Cavin L, Pokorná MJ, Doležálková M, Flajšhans M, Normandeau E, Ráb P, Meyer A, Bernatchez L. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:607-619. [DOI: 10.1002/jez.b.22719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Radka Symonová
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
- Research Institute for Limnology; University of Innsbruck; Mondsee Austria
| | - Zuzana Majtánová
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas; Universidad Juárez Autónoma de Tabasco (UJAT); Villahermosa Tabasco México
| | - Libor Mořkovský
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Tereza Kořínková
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
| | - Lionel Cavin
- Muséum d'Histoire Naturelle; Geneva 6 Switzerland
| | - Martina Johnson Pokorná
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Ecology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Marie Doležálková
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Martin Flajšhans
- Faculty of Fisheries and Protection of Waters; South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses; University of South Bohemia in České Budějovice; Vodňany Czech Republic
| | - Eric Normandeau
- IBIS, Department of Biology, University Laval, Pavillon Charles-Eugène-Marchand; Avenue de la Médecine Quebec City; Canada
| | - Petr Ráb
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Konstanz Germany
| | - Louis Bernatchez
- IBIS, Department of Biology, University Laval, Pavillon Charles-Eugène-Marchand; Avenue de la Médecine Quebec City; Canada
| |
Collapse
|
12
|
Memory: A Phenomenon of Arrangement. Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
13
|
Watanabe Y, Shibata K, Maekawa M. Cell line differences in replication timing of human glutamate receptor genes and other large genes associated with neural disease. Epigenetics 2014; 9:1350-9. [PMID: 25437050 PMCID: PMC4622467 DOI: 10.4161/15592294.2014.967585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 01/30/2023] Open
Abstract
There is considerable current interest in the function of epigenetic mechanisms in neuroplasticity with regard to learning and memory formation and to a range of neural diseases. Previously, we described replication timing on human chromosome 21q in the THP-1 human cell line (2n = 46, XY) and showed that several genes associated with neural diseases, such as the neuronal glutamate receptor subunit GluR-5 (GRIK1) and amyloid precursor protein (APP), were located in regions where replication timing transitioned from early to late S phase. Here, we compared replication timing of all known human glutamate receptor genes (26 genes in total) and APP in 6 different human cell lines including human neuron-related cell lines. Replication timings were obtained by integrating our previously reported data with new data generated here and information from the online database ReplicationDomain. We found that many of the glutamate receptor genes were clearly located in replication timing transition zones in neural precursor cells, but this relationship was less clear in embryonic stem cells before neural differentiation; in the latter, the genes were often located in later replication timing zones that displayed DNA hypermethylation. Analysis of selected large glutamate receptor genes (> 200 kb), and of APP, showed that their precise replication timing patterns differed among the cell lines. We propose that the transition zones of DNA replication timing are altered by epigenetic mechanisms, and that these changes may affect the neuroplasticity that is important to memory and learning, and may also have a role in the development of neural diseases.
Collapse
Affiliation(s)
- Yoshihisa Watanabe
- Department of Laboratory Medicine; Hamamatsu University School of Medicine; Hamamatsu, Japan
| | - Kiyoshi Shibata
- Research Equipment Center; Hamamatsu University School of Medicine; Hamamatsu, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine; Hamamatsu University School of Medicine; Hamamatsu, Japan
| |
Collapse
|
14
|
R/G-band boundaries: genomic instability and human disease. Clin Chim Acta 2013; 419:108-12. [PMID: 23434413 DOI: 10.1016/j.cca.2013.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/29/2013] [Accepted: 02/03/2013] [Indexed: 01/19/2023]
Abstract
The human genome is composed of large-scale compartmentalized structures resulting from variations in the amount of guanine and cytosine residues (GC%) and in the timing of DNA replication. These compartmentalized structures are related to the light- and dark-staining bands along chromosomes after the appropriate staining. Here we describe our current understanding of the biological importance of the boundaries between these light and dark bands (the so-called R/G boundaries). These R/G boundaries were identified following integration of information obtained from analyses of chromosome bands and genome sequences. This review also discusses the potential medical significance of these chromosomal regions for conditions related to genomic instability, such as cancer and neural disease. We propose that R/G-chromosomal boundaries, which correspond to regions showing a switch in replication timing from early to late S phase (early/late-switch regions) and of transition in GC%, have an extremely low number of replication origins and more non-B-form DNA structures than other genomic regions. Further, we suggest that genes located at R/G boundaries and which contain such DNA sequences have an increased risk of genetic instability and of being associated with human diseases. Finally, we propose strategies for genome and epigenome analyses based on R/G boundaries.
