1
|
Cheon SY, Cho MR, Kim SY, Koo BN. The immune-inflammatory responses on the hypothalamic-pituitary-adrenal axis and the neurovascular unit in perioperative neurocognitive disorder. Exp Neurol 2025; 386:115146. [PMID: 39805464 DOI: 10.1016/j.expneurol.2025.115146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Perioperative neurocognitive disorders (PNDs) refer to a wide spectrum of cognitive impairment persisting days to even after a year postoperative with significant morbidity and mortality. However, despite much efforts involving perioperative managements, PNDs are still prevalent with no standard preventative and therapeutic strategy. To overcome PNDs, a better understanding of pathophysiology of PNDs is crucial and a large number of studies have proven that immune-inflammatory responses from surgical stress are involved in the abnormal activation of the hypothalamic-pituitary-adrenal (HPA) axis and destabilization of neurovascular unit (NVU) that lead to PNDs. The HPA axis is one of the key components to maintaining physiological homeostasis in response to stress. Under normal conditions, the HPA axis is involved in multiple roles from memory consolidation to regulating the circadian rhythm by activating adrenal cortex to secret cortisol. However, when overwhelmed with inflammatory response from surgical stress, HPA axis may be abnormally activated to release excessive glucocorticoids to cause PNDs. In addition, NVU, the functional unit of the brain essential for maintaining blood brain barrier and cerebral blood flow, is another possible factor that may lead to PNDs as compromised NVU from inflammatory response can result in disrupted blood brain barrier and impaired brain homeostasis. Therefore, the interaction of immune-inflammatory response with the HPA axis and the NVU seems to play a significant role and therapeutic and/or preventive strategies focused on these interactions may be promising direction for future managements of PNDs.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Research Institute for Biomedical & Health Science (RIBHS), Konkuk University, Chungju, Republic of Korea
| | - Matthew R Cho
- Department of Anesthesiology and Pain Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - So Yeon Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Grey DK, Purcell JB, Buford KN, Schuster MA, Elliott MN, Emery ST, Mrug S, Knight DC. Discrimination Exposure, Neural Reactivity to Stress, and Psychological Distress. Am J Psychiatry 2024; 181:1112-1126. [PMID: 39473266 DOI: 10.1176/appi.ajp.20220884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
OBJECTIVE Discrimination exposure has a detrimental impact on mental health, increasing the risk of depression, anxiety, and posttraumatic stress. The impact discrimination exposure has on mental health is likely mediated by neural processes associated with emotion expression and regulation. However, the specific neural processes that mediate the relationship between discrimination exposure and mental health remain to be determined. The present study investigated the relationship adolescent discrimination exposure has with stress-elicited brain activity and mental health symptoms in young adulthood. METHODS A total of 301 participants completed the Montreal Imaging Stress Task while functional MRI data were collected. Discrimination exposure was measured four times from ages 11 to 19, and stress-elicited brain activity and psychological distress (depression, anxiety, posttraumatic stress) were assessed in young adulthood (age 20). RESULTS Stress-elicited dorsolateral and dorsomedial prefrontal cortex (PFC), inferior parietal lobule (IPL), and hippocampal activity varied with discrimination exposure. Activity within these brain regions varied with the cumulative amount and trajectory of discrimination exposure across adolescence (initial exposure, change in exposure, and acceleration of exposure). Depression, anxiety, and posttraumatic stress symptoms varied with discrimination exposure. Stress-elicited activity within the dorsolateral PFC and the IPL statistically mediated the relationship between discrimination exposure and psychological distress. CONCLUSIONS The findings suggest that adolescent discrimination exposure may alter the neural response to future stressors (i.e., within regions associated with emotion expression and regulation), which may in turn modify susceptibility and resilience to psychological distress. Thus, differences in stress-elicited neural reactivity may represent an important neurobiological mechanism underlying discrimination-related mental health disparities.
Collapse
Affiliation(s)
- Devon K Grey
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Juliann B Purcell
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Kristen N Buford
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Mark A Schuster
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Marc N Elliott
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Susan Tortolero Emery
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - David C Knight
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| |
Collapse
|
3
|
Zhang G, Wang S, Ma P, Li S, Sun X, Zhao Y, Pan J. Increased regional body fat is associated with depressive symptoms: a cross-sectional analysis of NHANES data obtained during 2011-2018. BMC Psychiatry 2024; 24:336. [PMID: 38702637 PMCID: PMC11067210 DOI: 10.1186/s12888-024-05782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS The findings from previous epidemiological studies of the association between regional body fat and depressive symptoms have been unclear. We aimed to determine the association between the body fat in different regions and depressive symptoms based on data from the National Health and Nutrition Examination Survey (NHANES). METHODS This study included 3393 participants aged ≥ 20 years from the NHANES performed during 2011-2018. Depressive symptoms were assessed using the Patient Health Questionnaire-9. The fat mass (FM) was measured in different regions using dual-energy X-ray absorptiometry to determine the total FM, trunk FM, arm FM, and leg FM. The FM index (FMI) was obtained by dividing the FM in kilograms by the square of the body height in meters. Weighted data were calculated in accordance with analytical guidelines. Linear logistic regression models were used to quantify the association between regional FMI and depressive symptoms. Univariate and stratified analyses were also performed. RESULTS The participants in this study comprised 2066 males and 1327 females. There were 404 (11.91%) participants with depressive symptoms, who were aged 40.89 ± 11.74 years and had a body mass index of 30.07 ± 7.82 kg/m². A significant association was found between total FMI and depressive symptoms. In the fully adjusted multivariate regression model, a higher total FMI (odds ratio = 2.18, 95% confidence interval [CI] = 1.08-4.39) was related to a higher risk of depressive symptoms, while increased total FMI (β = 1.55, 95% CI = 0.65-2.44, p = 0.001), trunk FMI (β = 0.57, 95% CI = 0.04-1.10, p = 0.036), and arm FMI (β = 0.96, 95% CI = 0.33-1.59, p = 0.004) were significantly associated with PHQ-9 (Patient Health Questionnaire-9) scores, whereas the leg FMI was not (p = 0.102). The weighted association between total FMI and depressive symptoms did not differ significantly between most of the subpopulations (all p values for interaction > 0.05). The risk of having depression was higher in individuals who were non-Hispanic Whites, smokers, drinkers, obese, and had diabetes and thyroid problems (p < 0.05). CONCLUSION These findings suggest that the population with a higher regional FMI is more likely to have depressive symptoms, especially in those who also have an increased total FMI. The association is more pronounced in individuals who are smokers, drinkers, obese, and have diabetes and thyroid problems.
