1
|
Shostak DM, Constantin S, Flannery J, Wray S. Acetylcholine regulation of GnRH neuronal activity: A circuit in the medial septum. Front Endocrinol (Lausanne) 2023; 14:1147554. [PMID: 36950690 PMCID: PMC10025473 DOI: 10.3389/fendo.2023.1147554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
In vertebrates, gonadotropin-releasing hormone (GnRH)-secreting neurons control fertility by regulating gonadotrophs in the anterior pituitary. While it is known that acetylcholine (ACh) influences GnRH secretion, whether the effect is direct or indirect, and the specific ACh receptor (AChR) subtype(s) involved remain unclear. Here, we determined 1) whether ACh can modulate GnRH cellular activity and 2) a source of ACh afferents contacting GnRH neurons. Calcium imaging was used to assay GnRH neuronal activity. With GABAergic and glutamatergic transmission blocked, subtype-specific AChR agonists and antagonists were applied to identify direct regulation of GnRH neurons. ACh and nicotine caused a rise in calcium that declined gradually back to baseline after 5-6 min. This response was mimicked by an alpha3-specific agonist. In contrast, muscarine inhibited GnRH calcium oscillations, and blocking M2 and M4 together prevented this inhibition. Labeling for choline acetyltransferase (ChAT) and GnRH revealed ChAT fibers contacting GnRH neurons, primarily in the medial septum (MS), and in greater number in females than males. ChAT positive cells in the MS are known to express p75NGFRs. Labeling for p75NGFR, ChAT and GnRH indicated that ChAT fibers contacting GnRH cells originate from cholinergic cells within these same rostral areas. Together, these results indicate that cholinergic cells in septal areas can directly regulate GnRH neurons.
Collapse
|
2
|
Constantin S. Progress and Challenges in the Search for the Mechanisms of Pulsatile Gonadotropin-Releasing Hormone Secretion. Front Endocrinol (Lausanne) 2017; 8:180. [PMID: 28790978 PMCID: PMC5523686 DOI: 10.3389/fendo.2017.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/10/2017] [Indexed: 12/05/2022] Open
Abstract
Fertility relies on the proper functioning of the hypothalamic-pituitary-gonadal axis. The hormonal cascade begins with hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH) into the hypophyseal portal system. In turn, the GnRH-activated gonadotrophs in the anterior pituitary release gonadotropins, which then act on the gonads to regulate gametogenesis and sex steroidogenesis. Finally, sex steroids close this axis by feeding back to the hypothalamus. Despite this seeming straightforwardness, the axis is orchestrated by a complex neuronal network in the central nervous system. For reproductive success, GnRH neurons, the final output of this network, must integrate and translate a wide range of cues, both environmental and physiological, to the gonadotrophs via pulsatile GnRH secretion. This secretory profile is critical for gonadotropic function, yet the mechanisms underlying these pulses remain unknown. Literature supports both intrinsically and extrinsically driven GnRH neuronal activity. However, the caveat of the techniques supporting either one of the two hypotheses is the gap between events recorded at a single-cell level and GnRH secretion measured at the population level. This review aims to compile data about GnRH neuronal activity focusing on the physiological output, GnRH secretion.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Stephanie Constantin,
| |
Collapse
|
3
|
Dicken CL, Israel DD, Davis JB, Sun Y, Shu J, Hardin J, Neal-Perry G. Peripubertal vitamin D(3) deficiency delays puberty and disrupts the estrous cycle in adult female mice. Biol Reprod 2012; 87:51. [PMID: 22572998 DOI: 10.1095/biolreprod.111.096511] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mechanism(s) by which vitamin D(3) regulates female reproduction is minimally understood. We tested the hypothesis that peripubertal vitamin D(3) deficiency disrupts hypothalamic-pituitary-ovarian physiology. To test this hypothesis, we used wild-type mice and Cyp27b1 (the rate-limiting enzyme in the synthesis of 1,25-dihydroxyvitamin D(3)) null mice to study the effect of vitamin D(3) deficiency on puberty and reproductive physiology. At the time of weaning, mice were randomized to a vitamin D(3)-replete or -deficient diet supplemented with calcium. We assessed the age of vaginal opening and first estrus (puberty markers), gonadotropin levels, ovarian histology, ovarian responsiveness to exogenous gonadotropins, and estrous cyclicity. Peripubertal vitamin D(3) deficiency significantly delayed vaginal opening without affecting the number of GnRH-immunopositive neurons or estradiol-negative feedback on gonadotropin levels during diestrus. Young adult females maintained on a vitamin D(3)-deficient diet after puberty had arrested follicular development and prolonged estrous cycles characterized by extended periods of diestrus. Ovaries of vitamin D(3)-deficient Cyp27b1 null mice responded to exogenous gonadotropins and deposited significantly more oocytes into the oviducts than mice maintained on a vitamin D(3)-replete diet. Estrous cycles were restored when vitamin D(3)-deficient Cyp27b1 null young adult females were transferred to a vitamin D(3)-replete diet. This study is the first to demonstrate that peripubertal vitamin D(3) sufficiency is important for an appropriately timed pubertal transition and maintenance of normal female reproductive physiology. These data suggest vitamin D(3) is a key regulator of neuroendocrine and ovarian physiology.