Collapse
|
15
|
Pinthong K, Tanomtong A, Getlekha N, Sangpadee W, Sangpakdee K, Sanoamuang LO. First Cytogenetic Study of Puff-Faced Water Snake, Homalopsis buccata (Squamata, Colubridae) by Conventional Staining, Ag-NOR Banding and GTG-Banding Techniques. CYTOLOGIA 2013. [DOI: 10.1508/cytologia.78.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Krit Pinthong
- Biology Program, Faculty of Science and Technology, Surindra Rajabhat University
| | - Alongklod Tanomtong
- Applied Taxonomic Research Center (ATRC), Department of Biology, Faculty of Science, Khon Kaen University
| | - Nuntaporn Getlekha
- Applied Taxonomic Research Center (ATRC), Department of Biology, Faculty of Science, Khon Kaen University
| | - Wiwat Sangpadee
- Biology Program, Faculty of Science, Udon-Thani Rajabhat University
| | | | - La-orsri Sanoamuang
- Applied Taxonomic Research Center (ATRC), Department of Biology, Faculty of Science, Khon Kaen University
| |
Collapse
|
16
|
Suzuki M, Oda M, Ramos MP, Pascual M, Lau K, Stasiek E, Agyiri F, Thompson RF, Glass JL, Jing Q, Sandstrom R, Fazzari MJ, Hansen RS, Stamatoyannopoulos JA, McLellan AS, Greally JM. Late-replicating heterochromatin is characterized by decreased cytosine methylation in the human genome. Genome Res 2011; 21:1833-40. [PMID: 21957152 DOI: 10.1101/gr.116509.110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heterochromatin is believed to be associated with increased levels of cytosine methylation. With the recent availability of genome-wide, high-resolution molecular data reflecting chromatin organization and methylation, such relationships can be explored systematically. As well-defined surrogates for heterochromatin, we tested the relationship between DNA replication timing and DNase hypersensitivity with cytosine methylation in two human cell types, unexpectedly finding the later-replicating, more heterochromatic regions to be less methylated than early replicating regions. When we integrated gene-expression data into the study, we found that regions of increased gene expression were earlier replicating, as previously identified, and that transcription-targeted cytosine methylation in gene bodies contributes to the positive correlation with early replication. A self-organizing map (SOM) approach was able to identify genomic regions with early replication and increased methylation, but lacking annotated transcripts, loci missed in simple two variable analyses, possibly encoding unrecognized intergenic transcripts. We conclude that the relationship of cytosine methylation with heterochromatin is not simple and depends on whether the genomic context is tandemly repetitive sequences often found near centromeres, which are known to be heterochromatic and methylated, or the remaining majority of the genome, where cytosine methylation is targeted preferentially to the transcriptionally active, euchromatic compartment of the genome.
Collapse
Affiliation(s)
- Masako Suzuki
- Department of Genetics (Computational Genetics), Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Rival A, Turquay P, Samosir Y, Adkins SW. Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings. PLANTA 2010; 232:435-447. [PMID: 20464558 DOI: 10.1007/s00425-010-1186-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 04/23/2010] [Indexed: 05/29/2023]
Abstract
The present study aimed at exploring the fidelity of coconut (Cocos nucifera L.) plants recovered from cryopreservation. Zygotic embryos from various different cultivars were cryopreserved following four successive steps, namely: rapid dehydration, rapid freezing, rapid thawing and in vitro recovery followed by acclimatization. At the end of the acclimatization period, the seedlings were compared to counterparts of the same age, which were produced from non-cryopreserved embryos. Both series were submitted to morphological, cytological and molecular comparisons. No significant differences in terms of growth rates could be measured. In addition, no morphological variation could be detected through the measurement of shoot elongation rates, production of opened leaves, and the number and total length of primary roots. Karyotype analysis revealed the same chromosome number (2n = 32) in all studied cultivars independently of cryopreservation. No significant differences could be observed between control and cryopreserved material concerning the type of chromosomes, the length of the long and short arms, the arm length ratio and the centromeric index. However, idiogram analysis did show a greater number of black banding on chromosomes isolated from cryopreserved material. Genetic and epigenetic fidelity was assessed through microsatellite (SSR) analysis and global DNA methylation rates; no significant differences would be observed between genomic DNAs isolated from seedlings originating from cryopreserved embryos and respective controls. In conclusion, our results suggest that the method of cryopreservation under study did not induce gross morphological, genetic or epigenetic changes, thus suggesting that it is an appropriate method to efficiently preserve coconut germplasm.
Collapse
|
19
|
Watanabe Y, Abe T, Ikemura T, Maekawa M. Relationships between replication timing and GC content of cancer-related genes on human chromosomes 11q and 21q. Gene 2009; 433:26-31. [DOI: 10.1016/j.gene.2008.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/28/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
20
|
Watanabe Y, Shibata K, Ikemura T, Maekawa M. Replication timing of extremely large genes on human chromosomes 11q and 21q. Gene 2008; 421:74-80. [DOI: 10.1016/j.gene.2008.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 01/10/2023]
|
21
|
Sellis D, Provata A, Almirantis Y. Alu and LINE1 distributions in the human chromosomes: evidence of global genomic organization expressed in the form of power laws. Mol Biol Evol 2007; 24:2385-99. [PMID: 17728280 DOI: 10.1093/molbev/msm181] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Spatial distribution and clustering of repetitive elements are extensively studied during the last years, as well as their colocalization with other genomic components. Here we investigate the large-scale features of Alu and LINE1 spatial arrangement in the human genome by studying the size distribution of interrepeat distances. In most cases, we have found power-law size distributions extending in several orders of magnitude. We have also studied the correlations of the extent of the power law (linear region in double-logarithmic scale) and of the corresponding exponent (slope) with other genomic properties. A model has been formulated to explain the formation of the observed power laws. According to the model, 2 kinds of events occur repetitively in evolutionary time: random insertion of several types of intruding sequences and occasional loss of repeats belonging to the initial population due to "elimination" events. This simple mechanism is shown to reproduce the observed power-law size distributions and is compatible with our present knowledge on the dynamics of repeat proliferation in the genome.