Collapse
Affiliation(s)
- GuiMei Zhang
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Sisi Wang
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Ping Ma
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Shuna Li
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xizhe Sun
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Yang Zhao
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Jiyang Pan
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China.
| |
Collapse
|
4
|
Piątkowska-Chmiel I, Krawiec P, Ziętara KJ, Pawłowski P, Samardakiewicz M, Pac-Kożuchowska E, Herbet M. The Impact of Chronic Stress Related to COVID-19 on Eating Behaviors and the Risk of Obesity in Children and Adolescents. Nutrients 2023; 16:54. [PMID: 38201884 PMCID: PMC10780384 DOI: 10.3390/nu16010054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
During the COVID-19 pandemic, an increase in the incidence of overweight and obesity in children was observed. It appears that unhealthy food choices, an unbalanced diet, and a sedentary lifestyle, as well as experiencing stress related to the pandemic, may be contributing to this disturbing trend. Chronic stress is a significant factor contributing to eating disorders and obesity in youngsters, involving medical, molecular, and psychological elements. Individuals under chronic stress often focus on appearance and weight, leading to negative body image and disrupted relationships with food, resulting in unhealthy eating behaviors. Chronic stress also impacts hormonal balance, reducing the satiety hormone leptin and elevating the appetite-stimulating hormone ghrelin, fostering increased hunger and uncontrolled snacking. Two systems, the hypothalamic-pituitary-adrenal axis and the sympathetic system with the adrenal medulla, are activated in response to stress, causing impaired secretion of noradrenaline and cortisol. Stress-related obesity mechanisms encompass oxidative stress, neuroinflammation, insulin resistance, and neurohormonal and neurotransmission disorders. Stress induces insulin resistance, elevating obesity risk by disrupting blood sugar regulation and fat storage. Stress also affects the gut microbiome, potentially influencing chronic inflammation and metabolic processes linked to obesity. In conclusion, chronic stress is a multifaceted risk factor for eating disorders and obesity in children, necessitating a comprehensive understanding of effective preventive and intervention strategies amid the escalating prevalence of childhood overweight and obesity.
Collapse
Affiliation(s)
- Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland;
| | - Paulina Krawiec
- Department of Paediatrics and Gastroenterology, Medical University of Lublin, Al. Racławickie 1 Street, 20-059 Lublin, Poland; (P.K.); (E.P.-K.)
| | - Karolina Joanna Ziętara
- Student Scientific Association at the Department of Psychology, Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (K.J.Z.); (P.P.)
| | - Piotr Pawłowski
- Student Scientific Association at the Department of Psychology, Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (K.J.Z.); (P.P.)
| | - Marzena Samardakiewicz
- Department of Psychology, Psychosocial Aspects of Medicine, Medical University of Lublin, Chodźki 7 Street, 20-093 Lublin, Poland;
| | - Elżbieta Pac-Kożuchowska
- Department of Paediatrics and Gastroenterology, Medical University of Lublin, Al. Racławickie 1 Street, 20-059 Lublin, Poland; (P.K.); (E.P.-K.)
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland;
| |
Collapse
|
5
|
Abulmeaty MMA, Almajwal AM, Razak S, Al-Ramadhan FR, Wahid RM. Energy Homeostasis-Associated (Enho) mRNA Expression and Energy Homeostasis in the Acute Stress Versus Chronic Unpredictable Mild Stress Rat Models. Biomedicines 2023; 11:biomedicines11020440. [PMID: 36830976 PMCID: PMC9953286 DOI: 10.3390/biomedicines11020440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The energy homeostasis-associated (Enho) gene, the transcript for the Adropin peptide, is usually linked to energy homeostasis, adiposity, glycemia, and insulin resistance. Studies on Enho expression in stressful conditions are lacking. This work aimed to investigate Enho mRNA expression and energy homeostasis in acute stress (AS) versus chronic unpredictable mild stress (CUMS) rat models. A total of thirty male Wistar rats (180-220 g) were fed a balanced diet with free access to water. Rats were divided into three equal groups (n = 10): (a) the normal control (NC) group; (b) the AS group, where one episode of stress for 2 h was applied; and (c) the CUMS group, in which rats were exposed to a variable program of mild stressors for 4 weeks. Energy homeostasis was analyzed by the PhenoMaster system for the automatic measuring of food intake (FI), respiratory O2 volume (VO2), CO2 volume (VCO2), respiratory quotient (RQ), and total energy expenditure (TEE). Finally, liver, whole brain, and adipose (WAT) tissue samples were collected, total RNA was prepared, and RT-PCR analysis of the Enho gene was performed. The CUMS group showed higher VO2 consumption and VCO2 production, and a higher RQ than the AS group. Furthermore, the TEE and FI were higher in the CUMS group compared to the AS group. Enho gene expression in the liver, brain, and WAT was significantly higher in the CUMS group than in the AS and NC groups. We can conclude that in the chew-fed AS rats, hypophagia was evident, with a shift in the RQ toward fat utilization, with no changes in body weight despite the increase in Enho mRNA expression in all studied tissues. In the CUMS group, the marked rise in Enho mRNA expression may have contributed to weight loss despite increased FI and TEE.
Collapse
Affiliation(s)
- Mahmoud M. A. Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
- Department of Medical Physiology, School of Medicine, Zagazig University, Zagazig 44519, Egypt
- Correspondence: ; Tel.: +96-65-4815-5983
| | - Ali M. Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Fatimah R. Al-Ramadhan
- Department of Human Nutrition, College of Agriculture and Food Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Reham M. Wahid
- Department of Medical Physiology, School of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
6
|
Baskerville R, McGrath T, Castell L. The effects of physical activity on glutamate neurotransmission in neuropsychiatric disorders. Front Sports Act Living 2023; 5:1147384. [PMID: 36949894 PMCID: PMC10025343 DOI: 10.3389/fspor.2023.1147384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Physical activity (PA) is an effective way of increasing cognitive and emotional health and counteracting many psychiatric conditions. Numerous neurobiological models for depression have emerged in the past 30 years but many struggle to incorporate the effects of exercise. The hippocampus and pre-frontal cortex (PFC) containing predominantly glutamate neurotransmission, are the centres of changes seen in depression. There is therefore increasing interest in glutamatergic systems which offers new paradigms of understanding mechanisms connecting physical activity, stress, inflammation and depression, not explained by the serotonin theories of depression. Similar hippocampal glutamate dysfunction is observed in many other neuropsychiatric conditions. Excitatory glutamate neurones have high functionality, but also high ATP requirements and are therefore vulnerable to glucocorticoid or pro-inflammatory stress that causes mitochondrial dysfunction, with synaptic loss, culminating in depressed mood and cognition. Exercise improves mitochondrial function, angiogenesis and synaptogenesis. Within the glutamate hypothesis of depression, the mechanisms of stress and inflammation have been extensively researched, but PA as a mitigator is less understood. This review examines the glutamatergic mechanisms underlying depression and the evidence of physical activity interventions within this framework. A dynamic glutamate-based homeostatic model is suggested whereby stress, neuroinflammation and PA form counterbalancing influences on hippocampal cell functionality, which manifests as depression and other neuropsychiatric conditions when homeostasis is disrupted.