Collapse
Affiliation(s)
- Cary L Dicken
- Department of Obstetrics and Gynecology and Women's Health, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Constantin S, Wray S. Gonadotropin-releasing hormone-1 neuronal activity is independent of hyperpolarization-activated cyclic nucleotide-modulated channels but is sensitive to protein kinase a-dependent phosphorylation. Endocrinology 2008; 149:3500-11. [PMID: 18372334 PMCID: PMC2453097 DOI: 10.1210/en.2007-1508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulsatile release of GnRH-1 stimulates the anterior pituitary and induces secretion of gonadotropin hormones. GnRH-1 release is modulated by many neurotransmitters that act via G protein-coupled membrane receptors. cAMP is the most ubiquitous effector for these receptors. GnRH-1 neurons express hyperpolarization-activated cyclic nucleotide-modulated (HCN) channel protein in vivo. HCN channels are involved in neuronal pacemaking and can integrate cAMP signals. cAMP-dependent protein kinase (PKA) is also activated by cAMP signals, and PKA-dependent phosphorylation modulates voltage-activated channels. In this report, these two pathways were examined in GnRH-1 neurons as integrators of forskolin (FSK)-induced stimulation. The HCN3 isoform was detected in GnRH-1 neurons obtained from mouse nasal explants. ZD7288, a HCN channel blocker, significantly reduced the efficiency of FSK to stimulate GnRH-1 neurons, whereas blockade of PKA with Rp-adenosine-3',5'-cyclic monophosphorothioate triethylammonium did not attenuate the FSK-induced stimulation. To ensure that disruption of HCN channels on GnRH-1 neurons was responsible for reduction of FSK stimulation, experiments were performed removing gamma-aminobutyric acid (GABA), the major excitatory input to GnRH-1 neurons in nasal explants. Under these conditions, Rp-adenosine-3',5'-cyclic monophosphorothioate triethylammonium, but not ZD7288, altered the FSK-induced response of GnRH-1 neurons. These studies indicate that PKA-dependent phosphorylation is involved in the FSK-induced stimulation of GnRH-1 neurons rather than HCN channels, and HCN channels integrate the FSK-induced stimulation on GABAergic neurons. In addition, blockade of HCN channels did not modify basal GnRH-1 neuronal activity when GABAergic input was intact or removed, negating a role for these channels in basal GABAergic or GnRH-1 neuronal activity.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
5
|
Grattan DR, Jasoni CL, Liu X, Anderson GM, Herbison AE. Prolactin regulation of gonadotropin-releasing hormone neurons to suppress luteinizing hormone secretion in mice. Endocrinology 2007; 148:4344-51. [PMID: 17569755 DOI: 10.1210/en.2007-0403] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hyperprolactinemia causes infertility, but the mechanisms involved are not known. The present study aimed to determine whether and how prolactin may influence LH secretion in the adult female mouse. Using ovariectomized, estrogen-treated (OVX+E) mice, we found that 7 d of intracerebroventricular prolactin potently suppressed serum LH levels (P < 0.05). To examine whether this central action of prolactin may involve the GnRH neurons, the effects of acute and chronic prolactin on cAMP response element-binding protein phosphorylation (pCREB) in GnRH neurons were examined using dual-label immunocytochemistry. In diestrous and OVX+E mice, a single sc injection of ovine prolactin resulted in a significant (P < 0.05) doubling of the number of GnRH neurons expressing pCREB. OVX+E mice treated with five injections of ovine prolactin over 48 h showed a 4-fold increase in the number of GnRH neurons with pCREB. To determine whether GnRH neurons might be regulated directly by prolactin, we examined prolactin receptor (PRL-R) mRNA expression in green fluorescent protein-tagged GnRH neurons by single-cell RT-PCR. As a positive control, PRL-R mRNA was measured in arcuate dopaminergic neurons obtained from green fluorescent protein-tagged tyrosine hydroxylase neurons. Three of 23 GnRH neurons (13%) were identified to express PRL-R transcripts, whereas nine of 11 arcuate dopaminergic neurons (82%) were found to coexpress PRL-R mRNA. These data demonstrate that prolactin suppresses LH levels in the mouse, as it does in other species, and indicate that it acts centrally to regulate intracellular signaling within GnRH neurons. This is likely to occur, at least in part, through the direct regulation of a subpopulation of GnRH neurons.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology, Department of Anatomy and Structural Biology, University of Otago, P.O. Box 913, Dunedin 9054, New Zealand.