Collapse
Affiliation(s)
- Diamantis Sellis
- National Center for Scientific Research Demokritos, Institute of Biology, Athens, Greece
| | | | | |
Collapse
|
22
|
Kirzhner V, Paz A, Volkovich Z, Nevo E, Korol A. Different clustering of genomes across life using the A-T-C-G and degenerate R-Y alphabets: early and late signaling on genome evolution? J Mol Evol 2007; 64:448-56. [PMID: 17479343 DOI: 10.1007/s00239-006-0178-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
In this study, we have calculated distances between genomes based on our previously developed compositional spectra (CS) analysis. The study was conducted using genomes of 39 species of Eukarya, Eubacteria, and Archaea. Based on CS distances, we produced two different consensus dendrograms for four- and two-letter (purine-pyrimidine) alphabets. A comparison of the obtained structure using purine-pyrimidine alphabet with the standard three-kingdom (3K) scheme reveals substantial similarity. Surprisingly, this is not the case when the same procedure is based on the four-letter alphabet. In this situation, we also found three main clusters-but different from those in the 3K scheme. In particular, one of the clusters includes Eukarya and thermophilic bacteria and a part of the considered Archaea species. We speculate that the key factor in the last classification (based on the A-T-G-C alphabet) is related to ecology: two ecological parameters, temperature and oxygen, distinctly explain the clustering revealed by compositional spectra in the four-letter alphabet. Therefore, we assume that this result reflects two interdependent processes: evolutionary divergence and superimposed ecological convergence of the genomes, albeit another process, horizontal transfer, cannot be excluded as an important contributing factor.
Collapse
Affiliation(s)
- V Kirzhner
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel.
| | | | | | | | | |
Collapse
|
23
|
Holmquist GP, Ashley T. Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 2006; 114:96-125. [PMID: 16825762 DOI: 10.1159/000093326] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022] Open
Abstract
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.
Collapse
Affiliation(s)
- G P Holmquist
- Biology Department, City of Hope Medical Center, Duarte, CA, USA.
| | | |
Collapse
|
24
|
Kuraku S, Ishijima J, Nishida-Umehara C, Agata K, Kuratani S, Matsuda Y. cDNA-based gene mapping and GC3 profiling in the soft-shelled turtle suggest a chromosomal size-dependent GC bias shared by sauropsids. Chromosome Res 2006; 14:187-202. [PMID: 16544192 DOI: 10.1007/s10577-006-1035-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/10/2006] [Indexed: 10/24/2022]
Abstract
Mammalian and avian genomes comprise several classes of chromosomal segments that vary dramatically in GC-content. Especially in chicken, microchromosomes exhibit a higher GC-content and a higher gene density than macrochromosomes. To understand the evolutionary history of the intra-genome GC heterogeneity in amniotes, it is necessary to examine the equivalence of this GC heterogeneity at the nucleotide level between these animals including reptiles, from which birds diverged. We isolated cDNAs for 39 protein-coding genes from the Chinese soft-shelled turtle, Pelodiscus sinensis, and performed chromosome mapping of 31 genes. The GC-content of exonic third positions (GC3) of P. sinensis genes showed a heterogeneous distribution, and exhibited a significant positive correlation with that of chicken and human orthologs, indicating that the last common ancestor of extant amniotes had already established a GC-compartmentalized genomic structure. Furthermore, chromosome mapping in P. sinensis revealed that microchromosomes tend to contain more GC-rich genes than GC-poor genes, as in chicken. These results illustrate two modes of genome evolution in amniotes: mammals elaborated the genomic configuration in which GC-rich and GC-poor regions coexist in individual chromosomes, whereas sauropsids (reptiles and birds) refined the chromosomal size-dependent GC compartmentalization in which GC-rich genomic fractions tend to be confined to microchromosomes.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 2006; 103:1412-7. [PMID: 16432200 PMCID: PMC1345710 DOI: 10.1073/pnas.0510310103] [Citation(s) in RCA: 935] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A striking feature of the human genome is the dearth of CpG dinucleotides (CpGs) interrupted occasionally by CpG islands (CGIs), regions with relatively high content of the dinucleotide. CGIs are generally associated with promoters; genes, whose promoters are especially rich in CpG sequences, tend to be expressed in most tissues. However, all working definitions of what constitutes a CGI rely on ad hoc thresholds. Here we adopt a direct and comprehensive survey to identify the locations of all CpGs in the human genome and find that promoters segregate naturally into two classes by CpG content. Seventy-two percent of promoters belong to the class with high CpG content (HCG), and 28% are in the class whose CpG content is characteristic of the overall genome (low CpG content). The enrichment of CpGs in the HCG class is symmetric and peaks around the core promoter. The broad-based expression of the HCG promoters is not a consequence of a correlation with CpG content because within the HCG class the breadth of expression is independent of the CpG content. The overall depletion of CpGs throughout the genome is thought to be a consequence of the methylation of some germ-line CpGs and their susceptibility to mutation. A comparison of the frequencies of inferred deamination mutations at CpG and GpC dinucleotides in the two classes of promoters using SNPs in human-chimpanzee sequence alignments shows that CpGs mutate at a lower frequency in the HCG promoters, suggesting that CpGs in the HCG class are hypomethylated in the germ line.
Collapse
Affiliation(s)
- Serge Saxonov
- BioMedical Informatics Program, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
26
|
Nikolaou C, Almirantis Y. “Word” Preference in the Genomic Text and Genome Evolution: Different Modes of n-tuplet Usage in Coding and Noncoding Sequences. J Mol Evol 2005; 61:23-35. [PMID: 16059753 DOI: 10.1007/s00239-004-0209-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
Abstract
Extensive work on n-tuplet occurrence in genomic sequences has revealed the correlation of their usage with sequence origin. Parallel to that, there exist different restrictions in the nucleotide composition of coding and noncoding sequences that may result in distinct modes of usage of n-tuplets. The relatively simple approaches described herein focus on such differences. They are based on simple summation measures of n-tuplet frequencies, computed after filtering the background nucleotide composition. Among the main targets of this work is to draw some conclusions on the qualitative differences in the composition of genomic sequences depending on their functionality. Moreover, an evolutionary model is formulated, including simple forms of ubiquitous events of genome dynamics: genomic fusions, genome shuffling due to transpositions, replication slippage, and point mutations. This model is shown to be able to reproduce all the statistical features of genomic sequences discussed herein.