Collapse
Affiliation(s)
- Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
- Correspondence: Richard Baskerville
| | | | | |
Collapse
|
7
|
Matzke CC, Kusch JM, Janz DM, Lane JE. Perceived predation risk predicts glucocorticoid hormones, but not reproductive success in a colonial rodent. Horm Behav 2022; 143:105200. [PMID: 35617896 DOI: 10.1016/j.yhbeh.2022.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
The Cort-Adaptation hypothesis suggests that elevated glucocorticoids (GCs) can facilitate an adaptive response to environmental and physiological challenges. Most previous studies have focused on avian species, which may limit their generalizability to mammals, where lactation is known to be a major physiological challenge. Furthermore, the effect of predation risk on GC levels has not been tested in the Cort-Adaptation hypothesis. We sought to test this hypothesis in a colonial prey species, black-tailed prairie dogs (Cynomys ludovicianus). We predicted that individuals located near fewer neighboring conspecifics would perceive an increased risk of predation and, in turn, have increased GCs (measured through hair cortisol concentration (HCC)) and reduced annual reproductive success compared to more centrally located individuals. We also investigated other putative influences on HCC: age, lactation status, body condition, and season of hair growth. Levels of vigilance behavior were higher for those with fewer neighboring conspecifics, suggesting variation in perceived risk of predation. Further, the risk of predation appeared to represent a chronic, detrimental stressor as evidenced by a significant increase in HCC for prairie dogs with fewer neighbors. Lactation status and season also influenced HCC. We found support for the Cort-Adaptation hypothesis where increased HCC during the reproductive season correlated with whether a female produced a litter, but not litter size, suggesting a minimum threshold of GCs is required for successful reproduction in this species. Our work illustrates that HCC may operate as an indicator of perceived predation risk, but care should be taken to consider the variety of factors influencing GC homeostasis, in particular lactation, when drawing conclusions using HCC as a marker of long-term stress.
Collapse
Affiliation(s)
| | - Jillian M Kusch
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - David M Janz
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
McGrath T, Baskerville R, Rogero M, Castell L. Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases. Nutrients 2022; 14:nu14050917. [PMID: 35267893 PMCID: PMC8912368 DOI: 10.3390/nu14050917] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The monoamine model of depression has long formed the basis of drug development but fails to explain treatment resistance or associations with stress or inflammation. Recent animal research, clinical trials of ketamine (a glutamate receptor antagonist), neuroimaging research, and microbiome studies provide increasing evidence of glutamatergic dysfunction in depression and other disorders. Glutamatergic involvement across diverse neuropathologies including psychoses, neurodevelopmental, neurodegenerative conditions, and brain injury forms the rationale for this review. Glutamate is the brain's principal excitatory neurotransmitter (NT), a metabolic and synthesis substrate, and an immune mediator. These overlapping roles and multiple glutamate NT receptor types complicate research into glutamate neurotransmission. The glutamate microcircuit comprises excitatory glutamatergic neurons, astrocytes controlling synaptic space levels, through glutamate reuptake, and inhibitory GABA interneurons. Astroglia generate and respond to inflammatory mediators. Glutamatergic microcircuits also act at the brain/body interface via the microbiome, kynurenine pathway, and hypothalamus-pituitary-adrenal axis. Disruption of excitatory/inhibitory homeostasis causing neuro-excitotoxicity, with neuronal impairment, causes depression and cognition symptoms via limbic and prefrontal regions, respectively. Persistent dysfunction reduces neuronal plasticity and growth causing neuronal death and tissue atrophy in neurodegenerative diseases. A conceptual overview of brain glutamatergic activity and peripheral interfacing is presented, including the common mechanisms that diverse diseases share when glutamate homeostasis is disrupted.
Collapse
Affiliation(s)
- Thomas McGrath
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| | - Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Marcelo Rogero
- School of Public Health, University of Sao Paulo, Sao Paulo 01246-904, Brazil;
| | - Linda Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| |
Collapse
|
9
|
Brake AD, Yang X, Lee CY, Lee P, Keselman P, Eller OC, Choi IY, Harris JL, Christianson JA. Reduced Hippocampal Volume and Neurochemical Response to Adult Stress Exposure in a Female Mouse Model of Urogenital Hypersensitivity. FRONTIERS IN PAIN RESEARCH 2022; 3:809944. [PMID: 35295799 PMCID: PMC8915737 DOI: 10.3389/fpain.2022.809944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Early life stress exposure significantly increases the risk of developing chronic pain syndromes and comorbid mood and metabolic disorders later in life. Structural and functional changes within the hippocampus have been shown to contribute to many early life stress-related outcomes. We have previously reported that adult mice that underwent neonatal maternal separation (NMS) exhibit urogenital hypersensitivity, altered anxiety- and depression-like behaviors, increased adiposity, and decreased gene expression and neurogenesis in the hippocampus. Here, we are using magnetic resonance imaging and spectroscopy (MRI and MRS) to further investigate both NMS- and acute stress-induced changes in the hippocampus of female mice. Volumetric analysis of the whole brain revealed that the left hippocampus of NMS mice was 0.038 mm3 smaller compared to naïve mice. MRS was performed only on the right hippocampus and both total choline (tCho) and total N-acetylaspartate (tNAA) levels were significantly decreased due to NMS, particularly after WAS. Phosphoethanolamine (PE) levels were decreased in naïve mice after WAS, but not in NMS mice, and WAS increased ascorbate levels in both groups. The NMS mice showed a trend toward increased body weight and body fat percentage compared to naïve mice. A significant negative correlation was observed between body weight and phosphocreatine levels post-WAS in NMS mice, as well as a positive correlation between body weight and glutamine for NMS mice and a negative correlation for naïve mice. Together, these data suggest that NMS in mice reduces left hippocampal volume and may result in mitochondrial dysfunction and reduced neuronal integrity of the right hippocampus in adulthood. Hippocampal changes also appear to be related to whole body metabolic outcomes.
Collapse
Affiliation(s)
- Aaron D. Brake
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Xiaofang Yang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Chu-Yu Lee
- University of Kansas Medical Center, Hoglund Biomedical Imaging Center, Kansas City, KS, United States
| | - Phil Lee
- University of Kansas Medical Center, Hoglund Biomedical Imaging Center, Kansas City, KS, United States
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul Keselman
- University of Kansas Medical Center, Hoglund Biomedical Imaging Center, Kansas City, KS, United States
| | - Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - In-Young Choi
- University of Kansas Medical Center, Hoglund Biomedical Imaging Center, Kansas City, KS, United States
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Janna L. Harris
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Medical Center, Hoglund Biomedical Imaging Center, Kansas City, KS, United States
| | - Julie A. Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, Pain, and Perioperative Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
10
|
Rippon D, McDonnell A, Bristow M, Smith MA, McCreadie M, Wetherell MA. Elevated levels of hair cortisol concentrations in professional dementia caregivers. Stress 2021; 24:945-951. [PMID: 34392773 DOI: 10.1080/10253890.2021.1968821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Providing care for people with dementia can be a highly stressful profession. Hair Cortisol Concentration (HCC) levels have been used as a biological marker for HPA axis activity to demonstrate that informal caregivers of people with dementia could be vulnerable to chronic stress. The current study aimed to progress the findings of research conducted with informal caregivers and is the first study to assess HCC as a biological indicator of stress in professional carers of people with dementia. HCC levels were compared between 32 professional dementia caregivers (30 females with a mean age of 45.83 and 2 males with a mean age of 24.50), 45 employees working in higher education settings (42 females with a mean age of 38.66 and 3 males with a mean age of 31.89) and 88 undergraduate students (67 females with a mean age of 24.04 and 21 males with a mean age of 23.91). Analysis of HCC was used to assess HPA axis activity over 1 month. A one-way ANCOVA, with age and gender being included as covariates, revealed that higher levels of HCC were observed in professional dementia carers than people who worked within higher education settings and undergraduate students. The results indicated that professional dementia caregivers may experience stress to the extent of activating biological stress responses at a greater frequency in comparison to people who work in higher education and undergraduate students. However, no significant differences were observed in the perceived stress levels reported across dementia caregivers, professionals working in higher education, and undergraduate students. These findings highlight the requirement to ascertain the extent to which work-related tasks or other factors, specific to the profession of caring for people with dementia, could elicit heightened HPA stress reactivity.