| | | | | | | | | |
Collapse
|
6
|
Petersen SL, Ottem EN, Carpenter CD. Direct and indirect regulation of gonadotropin-releasing hormone neurons by estradiol. Biol Reprod 2003; 69:1771-8. [PMID: 12890720 DOI: 10.1095/biolreprod.103.019745] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Estrogen signaling to GnRH neurons is critical for coordinating the preovulatory surge release of LH with follicular maturation. Until recently it was thought that estrogen signaled GnRH neurons only indirectly through numerous afferent systems. This minireview presents new evidence indicating that GnRH neurons are directly regulated by estradiol (E2), primarily through estrogen receptor (ER)-beta, and indirectly through E2-sensitive neurons in the anteroventral periventricular (AVPV) region. The data described suggest that E2 generally represses GnRH gene expression but that this repression is transiently overcome by indirect E2-dependent signals relayed by AVPV neurons. We also present evidence that the AVPV neurons responsible for relaying E2 signals to GnRH neurons are multifunctional gamma aminobutyric acid-ergic/glutamatergic/neuropeptidergic neurons.
Collapse
Affiliation(s)
- Sandra L Petersen
- Department of Biology, Neuroscience and Behavior Graduate Program, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
7
|
Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J Neurosci 2002. [PMID: 11896170 DOI: 10.1523/jneurosci.22-06-02313.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The gonadotropin-releasing hormone (GnRH) system, considered to be the final common pathway for the control of reproduction, has been difficult to study because of a lack of distinguishing characteristics and the scattered distribution of neurons. The development of a transgenic mouse in which the GnRH promoter drives expression of enhanced green fluorescent protein (EGFP) has provided the opportunity to perform electrophysiological studies of GnRH neurons. In this study, neurons were dissociated from brain slices prepared from prepubertal female GnRH-EGFP mice. Both current- and voltage-clamp recordings were obtained from acutely dissociated GnRH neurons identified on the basis of EGFP expression. Most isolated GnRH-EGFP neurons fired spontaneous action potentials (recorded in cell-attached or whole-cell mode) that typically consisted of brief bursts (2-20 Hz) separated by 1-10 sec. At more negative resting potentials, GnRH-EGFP neurons exhibited oscillations in membrane potential, which could lead to bursting episodes lasting from seconds to minutes. These bursting episodes were often separated by minutes of inactivity. Rapid application of glutamate or NMDA increased firing activity in all neurons and usually generated small inward currents (<15 pA), although larger currents were evoked in the remaining neurons. Both AMPA and NMDA receptors mediated the glutamate-evoked inward currents. These results suggest that isolated GnRH-EGFP neurons from juvenile mice can generate episodes of repetitive burst discharges that may underlie the pulsatile secretion of GnRH, and glutamatergic inputs may contribute to the activation of endogenous bursts.
Collapse
|
8
|
Herbison AE, Pape JR, Simonian SX, Skynner MJ, Sim JA. Molecular and cellular properties of GnRH neurons revealed through transgenics in the mouse. Mol Cell Endocrinol 2001; 185:185-94. [PMID: 11738808 DOI: 10.1016/s0303-7207(01)00618-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent advances in the use of gonadotropin-releasing hormone (GnRH) promoter-driven transgenics in the mouse are beginning to open up the once elusive GnRH neuronal phenotype to detailed molecular and cellular investigation. This review highlights progress in the development of GnRH promoter transgenic constructs and the understanding of murine gene sequences required for the correct temporal and spatial targeting of transgenes to the GnRH phenotype in vivo. Strategies enabling the identification of single, living GnRH neurons in the acute brain slice preparation are allowing gene profiling and electrophysiological experiments to be undertaken. Results so far indicate that, like other neurons, GnRH cells express a variety of sodium, potassium and calcium channels as well as GABAergic and glutamatergic receptors which are responsible for determining the membrane properties and firing characteristics of the GnRH neuron. Many of these receptors and channels appear to be expressed heterogeneously within the GnRH phenotype. Furthermore, several display distinct postnatal developmental expression profiles which are likely to be of consequence to the development of synchronized, pulsatile GnRH secretion in the adult animal.