Collapse
Affiliation(s)
- Christoforos Nikolaou
- Institute of Biology, National Research Center for Physical Sciences Demokritos,, 15310, Athens, Greece
| | | |
Collapse
|
27
|
Brahe C, Tassone F, Millington-Ward A, Serra A, Gardiner K. Potential gene sequence isolation and regional mapping in human chromosome 21. AMERICAN JOURNAL OF MEDICAL GENETICS. SUPPLEMENT 2005; 7:120-4. [PMID: 2127361 DOI: 10.1002/ajmg.1320370724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription start sites of many genes are associated with CpG-rich DNA regions (CpG islands) containing clusters of rare cutting, methylation-sensitive restriction enzyme sites [Bird, 1986]. To detect gene sequences from human chromosome 21, we have screened cloned DNA fragments from a chromosome 21-specific cosmid library for the presence of such restriction sites. Several DNA fragments containing rare cutter sites, including Sac II, were isolated and five of them partially characterized. The average insert size of the fragments was 38.4 kb. By using a panel of somatic cell hybrids, one insert was assigned to the distal part of region 21q21, three fragments to the region 21q22.1, and one sequence to the segment 21q22.2-22.3. Restriction mapping showed clusters of rare cutter sites in at least three of the cloned fragments, suggesting the presence of CpG islands. These fragments are thus good candidates for carriers of coding sequences.
Collapse
Affiliation(s)
- C Brahe
- Institute of Human Genetics, A. Gemelli School of Medicine, Rome, Italy
| | | | | | | | | |
Collapse
|
28
|
Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004; 432:695-716. [PMID: 15592404 DOI: 10.1038/nature03154] [Citation(s) in RCA: 1988] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 11/01/2004] [Indexed: 12/28/2022]
Abstract
We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
Collapse
|
29
|
Watanabe Y, Ikemura T, Sugimura H. Amplicons on human chromosome 11q are located in the early/late-switch regions of replication timing. Genomics 2004; 84:796-805. [PMID: 15475258 DOI: 10.1016/j.ygeno.2004.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 08/04/2004] [Indexed: 11/16/2022]
Abstract
Amplicons are frequently found in human tumor genomes, but the mechanism of their generation is still poorly understood. We previously measured the replication timing of the genes along the entire length of human chromosomes 11q and 21q and found that many "disease-related" genes are located in timing-transition regions. In this study, further scrutiny of the updated replication-timing map of human chromosome 11q revealed that both amplicons on human chromosomal bands 11q13 and 11q22 are located in the early/late-switch regions of replication timing in two human cell lines (THP-1 and Jurkat). Moreover, examination of synteny in the human and mouse genomes revealed that synteny breakage in both genomes occurred primarily at the early/late-switch regions of replication timing that we had identified. In conclusion, we found that the early/late-switch regions of replication timing coincided with "unstable" regions of the genome.
Collapse
Affiliation(s)
- Yoshihisa Watanabe
- First Department of Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | |
Collapse
|
30
|
Pereira SL, Baker AJ. Low number of mitochondrial pseudogenes in the chicken (Gallus gallus) nuclear genome: implications for molecular inference of population history and phylogenetics. BMC Evol Biol 2004; 4:17. [PMID: 15219233 PMCID: PMC449702 DOI: 10.1186/1471-2148-4-17] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 06/25/2004] [Indexed: 01/28/2023] Open
Abstract
Background Mitochondrial DNA has been detected in the nuclear genome of eukaryotes as pseudogenes, or Numts. Human and plant genomes harbor a large number of Numts, some of which have high similarity to mitochondrial fragments and thus may have been inadvertently included in population genetic and phylogenetic studies using mitochondrial DNA. Birds have smaller genomes relative to mammals, and the genome-wide frequency and distribution of Numts is still unknown. The release of a preliminary version of the chicken (Gallus gallus) genome by the Genome Sequencing Center at Washington University, St. Louis provided an opportunity to search this first avian genome for the frequency and characteristics of Numts relative to those in human and plants. Results We detected at least 13 Numts in the chicken nuclear genome. Identities between Numts and mitochondrial sequences varied from 58.6 to 88.8%. Fragments ranged from 131 to 1,733 nucleotides, collectively representing only 0.00078% of the nuclear genome. Because fewer Numts were detected in the chicken nuclear genome, they do not represent all regions of the mitochondrial genome and are not widespread in all chromosomes. Nuclear integrations in chicken seem to occur by a DNA intermediate and in regions of low gene density, especially in macrochromosomes. Conclusion The number of Numts in chicken is low compared to those in human and plant genomes, and is within the range found for most sequenced eukaryotic genomes. For chicken, PCR amplifications of fragments of about 1.5 kilobases are highly likely to represent true mitochondrial amplification. Sequencing of these fragments should expose the presence of unusual features typical of pseudogenes, unless the nuclear integration is very recent and has not yet been mutated. Metabolic selection for compact genomes with reduced repetitive DNA and gene-poor regions where Numts occur may explain their low incidence in birds.