Collapse
Affiliation(s)
- Daniel Rippon
- School of Health and Life Sciences, Department of Psychology, University of Northumbria at Newcastle, Newcastle upon Tyne, UK
| | | | - Matt Bristow
- Faculty of Science and Engineering, Division of Psychology, Anglia Ruskin University, Cambridge, UK
| | - Michael A Smith
- School of Health and Life Sciences, Department of Psychology, University of Northumbria at Newcastle, Newcastle upon Tyne, UK
| | | | - Mark A Wetherell
- School of Health and Life Sciences, Department of Psychology, University of Northumbria at Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Minnier J, Emmett MR, Perez R, Ding LH, Barnette BL, Larios RE, Hong C, Hwang TH, Yu Y, Fallgren CM, Story MD, Weil MM, Raber J. Associations between lipids in selected brain regions, plasma miRNA, and behavioral and cognitive measures following 28Si ion irradiation. Sci Rep 2021; 11:14899. [PMID: 34290258 PMCID: PMC8295277 DOI: 10.1038/s41598-021-93869-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 11/09/2022] Open
Abstract
The space radiation environment consists of multiple species of charged particles, including 28Si ions, that may impact brain function during and following missions. To develop biomarkers of the space radiation response, BALB/c and C3H female and male mice and their F2 hybrid progeny were irradiated with 28Si ions (350 MeV/n, 0.2 Gy) and tested for behavioral and cognitive performance 1, 6, and 12 months following irradiation. The plasma of the mice was collected for analysis of miRNA levels. Select pertinent brain regions were dissected for lipidomic analyses and analyses of levels of select biomarkers shown to be sensitive to effects of space radiation in previous studies. There were associations between lipids in select brain regions, plasma miRNA, and cognitive measures and behavioral following 28Si ion irradiation. Different but overlapping sets of miRNAs in plasma were found to be associated with cognitive measures and behavioral in sham and irradiated mice at the three time points. The radiation condition revealed pathways involved in neurodegenerative conditions and cancers. Levels of the dendritic marker MAP2 in the cortex were higher in irradiated than sham-irradiated mice at middle age, which might be part of a compensatory response. Relationships were also revealed with CD68 in miRNAs in an anatomical distinct fashion, suggesting that distinct miRNAs modulate neuroinflammation in different brain regions. The associations between lipids in selected brain regions, plasma miRNA, and behavioral and cognitive measures following 28Si ion irradiation could be used for the development of biomarker of the space radiation response.
Collapse
Affiliation(s)
- Jessica Minnier
- Oregon Health & Science University-Portland State University School of Public Health, Knight Cancer Institute Biostatistics Shared Resource, and the Knight Cardiovascular Institute, OR Health & Science University, Portland, OR, 97239, USA
| | - Mark R Emmett
- Department of Biochemistry and Molecular Biology; Radiation Oncology, Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Cancer Center, Galveston, TX, 77555, USA
| | - Ruby Perez
- Department of Behavioral Neuroscience, L470, Oregon Health & Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Brooke L Barnette
- Department of Biochemistry and Molecular Biology; Radiation Oncology, Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Cancer Center, Galveston, TX, 77555, USA
| | - Rianna E Larios
- Department of Biochemistry and Molecular Biology; Radiation Oncology, Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Cancer Center, Galveston, TX, 77555, USA
| | - Changjin Hong
- Lerner Research Institute, Cleveland Clinic Lerner College of Medicine US, Cleveland, OH, 44195, USA
| | - Tae Hyun Hwang
- Lerner Research Institute, Cleveland Clinic Lerner College of Medicine US, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, School of Medicine, GU Malignancies Program, Case Comprehensive Cancer Center, Genomic Medicine Institute, Case Western Reserve University US., Cleveland, OH, 10900, USA
| | - Yongjia Yu
- Department of Biochemistry and Molecular Biology; Radiation Oncology, Pharmacology and Toxicology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Cancer Center, Galveston, TX, 77555, USA
| | - Christina M Fallgren
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, L470, Oregon Health & Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA.
- Division of Neuroscience ONPRC, Departments of Neurology, Psychiatry, and Radiation Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
12
|
Chenji S, Cox E, Jaworska N, Swansburg RM, MacMaster FP. Body mass index and variability in hippocampal volume in youth with major depressive disorder. J Affect Disord 2021; 282:415-425. [PMID: 33422817 DOI: 10.1016/j.jad.2020.12.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/31/2020] [Accepted: 12/24/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The hippocampus has been implicated in major depressive disorder (MDD), in both adults and youth. However, possible sources of variability for the hippocampus have not been well delineated. Here, we explored the relationship between body mass index (BMI) and hippocampal volume in youth with MDD. METHODS Twenty-two controls (9 male, 13 female, 12-24 years), 24 youth with MDD and normal BMI (12 male, 12 female, 14-24 years), and 20 youth with MDD and high BMI (14 male, 6 female, 13-22 years) underwent magnetic resonance (MR) imaging and spectroscopy (1H-MRS). Hippocampal volume was determined through manual tracing of high-resolution anatomical T1 scans, and LCModel quantified neurochemical concentrations. Intracranial volume was used as a covariate in analysis to control for effects of brain volume on hippocampus. RESULTS In youth with MDD and normal BMI, right hippocampal volume was reduced (p = 0.006, Bonferroni) and a trend for reduced left hippocampal volume was noted when compared to healthy controls (p = 0.054, Bonferroni). Left hippocampal volumes were negatively associated with BMI in youth with MDD and high BMI group (r = -0.593, p = 0.006). No associations were found between the right hippocampus and BMI and there were no group differences for metabolite concentrations. LIMITATIONS Larger sample sizes would enable researchers to explore overweight vs obese groups and effect of sex in MDD-BMI groups. CONCLUSIONS BMI may account for some of the variability observed in previous studies of hippocampal volume in MDD, and therefore BMI impacts should be considered in future analyses.