Collapse
Affiliation(s)
- A E Herbison
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge CB2 4AT, UK.
| | | | | | | | | |
Collapse
|
9
|
Martínez de la Escalera G, Clapp C. Regulation of gonadotropin-releasing hormone secretion: insights from GT1 immortal GnRH neurons. Arch Med Res 2001; 32:486-98. [PMID: 11750724 DOI: 10.1016/s0188-4409(01)00320-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study of the mammalian GnRH system has been greatly advanced by the development of immortalized cell lines. Of particular relevance are the so-called GT1 cells. Not only do they exhibit many of the known physiologic characteristics of GnRH neurons in situ, but in approximately one decade have yielded new insights regarding the intrinsic physiology of individual cells and networks of GnRH neurons, as well as the nature of central and peripheral signals that directly modulate their function. For instance, valuable information has been generated concerning intrinsic properties of the system such as the inherent pulsatile pattern of secretion displayed by networks of GT1 cells. Concepts regarding feedback regulation and autocrine feedback of GnRH neurons have been dramatically expanded. Likewise, the nature of the receptors and of the proximal and distal signal transduction mechanisms involved in the actions of multiple afferent signals has been identified. Understanding this neuronal system allows a better comprehension of the hypothalamic-pituitary-gonadal axis and of the regulatory influences that ultimately control reproductive competence.
Collapse
Affiliation(s)
- G Martínez de la Escalera
- Centro de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico.
| | | |
Collapse
|
10
|
Terasawa E. Luteinizing hormone-releasing hormone (LHRH) neurons: mechanism of pulsatile LHRH release. VITAMINS AND HORMONES 2001; 63:91-129. [PMID: 11358119 DOI: 10.1016/s0083-6729(01)63004-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many types of neurons and glia exhibit oscillatory changes in membrane potentials and cytoplasmic Ca2+ concentrations. In neurons and neuroendocrine cells an elevation of intracellular Ca2+ concentration is associated with neurosecretion. Since both oscillatory membrane potentials and intracellular Ca2+ oscillations have been described in primary LHRH neurons and in GT1 cells, it is evident that an endogenous pulse-generator/oscillator is present in the LHRH neuron in vitro. The hourly rhythms of LHRH neurosecretion appear to be the synchronization of a population of LHRH neurons. How a network of LHRH neurons synchronizes their activity, i.e., whether by the result of synaptic mechanisms or electrical coupling through gap junctions or through a diffusible substance(s), remains to be clarified. Even though LHRH neurons themselves possess an endogenous pulse-generating mechanism, they may be controlled by other neuronal and nonneuronal elements in vivo. NE, NPY, glutamate, and GABA are neurotransmitters possibly controlling pulsatile LHRH release, and NO, cAMP, and ATP may be diffusible substances involved in pulsatile LHRH release without synaptic input. Although synaptic inputs to the perikarya of LHRH neurons could control the activity of LHRH neurons, a line of evidence suggests that direct neuronal and nonneuronal inputs, especially those from astrocytes to LHRH neuroterminals, appear to be more important for pusatile LHRH release.
Collapse
Affiliation(s)
- E Terasawa
- Wisconsin Regional Primate Research Center, Department of Pediatrics, and Center for Neuroscience, University of Wisconsin-Madison, 53715, USA
| |
Collapse
|
11
|
|
12
|
Abstract
One of the most intriguing characteristics of the luteinizing hormone-releasing hormone (LHRH) neuronal system in mammalian species is the pulsatile release pattern of the peptide from the hypothalamus into the portal circulation, which is essential for the maintenance of normal reproductive function. In this review article the new concept that LHRH neurons possess an endogenous pulse-generating mechanism, but this is modified by other neuronal and nonneuronal inputs is discussed.
Collapse
Affiliation(s)
- E Terasawa
- Department of Pediatrics, and Center for Neuroscience, University of Wisconsin-Madison, 1223 Capitol Court, Madison, Wisconsin, 53715-1299, USA
| |
Collapse
|
13
|
Woller M, Nichols E, Herdendorf T, Tutton D. Release of luteinizing hormone-releasing hormone from enzymatically dispersed rat hypothalamic explants is pulsatile. Biol Reprod 1998; 59:587-90. [PMID: 9716557 DOI: 10.1095/biolreprod59.3.587] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This study was conducted to investigate 1) the utility of a cell perifusion system to examine questions dealing with the regulation of pulsatile LHRH release and 2) the necessity of cell-cell connections for communication between LHRH neurons and for coordination of LHRH release. To this end, cell perifusion of both hemihypothalamic tissue and enzymatically dispersed hypothalamic tissue isolated from adult male rats was performed. Periodic perfusate samples were collected and assayed to measure LHRH release. LHRH release from both hemihypothalami and dispersed hypothalamic tissue was clearly pulsatile, with comparable pulse frequencies and amplitudes. These results were interpreted to support the hypothesis that coordination of pulsatile LHRH release can be maintained in the absence of most cell-cell connections. This suggests a paracrine rather than a neural mechanism for the coordination of LHRH secretory events leading to the distinct signals we observe as pulses of LHRH in situ.
Collapse
Affiliation(s)
- M Woller
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, Wisconsin 53190, USA.
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- A E Herbison
- Laboratory of Neuroendocrinology, Babraham Institute, Cambridge, United Kingdom.
| |
Collapse
|