Collapse
Affiliation(s)
- Sérgio L Pereira
- Centre for Biodiversity and Conservation Biology – Royal Ontario Museum, 100 Queen's Park, Toronto, ON, M5S 2C6 Canada
| | - Allan J Baker
- Department of Zoology, University of Toronto, Toronto ON, M5S 1A1, Canada
| |
Collapse
|
31
|
Gomes LF, Brito RM, Pompolo SDG, Campos LADO, Peruquetti RC. Karyotype and C-and G-Banding Patterns of Eufriesea Violacea (Hymenoptera, Apidae, Euglossinae). Hereditas 2004. [DOI: 10.1111/j.1601-5223.1998.00073.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Hansen RS. X inactivation-specific methylation of LINE-1 elements by DNMT3B: implications for the Lyon repeat hypothesis. Hum Mol Genet 2003; 12:2559-67. [PMID: 12925568 DOI: 10.1093/hmg/ddg268] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lyon has proposed that long interspersed nuclear element 1 (LINE-1 or L1) repeats may be mediators for the spread of X chromosome inactivation. Cells from ICF patients who are deficient in one of the DNA methyltransferases, DNMT3B, provide an opportunity to explore and refine this hypothesis. Southern blot and bisulfite methylation analyses indicate that, in normal somatic cells, X-linked L1s are hypermethylated on both the active and inactive X chromosomes. In contrast, ICF syndrome cells with DNMT3B mutations have L1s that are hypomethylated on the inactive X, but not on the active X or autosomes. The DNMT3B methyltransferase, therefore, is required for methylation of L1 CpG islands on the inactive X, whereas methylation of the corresponding L1 loci on the active X, as well as most autosomal L1s, is accomplished by another DNA methyltransferase. This unique phenomenon of identical allelic modifications by different enzymes has not been previously observed. Apart from CpG island methylation, the ICF inactive X is basically normal in that it forms a Barr body, is associated with XIST RNA, mostly replicates late, and its X-inactivated genes are mostly silent. Because the unmethylated state of the ICF inactive X L1s probably reflects their methylation status at the time of X inactivation, these data suggest that unmethylated L1 elements, but not methylated L1s, may have a role in the spreading of X chromosome inactivation.
Collapse
Affiliation(s)
- R Scott Hansen
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, 98195-7720, USA.
| |
Collapse
|
33
|
Nikolaou C, Almirantis Y. Mutually symmetric and complementary triplets: differences in their use distinguish systematically between coding and non-coding genomic sequences. J Theor Biol 2003; 223:477-87. [PMID: 12875825 DOI: 10.1016/s0022-5193(03)00123-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The general property of asymmetry in word use in meaningful texts written in a variety of languages, motivates a quantification of the differences in the use of mutually symmetric triplets in genomic sequences. When this is done in the three reading frames, high values found for one of them are used as indication that the sequence is coding for a protein. Moreover, a similar quantification of the differences in the use of complementary triplets is introduced, again with predictive power of the coding character of a sequence. This method reflects the non-equivalence between sense and anti-sense strand of a coding segment. In both approaches, "linguistic asymmetry" in coding sequences is related to the form of the genetic code and to the bias in codon usage and amino acid use skews.
Collapse
Affiliation(s)
- Christoforos Nikolaou
- National Research Center for Physical Sciences Demokritos, Institute of Biology, 15310 Athens, Greece
| | | |
Collapse
|
34
|
Allen E, Horvath S, Tong F, Kraft P, Spiteri E, Riggs AD, Marahrens Y. High concentrations of long interspersed nuclear element sequence distinguish monoallelically expressed genes. Proc Natl Acad Sci U S A 2003; 100:9940-5. [PMID: 12909712 PMCID: PMC187893 DOI: 10.1073/pnas.1737401100] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genes subject to monoallelic expression are expressed from only one of the two alleles either selected at random (random monoallelic genes) or in a parent-of-origin specific manner (imprinted genes). Because high densities of long interspersed nuclear element (LINE)-1 transposon sequence have been implicated in X-inactivation, we asked whether monoallelically expressed autosomal genes are also flanked by high densities of LINE-1 sequence. A statistical analysis of repeat content in the regions surrounding monoallelically and biallelically expressed genes revealed that random monoallelic genes were flanked by significantly higher densities of LINE-1 sequence, evolutionarily more recent and less truncated LINE-1 elements, fewer CpG islands, and fewer base-pairs of short interspersed nuclear elements (SINEs) sequence than biallelically expressed genes. Random monoallelic and imprinted genes were pooled and subjected to a clustering analysis algorithm, which found two clusters on the basis of aforementioned sequence characteristics. Interestingly, these clusters did not follow the random monoallelic vs. imprinted classifications. We infer that chromosomal sequence context plays a role in monoallelic gene expression and may involve the recognition of long repeats or other features. The sequence characteristics that distinguished the high-LINE-1 category were used to identify more than 1,000 additional genes from the human and mouse genomes as candidate genes for monoallelic expression.
Collapse
Affiliation(s)
- Elena Allen
- Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
FUKUSHIMA A, IKEMURA T, KANAYA S. Comparative Genome Analysis Focused on Periodicity from Prokaryote to Higher Eukaryote Genomes Based on Power Spectrum. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2003. [DOI: 10.2477/jccj.2.95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Li YC, Korol AB, Fahima T, Beiles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 2002; 11:2453-65. [PMID: 12453231 DOI: 10.1046/j.1365-294x.2002.01643.x] [Citation(s) in RCA: 614] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microsatellites, or tandem simple sequence repeats (SSR), are abundant across genomes and show high levels of polymorphism. SSR genetic and evolutionary mechanisms remain controversial. Here we attempt to summarize the available data related to SSR distribution in coding and noncoding regions of genomes and SSR functional importance. Numerous lines of evidence demonstrate that SSR genomic distribution is nonrandom. Random expansions or contractions appear to be selected against for at least part of SSR loci, presumably because of their effect on chromatin organization, regulation of gene activity, recombination, DNA replication, cell cycle, mismatch repair system, etc. This review also discusses the role of two putative mutational mechanisms, replication slippage and recombination, and their interaction in SSR variation.