Collapse
Affiliation(s)
- Sneha Chenji
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Emily Cox
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research, Ontario, Canada
| | - Rose M Swansburg
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Frank P MacMaster
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada; Addictions and Mental Health Strategic Clinical Network, Alberta, Canada.
| |
Collapse
|
13
|
Cusack B, Buggy D. Anaesthesia, analgesia, and the surgical stress response. BJA Educ 2020; 20:321-328. [PMID: 33456967 PMCID: PMC7807970 DOI: 10.1016/j.bjae.2020.04.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- B. Cusack
- Mater University Hospital, University College Dublin, Ireland
| | - D.J. Buggy
- Mater University Hospital, University College Dublin, Ireland
| |
Collapse
|
14
|
Khan MSH, Hegde V. Obesity and Diabetes Mediated Chronic Inflammation: A Potential Biomarker in Alzheimer's Disease. J Pers Med 2020; 10:jpm10020042. [PMID: 32455946 PMCID: PMC7354630 DOI: 10.3390/jpm10020042] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the sixth leading cause of death and is correlated with obesity, which is the second leading cause of preventable diseases in the United States. Obesity, diabetes, and AD share several common features, and inflammation emerges as the central link. High-calorie intake, elevated free fatty acids, and impaired endocrine function leads to insulin resistance and systemic inflammation. Systemic inflammation triggers neuro-inflammation, which eventually hinders the metabolic and regulatory function of the brain mitochondria leading to neuronal damage and subsequent AD-related cognitive decline. As an early event in the pathogenesis of AD, chronic inflammation could be considered as a potential biomarker in the treatment strategies for AD.
Collapse
|
15
|
Palma A, Blas J, Tella JL, Cabezas S, Marchant TA, Carrete M. Differences in adrenocortical responses between urban and rural burrowing owls: poorly-known underlying mechanisms and their implications for conservation. CONSERVATION PHYSIOLOGY 2020; 8:coaa054. [PMID: 32665848 PMCID: PMC7336563 DOI: 10.1093/conphys/coaa054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 08/08/2019] [Accepted: 06/17/2020] [Indexed: 05/10/2023]
Abstract
The hypothalamus-pituitary-adrenal/interrenal (HPA) axis of vertebrates integrates external information and orchestrates responses to cope with energy-demanding and stressful events through changes in circulating glucocorticoid levels. Urbanization exposes animals to a wide variety of ever-changing stimuli caused by human activities that may affect local wildlife populations. Here, we empirically tested the hypothesis that urban and rural owls (Athene cunicularia) show different adrenocortical responses to stress, with urban individuals showing a reduced HPA-axis response compared to rural counterparts to cope with the high levels of human disturbance typical of urban areas. We applied a standard capture-restraint protocol to measure baseline levels and stress-induced corticosterone (CORT) responses. Urban and rural owls showed similar circulating baseline CORT levels. However, maximum CORT levels were attained earlier and were of lower magnitude in urban compared to rural owls, which showed a more pronounced and long-lasting response. Variability in CORT responses was also greater in rural owls and contained the narrower variability displayed by urban ones. These results suggest that only individuals expressing low-HPA-axis responses can thrive in cities, a pattern potentially mediated by three alternative and non-exclusive hypotheses: phenotypic plasticity, natural selection and matching habitat choice. Due to their different conservation implications, we recommend further research to properly understand wildlife responses to humans in an increasingly urbanized world.
Collapse
Affiliation(s)
- Antonio Palma
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain
- Corresponding author: Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain.
| | - Julio Blas
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain
- Department of Biology, University of Saskatchewan, S7N 5E2 Saskatoon, Saskatchewan, Canada
| | - José L Tella
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain
| | - Sonia Cabezas
- Department of Biology, University of Saskatchewan, S7N 5E2 Saskatoon, Saskatchewan, Canada
| | - Tracy A Marchant
- Department of Biology, University of Saskatchewan, S7N 5E2 Saskatoon, Saskatchewan, Canada
| | - Martina Carrete
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain
- Departament of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| |
Collapse
|
16
|
Guest PC. Proteomic Analysis of Brain Tissue from a Chronic Model of Stress Using a Combined 2D Gel Electrophoresis and Mass Spectrometry Approach. Methods Mol Biol 2020; 2138:391-406. [PMID: 32219766 DOI: 10.1007/978-1-0716-0471-7_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aging of the brain can result in excessive glucocorticoid secretion, potentially due to chronic stress and related situations. This can lead to dysfunction of brain areas involved in control of the hypothalamic-pituitary adrenal axis, growth, and metabolism, as well as areas associated with cognition and mood regulation. This chapter presents a protocol for two-dimensional differential in-gel electrophoresis (2D-DIGE) analysis of hypothalamus and hippocampus tissue obtained from mice following exposure to high levels of corticosterone for 14 days. The chapter also presents a method for identification of the affected proteins in these brain regions using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
17
|
Matsumura S, Odanaka M, Ishikawa F, Sasaki T, Manio MCC, Fushiki T, Inoue K. Chronic high corticosterone with voluntary corn oil ingestion induces significant body weight gain in mice. Physiol Behav 2019; 204:112-120. [DOI: 10.1016/j.physbeh.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/28/2022]
|
18
|
Neuroprotective effects of 1`δ-1`-acetoxyeugenol acetate on Aβ(25-35) induced cognitive dysfunction in mice. Biomed Pharmacother 2019; 109:1454-1461. [DOI: 10.1016/j.biopha.2018.10.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
|
19
|
Does the Stress of Laboratory Life and Experimentation on Animals Adversely Affect Research Data? A Critical Review. Altern Lab Anim 2018; 46:291-305. [DOI: 10.1177/026119291804600501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recurrent acute and/or chronic stress can affect all vertebrate species, and can have serious consequences. It is increasingly and widely appreciated that laboratory animals experience significant and repeated stress, which is unavoidable and is caused by many aspects of laboratory life, such as captivity, transport, noise, handling, restraint and other procedures, as well as the experimental procedures applied to them. Such stress is difficult to mitigate, and lack of significant desensitisation/habituation can result in considerable psychological and physiological welfare problems, which are mediated by the activation of various neuroendocrine networks that have numerous and pervasive effects. Psychological damage can be reflected in stereotypical behaviours, including repetitive pacing and circling, and even self-harm. Physical consequences include adverse effects on immune function, inflammatory responses, metabolism, and disease susceptibility and progression. Further, some of these effects are epigenetic, and are therefore potentially transgenerational: the biology of animals whose parents/grandparents were wild-caught and/or have experienced chronic stress in laboratories could be altered, as compared to free-living individuals. It is argued that these effects must have consequences for the reliability of experimental data and their extrapolation to humans, and this may not be recognised sufficiently among those who use animals in experiments.