Collapse
Affiliation(s)
- You-Chun Li
- Institute of Evolution, University of Haifa, Haifa 31905, Israel
| | | | | | | | | |
Collapse
|
37
|
Fukushima A, Ikemura T, Kinouchi M, Oshima T, Kudo Y, Mori H, Kanaya S. Periodicity in prokaryotic and eukaryotic genomes identified by power spectrum analysis. Gene 2002; 300:203-11. [PMID: 12468102 DOI: 10.1016/s0378-1119(02)00850-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We used a power spectrum method to identify periodic patterns in nucleotide sequence, and characterized nucleotide sequences that confer periodicities to prokaryotic and eukaryotic genomes and genomes. A 10-bp periodicity was prevalent in hyperthermophilic bacteria and archaebacteria, and an 11-bp periodicity was prevalent in eubacteria. The 10-bp periodicity was also prevalent in the eukaryotes such as the worm Caenorhabditis elegans. Additionally, in the worm genome, a 68-bp periodicity in chromosome I, a 59-bp periodicity in chromosome II, and a 94-bp periodicity in chromosome III were found. In human chromosomes 21 and 22, approximately 167- or 84-bp periodicity was detected along the entire length of these chromosomes. Because the 167-bp is identical to the length of DNA that forms two complete helical turns in nucleosome organization, we speculated that the respective sequences may correspond to arrays of a special compact form of nucleosomes clustered in specific regions of the human chromosomes. This periodic element contained a high frequency of TGG. TGG-rich sequences are known to form a specific subset of folded DNA structures, and therefore, the sequences might have potential to form specific higher order structures related to the clustered occurrence of a specific form of the speculated nucleosomes.
Collapse
Affiliation(s)
- Atsushi Fukushima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Nikolaou C, Almirantis Y. A study of the middle-scale nucleotide clustering in DNA sequences of various origin and functionality, by means of a method based on a modified standard deviation. J Theor Biol 2002; 217:479-92. [PMID: 12234754 DOI: 10.1006/jtbi.2002.3045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deviation from randomness in the distribution of nucleotides in genomic sequences is quantified and studied, using a modified standard deviation (MSD). This method implies a "per block" computation of the standard deviation of the nucleotide frequencies of occurrence, using local means (means taken in a neighborhood of each block). This quantity may serve as a scale-dependent measure of the nucleotide clustering. In the present work, the meso-scale of tenths of nucleotides is principally explored, by means of suitably adjusted filter parameters. This length scale is of an order of magnitude not directly affected by the grammar and syntax rules of the protein-coding procedure, remaining shorter than the scale of appearance of large-scale characteristics of the genome. MSD has been found to distinguish systematically between the sequences of different origin and functionality. The most near-random are found to be coding sequences of prokaryotes, while in intronic and intergenic regions of eukaryotic genomes, extended clustering of similar nucleotides is observed. The distributions of MSD values of large collections of sequences are found to be in most cases characteristic of their biological role and origin. Protein- and non-coding, prokaryotic and eukaryotic DNA as well as promoter, rRNA, viral and organelle sequences have been examined. The presented results corroborate a recently proposed model for genome evolution. The method is also applied for an assessment of the annotation of ORFs taken from the complete genome of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Christoforos Nikolaou
- Institute of Biology, National Research Center for Physical Sciences, "Demokritos" 15310, Athens, Greece
| | | |
Collapse
|
39
|
|
40
|
Gregory TR. A bird's-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class aves. Evolution 2002; 56:121-30. [PMID: 11913657 DOI: 10.1111/j.0014-3820.2002.tb00854.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For half a century, variation in genome size (C-value) has been an unresolved puzzle in evolutionary biology. While the initial "C-value paradox" was solved with the discovery of noncoding DNA, a much more complex "C-value enigma" remains. The present study focuses on one aspect of this puzzle, namely the small genome sizes of birds. Significant negative correlations are reported between resting metabolic rate and both C-value and erythrocyte size. Cell size is positively correlated with both nucleus size and C-value in birds, as in other vertebrates. These findings shed light on the constraints acting on genome size in birds and illustrate the importance of interactions among various levels of the biological hierarchy, ranging from the subchromosomal to the ecological. Following from a discussion of the mechanistic bases of the correlations reported and the processes by which birds achieved and/or maintain small genomes, a pluralistic approach to the C-value enigma is recommended.
Collapse
Affiliation(s)
- T Ryan Gregory
- Department of Zoology, University of Guelph, Ontario, Canada.
| |
Collapse
|
41
|
Shimizu N, Ochi T, Itonaga K. Replication timing of amplified genetic regions relates to intranuclear localization but not to genetic activity or G/R band. Exp Cell Res 2001; 268:201-10. [PMID: 11478846 DOI: 10.1006/excr.2001.5286] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amplified genes in many human cancer cells usually localize at the extrachromosomal double minutes (DMs). In the present study, we show that multiple DMs in the human colorectal tumor COLO 320DM line replicated semisynchronously during the early S phase. On the other hand, during longer passage of the cells with DMs, cells with the amplified genes at the chromosomal homogeneously staining region (HSR) generally dominate the population. We currently report that HSR was composed of a tandem array of DM-derived sequences, which was shown using a unique DM-painting probe. Nevertheless, we found that HSR was replicated much later during the S phase, unless the amplified c-myc genes were expressed almost equally from DMs and HSR. Therefore, this provided a novel instance in which the cytogenetic localization affected replication timing without alteration of expression. Furthermore, we unexpectedly found that HSR had a distinctive band structure with respect to replication timing. The replication band structure was usually associated with the chromosomal G/R bands; however, HSR was homogeneous in the G/R band and in the distribution of highly repetitive sequences. We discuss the mechanism by which the replication band may arise, in relation to the folding of chromatin inside the nucleus.
Collapse
Affiliation(s)
- N Shimizu
- Faculty of Integrated Arts and Sciences, Hiroshima University, Hiroshima 739-8521, Japan.
| | | | | |
Collapse
|
42
|
Abstract
One of the most striking features of mammalian chromosomes is the variation in G+C content that occurs over scales of hundreds of kilobases to megabases, the so-called 'isochore' structure of the human genome. This variation in base composition affects both coding and non-coding sequences and seems to reflect a fundamental level of genome organization. However, although we have known about isochores for over 25 years, we still have a poor understanding of why they exist. In this article, we review the current evidence for the three main hypotheses.
Collapse
Affiliation(s)
- A Eyre-Walker
- Centre for the Study of Evolution and School of Biological Sciences, University of Sussex, Brighton BN1 9QG, UK.
| | | |
Collapse
|
43
|
Abstract
Streptonigrin (SN, CAS no. 3930-19-6) is an aminoquinone antitumor antibiotic isolated from cultures of Streptomyces flocculus. This compound is a member of a group of antitumor agents which possess the aminoquinone moiety and that includes also mitomycin C, porfiromycin, actinomycin, rifamycin and geldanamycin. Because of the potential use of SN in clinical chemotherapy, the study of its genotoxicity has considerable practical significance.SN inhibits the synthesis of DNA and RNA, causes DNA strand breaks after reduction with NADH, induces unscheduled DNA synthesis and DNA adducts and inhibits topoisomerase II. At the chromosome level, this antibiotic causes chromosome damage and increases the frequency of sister-chromatid exchanges.SN cleaves DNA in cell-free systems by a mechanism that involves complexing with metal ions and autoxidation of the quinone moiety to semiquinone in the presence of NADH with production of oxygen-derived reactive species. Recent evidence strongly suggests that the clastogenic action of this compound is partially mediated by free radicals. The present review aims at summarizing past and current knowledge concerning the genotoxic effects of SN.
Collapse
Affiliation(s)
- A D Bolzán
- Laboratory of Cytogenetics and Mutagenesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900, La Plata, Argentina.
| | | |
Collapse
|
44
|
Fryxell KJ, Zuckerkandl E. Cytosine deamination plays a primary role in the evolution of mammalian isochores. Mol Biol Evol 2000; 17:1371-83. [PMID: 10958853 DOI: 10.1093/oxfordjournals.molbev.a026420] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA melting is rate-limiting for cytosine deamination, from which we infer that the rate of cytosine deamination should decline twofold for each 10% increase in GC content. Analysis of human DNA sequence data confirms that this is the case for 5-methylcytosine. Several lines of evidence further confirm that it is also the case for unmethylated cytosine and that cytosine deamination causes the majority of all C-->T and G-->A transitions in mammals. Thus, cytosine deamination and DNA base composition each affect the other, forming a positive feedback loop that facilitates divergent genetic drift to high or low GC content. Because a 10 degrees C increase in temperature in vitro increases the rate of cytosine deamination 5. 7-fold, cytosine deamination must be highly dependent on body temperature, which is consistent with the dramatic differences between the isochores of warm-blooded versus cold-blooded vertebrates. Because this process involves both DNA melting and positive feedback, it would be expected to spread progressively (in evolutionary time) down the length of the chromosome, which is consistent with the large size of isochores in modern mammals.
Collapse
Affiliation(s)
- K J Fryxell
- Department of Biology, George Mason University, Fairfax, Virginia 22030, USA.
| | | |
Collapse
|
45
|
Watanabe Y, Tenzen T, Nagasaka Y, Inoko H, Ikemura T. Replication timing of the human X-inactivation center (XIC) region: correlation with chromosome bands. Gene 2000; 252:163-72. [PMID: 10903448 DOI: 10.1016/s0378-1119(00)00208-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human genome is composed of long-range G+C% mosaic structures, which are thought to be related to chromosome bands. Replication timing during S phase is associated with chromosomal band zones; thus, band boundaries are thought to correspond to regions where replication timing switches. The proximal limit of the human X-inactivation center (XIC) has been localized cytologically to the junction zone between Xq13.1 and Xq13.2. Using PCR-based quantification of the newly replicated DNA from cell-cycle fractionated THP-1 cells, the replication timing in and around the XIC was determined at the genome sequence level. We found two regions where replication timing changes from the early to late period during S phase. One is located near a large inverted duplication proximal to the XIC, and the other is near the XIST locus. We propose that the 1Mb late-replicated zone (from the large inverted duplication to XIST) corresponds to a G-band Xq13.2. Several common characteristics were observed in the XIST region and the MHC class II-III junction which was previously defined as a band boundary. These characteristics included differential high-density clustering of Alu and LINE repeats, and the presence of polypurine/polypyrimidine tracts, MER41A, MER57 and MER58B.
Collapse
Affiliation(s)
- Y Watanabe
- Division of Evolutionary Genetics, Department of Population Genetics, National Institute of Genetics, Yata 1111, Mishima, 411-8540, Shizuoka-ken, Japan
| | | | | | | | | |
Collapse
|
46
|
Abstract
The genotype-phenotype (genome-form) distinction is considered by many to be fundamental to modern evolutionary thinking. Indeed, the premises that: DNA solely constitutes the genotype; that the phenotype is a transient product of the genotype, with the latter not only describing, but also implementing the construction of the former; and that the constructed materials and systems of the cell have no impact on the genotype, have become dogmas. Yet a vast body of data from molecular genetics reveals that cellular systems, directly and indirectly, alter the genome. Some of these data are reviewed. Proteins can influence mutations along the chromosomes, heritably modify the information content of DNA sequences, and, in some instances, reorganize the germline or somatic genome via DNA engineering pathways. These data suggest that the constructed (proteins, chromatin arrays, and metabolic pathways) has an important role in shaping the descriptor. Insofar as it is biochemically possible for states adopted by cellular structures to be stabilized and eventually memorized by engineering chromosomes, semantic closure can be transcended--meaning can be transferred from the domain of form to the genome, and this presumably ongoing process is termed teleomorphic recursivity. Throughout the paper, I implicitly argue that the genome-form partition is strictly a formal one, with no deeply material basis.