Collapse
|
20
|
Jacobskind JS, Rosinger ZJ, Gonzalez T, Zuloaga KL, Zuloaga DG. Chronic Methamphetamine Exposure Attenuates Neural Activation in Hypothalamic-Pituitary-Adrenal Axis-Associated Brain Regions in a Sex-specific Manner. Neuroscience 2018; 380:132-145. [PMID: 29679646 DOI: 10.1016/j.neuroscience.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022]
Abstract
Sex differences in methamphetamine (MA) abuse and consequences of MA have been reported with females showing an increased addiction phenotype and withdrawal symptoms. One mechanism through which these effects might occur is via sex-specific alterations in the hypothalamic-pituitary-adrenal (HPA) axis and its associated brain regions. In this study, mice were administered MA (5 mg/kg) or saline for 10 consecutive days. During early withdrawal, anxiety-like behaviors were assessed in the open field, light/dark box, and elevated plus maze. At ten days of withdrawal, mice were injected with a final dose of MA (5 mg/kg) or saline. Chronic MA did not alter anxiety-like behaviors or corticosterone responses to a final dose of MA, although females showed elevated corticosterone responses compared to males. Chronic MA attenuated final MA-induced c-Fos in both sexes in the paraventricular hypothalamus (PVH), bed nucleus of the stria terminalis (BNST), cingulate cortex, central and basolateral amygdala. In CA1 and CA3 hippocampal areas, c-Fos attenuation by chronic MA occurred only in females. Within the PVH, final MA injection increased c-Fos to a greater extent in females compared to males regardless of prior MA exposure. Dual-labeling of c-Fos with glucocorticoid receptor revealed a specific attenuation of neural activation within this cell type in the PVH, central and basolateral amygdala, and BNST. Together these findings demonstrate that chronic MA can suppress subsequent activation of HPA axis-associated brain regions and cell phenotypes. Further, in select regions this reduction is sex-specific. These changes may contribute to reported sex differences in MA abuse patterns.
Collapse
Affiliation(s)
- Jason S Jacobskind
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Zachary J Rosinger
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Tiffany Gonzalez
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Kristen L Zuloaga
- Albany Medical College, Department of Neuroscience & Experimental Therapeutics, Albany, NY 12208, United States
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, United States.
| |
Collapse
|
21
|
Kollia N, Panagiotakos DB, Chrysohoou C, Georgousopoulou E, Tousoulis D, Stefanadis C, Papageorgiou C, Pitsavos C. Determinants of healthy ageing and its relation to 10-year cardiovascular disease incidence: the ATTICA study. Cent Eur J Public Health 2018; 26:3-9. [PMID: 29684290 DOI: 10.21101/cejph.a5165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/23/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The aim of the study was to understand determinants of ageing in relation to future cardiovascular disease (CVD) events at population level, and to explore determinants of healthy ageing and its relation to 10-year CVD incidence among apparently healthy individuals. METHODS In the context of the ATTICA study 453 apparently healthy men (45±13 years) and 400 women (44±18 years) with complete psychological evaluation were studied and followed during 2002-2012. Healthy Ageing Index (HAI) (range 0-7) was calculated based on socio-economical, bio-clinical, psychological, and lifestyle characteristics (i.e. dietary habits and physical activity) of the participants during the baseline examination. CVD incidence during the follow-up period was defined according to ICD-10 criteria. RESULTS Healthy Ageing Index was inversely associated with higher 10-year CVD risk (OR per 1/7 (95% CI): 0.47 (0.28, 0.80). Age and sex-adjusted determinants of healthy ageing were abnormal waist to hip ratio (p<0.001), increased coffee consumption (p=0.04), reduced basic metabolic rhythm (p<0.001), increased triglycerides (p=0.003), and C-reactive protein levels (p=0.02), as aggravating factors, while moderate alcohol consumption (p=0.002) was identified as a positive influential parameter. CONCLUSIONS Understanding healthy ageing, as a dominant factor of CVD development, provides a new direction for better prevention efforts focused on healthy ageing at both population and individual level.
Collapse
Affiliation(s)
- Natasa Kollia
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Demosthenes B Panagiotakos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Christina Chrysohoou
- First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece
| | - Ekavi Georgousopoulou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Dimitrios Tousoulis
- First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece
| | | | | | - Christos Pitsavos
- First Cardiology Clinic, School of Medicine, University of Athens, Athens, Greece
| |
Collapse
|
22
|
Hidese S, Ota M, Matsuo J, Ishida I, Hiraishi M, Yoshida S, Noda T, Sato N, Teraishi T, Hattori K, Kunugi H. Association of obesity with cognitive function and brain structure in patients with major depressive disorder. J Affect Disord 2018; 225:188-194. [PMID: 28837952 DOI: 10.1016/j.jad.2017.08.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/14/2017] [Accepted: 08/11/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Obesity has been implicated in the pathophysiology of major depressive disorder (MDD), which prompted us to examine the possible association of obesity with cognitive function and brain structure in patients with MDD. METHODS Three hundred and seven patients with MDD and 294 healthy participants, matched for age, sex, ethnicity (Japanese), and handedness (right) were recruited for the study. Cognitive function was assessed using the Brief Assessment of Cognition in Schizophrenia (BACS). Gray and white matter structures were analyzed using voxel-based morphometry and diffusion tensor imaging in a subsample of patients (n = 114) whose magnetic resonance imaging (MRI) data were obtained using a 1.5 T MRI system. RESULTS Verbal memory, working memory, motor speed, attention, executive function, and BACS composite scores were lower for the MDD patients than for the healthy participants (p < 0.05). Among the patient group, working memory, motor speed, executive function, and BACS composite scores were lower in obese patients (body mass index ≥ 30, n = 17) than in non-obese patients (n = 290, p < 0.05, corrected). MRI determined frontal, temporal, thalamic, and hippocampal volumes, and white matter fractional anisotropy values in the internal capsule and left optic radiation were reduced in obese patients (n = 7) compared with non-obese patients (n = 107, p < 0.05, corrected). LIMITATIONS Sample size for obese population was not very large. CONCLUSIONS Obesity is associated with decreased cognitive function, reduced gray matter volume, and impaired white matter integrity in cognition-related brain areas in patients with MDD.
Collapse
Affiliation(s)
- Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of NCNP Brain Physiology and Pathology, Division of Cognitive and Behavioral Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Junko Matsuo
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Ikki Ishida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Moeko Hiraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Sumiko Yoshida
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Takamasa Noda
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of NCNP Brain Physiology and Pathology, Division of Cognitive and Behavioral Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
23
|
Alfaro FJ, Gavrieli A, Saade-Lemus P, Lioutas VA, Upadhyay J, Novak V. White matter microstructure and cognitive decline in metabolic syndrome: a review of diffusion tensor imaging. Metabolism 2018; 78:52-68. [PMID: 28920863 PMCID: PMC5732847 DOI: 10.1016/j.metabol.2017.08.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome is a cluster of cardiovascular risk factors defined by the presence of abdominal obesity, glucose intolerance, hypertension and/or dyslipidemia. It is a major public health epidemic worldwide, and a known risk factor for the development of cognitive dysfunction and dementia. Several studies have demonstrated a positive association between the presence of metabolic syndrome and worse cognitive outcomes, however, evidence of brain structure pathology is limited. Diffusion tensor imaging has offered new opportunities to detect microstructural white matter changes in metabolic syndrome, and a possibility to detect associations between functional and structural abnormalities. This review analyzes the impact of metabolic syndrome on white matter microstructural integrity, brain structure abnormalities and their relationship to cognitive function. Each of the metabolic syndrome components exerts a specific signature of white matter microstructural abnormalities. Metabolic syndrome and its components exert both additive/synergistic, as well as, independent effects on brain microstructure thus accelerating brain aging and cognitive decline.