Collapse
Affiliation(s)
- R Von Sternberg
- Department of Invertebrate Zoology, Smithsonian Institution, Washington D.C. 20560, USA.
| |
Collapse
|
47
|
de Stanchina E, Gabellini D, Norio P, Giacca M, Peverali FA, Riva S, Falaschi A, Biamonti G. Selection of homeotic proteins for binding to a human DNA replication origin. J Mol Biol 2000; 299:667-80. [PMID: 10835276 DOI: 10.1006/jmbi.2000.3782] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that a cell cycle-dependent nucleoprotein complex assembles in vivo on a 74 bp sequence within the human DNA replication origin associated to the Lamin B2 gene. Here, we report the identification, using a one-hybrid screen in yeast, of three proteins interacting with the 74 bp sequence. All of them, namely HOXA13, HOXC10 and HOXC13, are orthologues of the Abdominal-B gene of Drosophila melanogaster and are members of the homeogene family of developmental regulators. We describe the complete open reading frame sequence of HOXC10 and HOXC13 along with the structure of the HoxC13 gene. The specificity of binding of these two proteins to the Lamin B2 origin is confirmed by both band-shift and in vitro footprinting assays. In addition, the ability of HOXC10 and HOXC13 to increase the activity of a promoter containing the 74 bp sequence, as assayed by CAT-assay experiments, demonstrates a direct interaction of these homeoproteins with the origin sequence in mammalian cells. We also show that HOXC10 expression is cell-type-dependent and positively correlates with cell proliferation.
Collapse
Affiliation(s)
- E de Stanchina
- Istituto di Genetica Biochimica ed Evoluzionistica del CNR, Via Abbiategrasso 207, Pavia, 27100, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Brock GJ, Charlton J, Bird A. Densely methylated sequences that are preferentially localized at telomere-proximal regions of human chromosomes. Gene 1999; 240:269-77. [PMID: 10580146 DOI: 10.1016/s0378-1119(99)00442-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have constructed a library of densely methylated DNA sequences from human blood DNA by selecting fragments with a high affinity for a methyl-CpG binding domain (MBD) column. PCR analysis of the library confirmed the presence of known densely methylated CpG island sequences. Analysis of random clones, however, showed that the library was dominated by sequences whose G+C content and CpG frequency were intermediate between those of bulk genomic DNA and bona fide CpG islands. When human chromosomes were probed with the library by fluorescent in situ hybridisation (FISH), the predominant sites of labelling were at terminal regions of many chromosomes, approximately corresponding to T-bands. Analysis of the methylation status of random clones indicated that all were heavily methylated at CpGs in blood DNA, but many were under-methylated in sperm DNA. Lack of methylation in germ cells may reduce CpG depletion at some sub-terminal sequences and result in a high density of methyl-CpG when these regions become methylated in somatic cells.
Collapse
Affiliation(s)
- G J Brock
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow, UK
| | | | | |
Collapse
|
49
|
Anderson LK, Reeves A, Webb LM, Ashley T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 1999; 151:1569-79. [PMID: 10101178 PMCID: PMC1460565 DOI: 10.1093/genetics/151.4.1569] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have used immunofluorescent localization to examine the distribution of MLH1 (MutL homolog) foci on synaptonemal complexes (SCs) from juvenile male mice. MLH1 is a mismatch repair protein necessary for meiotic recombination in mice, and MLH1 foci have been proposed to mark crossover sites. We present evidence that the number and distribution of MLH1 foci on SCs closely correspond to the number and distribution of chiasmata on diplotene-metaphase I chromosomes. MLH1 foci were typically excluded from SC in centromeric heterochromatin. For SCs with one MLH1 focus, most foci were located near the middle of long SCs, but near the distal end of short SCs. For SCs with two MLH1 foci, the distribution of foci was bimodal regardless of SC length, with most foci located near the proximal and distal ends. The distribution of MLH1 foci indicated interference between foci. We observed a consistent relative distance (percent of SC length in euchromatin) between two foci on SCs of different lengths, suggesting that positive interference between MLH1 foci is a function of relative SC length. The extended length of pachytene SCs, as compared to more condensed diplotene-metaphase I bivalents, makes mapping crossover events and interference distances using MLH1 foci more accurate than using chiasmata.
Collapse
Affiliation(s)
- L K Anderson
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
50
|
Artoni RF, Molina WF, Bertollo LAC, Galetti Junior PM. Heterochromatin analysis in the fish species Liposarcus anisitsi (siluriformes) and Leporinus elongatus (characiformes). Genet Mol Biol 1999. [DOI: 10.1590/s1415-47571999000100009] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The chromosomes of two neotropical freshwater fish species, namely Liposarcus anisitsi (Siluriformes, Loricariidae) and Leporinus elongatus (Characiformes, Anostomidae), were investigated by means of C-banding, Ag-NORs, fluorochrome staining and banding by hot saline solution (HSS) treatment, to reveal patterns of heterochromatin differentiation. The karyotype of L. anisitsi is described for the first time. Staining with the GC-specific fluorescent antibiotic mithramycin (MM) revealed bright signals in some C-banded blocks in both species, suggesting that these MM+ heterochromatin contains GC-rich DNA. Banding by denaturation employing HSS, followed by Giemsa staining, yielded corresponding results documenting the thermal stability of GC-rich DNA part of heterochromatin positive after C-banding. In L. elongatus the Ag-NOR also followed the above banding patterns. However, in L. anisitsi the Ag-NOR was MM+ but negatively stained after C-banding and HSS treatment. L. elongatus also showed C-banded segments that were negative for mithramycin staining and HSS treatment. The results obtained evidence the heterochromatin heterogeneity in these fish species.
Collapse
|