Collapse
Affiliation(s)
- Freddy J Alfaro
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Palmer 127, Boston, MA 02215, USA.
| | - Anna Gavrieli
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Palmer 127, Boston, MA 02215, USA.
| | - Patricia Saade-Lemus
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Palmer 127, Boston, MA 02215, USA.
| | - Vasileios-Arsenios Lioutas
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Palmer 127, Boston, MA 02215, USA.
| | - Jagriti Upadhyay
- Department of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215,USA.
| | - Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Road, Palmer 127, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Don't walk in her shoes! Different forms of perspective taking affect stress physiology. JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY 2017. [DOI: 10.1016/j.jesp.2017.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
A Protocol for Generation of a Corticosterone Model of Psychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28353245 DOI: 10.1007/978-3-319-52479-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Some patients with psychiatric disorders show hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. This may be due to an impaired feedback inhibition and can be seen through increased levels of circulating cortisol. Here a protocol is described to mimic this situation by subcutaneous implantation of corticosterone pellets in mice. We also present characterization of the model by looking at effects on neuronal proliferation in hippocampus, one of the main tissues known to be affected by HPA axis hyper-activation. Such tissues could be used in analyses by proteomic platforms.
Collapse
|
26
|
McIlwrick S, Pohl T, Chen A, Touma C. Late-Onset Cognitive Impairments after Early-Life Stress Are Shaped by Inherited Differences in Stress Reactivity. Front Cell Neurosci 2017; 11:9. [PMID: 28261058 PMCID: PMC5306385 DOI: 10.3389/fncel.2017.00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/12/2017] [Indexed: 01/18/2023] Open
Abstract
Early-life stress (ELS) has been associated with lasting cognitive impairments and with an increased risk for affective disorders. A dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis, the body’s main stress response system, is critically involved in mediating these long-term consequences of adverse early-life experience. It remains unclear to what extent an inherited predisposition for HPA axis sensitivity or resilience influences the relationship between ELS and cognitive impairments, and which neuroendocrine and molecular mechanisms may be involved. To investigate this, we exposed animals of the stress reactivity mouse model, consisting of three independent lines selectively bred for high (HR), intermediate (IR), or low (LR) HPA axis reactivity to a stressor, to ELS and assessed their cognitive performance, neuroendocrine function and hippocampal gene expression in early and in late adulthood. Our results show that HR animals that were exposed to ELS exhibited an HPA axis hyper-reactivity in early and late adulthood, associated with cognitive impairments in hippocampus-dependent tasks, as well as molecular changes in transcript levels involved in the regulation of HPA axis activity (Crh) and in neurotrophic action (Bdnf). In contrast, LR animals showed intact cognitive function across adulthood, with no change in stress reactivity. Intriguingly, LR animals that were exposed to ELS even showed significant signs of enhanced cognitive performance in late adulthood, which may be related to late-onset changes observed in the expression of Crh and Crhr1 in the dorsal hippocampus of these animals. Collectively, our findings demonstrate that the lasting consequences of ELS at the level of cognition differ as a function of inherited predispositions and suggest that an innate tendency for low stress reactivity may be protective against late-onset cognitive impairments after ELS.
Collapse
Affiliation(s)
- Silja McIlwrick
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Tobias Pohl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunich, Germany; Department of Neurobiology, Weizmann Institute of ScienceRehovot, Israel
| | - Chadi Touma
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunich, Germany; Department of Behavioural Biology, University of OsnabrückOsnabrück, Germany
| |
Collapse
|
27
|
Huberty J, Leiferman JA, Kruper AR, Jacobson LT, Waring ME, Matthews JL, Wischenka DM, Braxter B, Kornfield SL. Exploring the need for interventions to manage weight and stress during interconception. J Behav Med 2017; 40:145-158. [PMID: 27858206 PMCID: PMC5358329 DOI: 10.1007/s10865-016-9813-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 11/12/2016] [Indexed: 12/23/2022]
Abstract
Interventions to manage weight and stress during the interconception period (i.e., time immediately following childbirth to subsequent pregnancy) are needed to promote optimal maternal and infant health outcomes. To address this gap, we summarize the current state of knowledge, critically evaluate the research focused on weight and stress management during the interconception period, and provide future recommendations for research in this area. Evidence supports the importance of weight and stress management during the reproductive years and the impact of weight on maternal and child health outcomes. However, evidence-based treatment models that address postpartum weight loss and manage maternal stress during the interconception period are lacking. This problem is further compounded by inconsistent definitions and measurements of stress. Recommendations for future research include interventions that address weight and stress tailored for women in the interconception period, interventions that address healthcare providers' understanding of the significance of weight and stress management during interconception, and long-term follow-up studies that focus on the public health implications of weight and stress management during interconception. Addressing obesity and stress during the interconception period via a reproductive lens will be a starting point for women and their families to live long and healthy lives.
Collapse
Affiliation(s)
- Jennifer Huberty
- School of Nutrition and Health Promotion, Arizona State University, Phoenix, AZ, USA.
| | - Jenn A Leiferman
- Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Abbey R Kruper
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lisette T Jacobson
- Department of Preventive Medicine and Public Health, University of Kansas School of Medicine-Wichita, Wichita, KS, USA
| | - Molly E Waring
- Departments of Quantitative Health Sciences and Obstetrics and Gynecology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeni L Matthews
- School of Nutrition and Health Promotion, Arizona State University, Phoenix, AZ, USA
| | | | - Betty Braxter
- School of Nursing, University of Pittsburg, Pittsburgh, PA, USA
| | - Sara L Kornfield
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
28
|
Antidepressant-Like Effects of Fractions Prepared from Danzhi-Xiaoyao-San Decoction in Rats with Chronic Unpredictable Mild Stress: Effects on Hypothalamic-Pituitary-Adrenal Axis, Arginine Vasopressin, and Neurotransmitters. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6784689. [PMID: 27413389 PMCID: PMC4931053 DOI: 10.1155/2016/6784689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023]
Abstract
The aim of the present study was to investigate the antidepressant-like effects of two fractions, including petroleum ether soluble fraction (Fraction A, FA) and water-EtOH soluble fraction (Fraction B, FB) prepared from the Danzhi-xiaoyao-san (DZXYS) by using chronic unpredictable mild stress-induced depressive rat model. The results indicated that DZXYS could ameliorate the depression-like behavior in chronic stress model of rats. The inhibition of hyperactivity of HPA axis and the modulation of monoamine and amino acid neurotransmitters in the hippocampus may be the important mechanisms underlying the action of DZXYS antidepressant-like effect in chronically stressed rats.
Collapse
|
29
|
Stoeckel LE, Arvanitakis Z, Gandy S, Small D, Kahn CR, Pascual-Leone A, Pawlyk A, Sherwin R, Smith P. Complex mechanisms linking neurocognitive dysfunction to insulin resistance and other metabolic dysfunction. F1000Res 2016; 5:353. [PMID: 27303627 PMCID: PMC4897751 DOI: 10.12688/f1000research.8300.2] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 01/12/2023] Open
Abstract
Scientific evidence has established several links between metabolic and neurocognitive dysfunction, and epidemiologic evidence has revealed an increased risk of Alzheimer’s disease and vascular dementia in patients with diabetes. In July 2015, the National Institute of Diabetes, Digestive, and Kidney Diseases gathered experts from multiple clinical and scientific disciplines, in a workshop entitled “The Intersection of Metabolic and Neurocognitive Dysfunction”, to clarify the state-of-the-science on the mechanisms linking metabolic dysfunction, and insulin resistance and diabetes in particular, to neurocognitive impairment and dementia. This perspective is intended to serve as a summary of the opinions expressed at this meeting, which focused on identifying gaps and opportunities to advance research in this emerging area with important public health relevance.
Collapse
Affiliation(s)
- Luke E Stoeckel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Sam Gandy
- Icahn School of Medicine and James J. Peters VAMC, New York, NY, USA
| | - Dana Small
- Yale University School of Medicine, New Haven, CT, USA
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aaron Pawlyk
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Philip Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Zuloaga DG, Johnson LA, Weber S, Raber J. Immediate and lasting effects of chronic daily methamphetamine exposure on activation of cells in hypothalamic-pituitary-adrenal axis-associated brain regions. Psychopharmacology (Berl) 2016; 233:381-92. [PMID: 26525566 PMCID: PMC4815259 DOI: 10.1007/s00213-015-4114-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/11/2015] [Indexed: 10/22/2022]
Abstract
RATIONALE Chronic methamphetamine (MA) abuse leads to dependence and symptoms of withdrawal after use has ceased. Negative mood states associated with withdrawal, as well as drug reinstatement, have been linked to drug-induced disruption of the hypothalamic-pituitary-adrenal (HPA) axis. However, effects of chronic MA exposure or acute MA exposure following withdrawal on neural activation patterns within brain regions that regulate the HPA axis are unknown. OBJECTIVES In this study, neural activation patterns were assessed by quantification of c-Fos protein in mice exposed to different regimens of MA administration. METHODS (Experiment 1) Adult male mice were treated with MA (5 mg/kg) or saline once or once daily for 10 days. (Experiment 2) Mice were treated with MA or saline once daily for 10 days and following a 10-day withdrawal period were re-administered a final dose of MA or saline. c-Fos was quantified in brains after the final injection. RESULTS (Experiment 1) Compared to exposure to a single dose of MA (5 mg/kg), chronic MA exposure decreased the number of c-Fos expressing cells in the paraventricular hypothalamus, dorsomedial hypothalamus, central amygdala, basolateral amygdala, bed nucleus of the stria terminalis (BNST), and CA3 hippocampal region. (Experiment 2) Compared to mice receiving their first dose of MA, mice chronically treated with MA, withdrawn, and re-administered MA, showed decreased c-Fos expressing cells within the central and basolateral amygdala, BNST, and CA3. CONCLUSIONS HPA axis-associated amygdala, extended amygdala, and hippocampal regions endure lasting effects following chronic MA exposure and therefore may be linked to stress-related withdrawal symptoms.
Collapse
Affiliation(s)
- Damian G. Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University Portland, Portland, OR 97239, USA,Department of Psychology, University at Albany, Albany, NY 12222, USA
| | - Lance A. Johnson
- Department of Behavioral Neuroscience, Oregon Health and Science University Portland, Portland, OR 97239, USA
| | - Sydney Weber
- Department of Behavioral Neuroscience, Oregon Health and Science University Portland, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University Portland, Portland, OR 97239, USA,Department of Neurology, Oregon Health and Science University Portland, Portland, OR 97239, USA,Department of Radiation Medicine, Oregon Health and Science University Portland, Portland, OR 97239, USA,Division of Neuroscience, ONPRC, Oregon Health and Science University Portland, Portland, OR 97239, USA
| |
Collapse
|
31
|
de Guia RM, Rose AJ, Herzig S. Glucocorticoid hormones and energy homeostasis. Horm Mol Biol Clin Investig 2015; 19:117-28. [PMID: 25390020 DOI: 10.1515/hmbci-2014-0021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 11/15/2022]
Abstract
Glucocorticoids (GC) and their cognate intracellular receptor, the glucocorticoid receptor (GR), have been characterised as critical checkpoints in the endocrine control of energy homeostasis in mammals. Indeed, aberrant GC action has been linked to a variety of severe metabolic diseases, including obesity, insulin resistance and type 2 diabetes. As a steroid-binding member of the nuclear receptor superfamily of transcription factors, the GR translocates into the cell nucleus upon GC binding where it serves as a transcriptional regulator of distinct GC-responsive target genes that are - in many cases - associated with glucose and lipid regulatory pathways and thereby intricately control both physiological and pathophysiological systemic energy homeostasis. Here, we summarize the current knowledge of GC/GR function in energy metabolism and systemic metabolic dysfunction, particularly focusing on glucose and lipid metabolism.
Collapse
|
32
|
Nemeth CL, Neigh GN. Microemboli alter the acute stress response and cause prolonged expression of MCP-1 in the hippocampus. Psychoneuroendocrinology 2015; 54:71-7. [PMID: 25697594 DOI: 10.1016/j.psyneuen.2015.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/05/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
Abstract
Microvascular ischemia is linked to cardiovascular disease pathology, as well as alterations in mood and cognition. Ischemia activates the hypothalamic-pituitary-adrenal (HPA) axis and through chronic activation, alters HPA axis function. Dysregulation of the HPA axis can lead to the chronic release of glucocorticoids, a hyper-inflammatory cerebral response, cell damage, and changes in behavior. Although the interactions between injury and HPA axis activity have been established in global ischemia, HPA-related repercussions of diffuse ischemic damage and subsequent inflammation have not been assessed. The current study used a rat model of microsphere embolism (ME) ischemia to test the hypothesis that microvascular ischemia would lead to long term alterations in HPA axis function and inflammatory activity. Furthermore, given the pro-inflammatory nature of chronic stress, we assessed the implications of chronic stress for gene expression of inflammatory factors and key components of the glucocorticoid receptor response, following microvascular ischemia. Results indicated that ME altered the response to an acute stress fourteen days following ME injury and increased hippocampal expression of monocyte chemoattractant protein 1 (Mcp-1) as long as 4 weeks following ME injury, without concomitant effects on gene expression of the glucocorticoid receptor or its co-chaperones. Furthermore, no exacerbative effects of chronic stress exposure were observed following ME injury beyond the effects of ME injury alone. Together, these results indicate that ME injury is sufficient to alter both HPA axis activity and cerebral inflammation for a prolonged period of time following injury.
Collapse
Affiliation(s)
- Christina L Nemeth
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States; Department of Physiology, Emory University, Atlanta, GA, United States
| | - Gretchen N Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States; Department of Physiology, Emory University, Atlanta, GA, United States.
| |
Collapse
|
33
|
Harris RBS. Chronic and acute effects of stress on energy balance: are there appropriate animal models? Am J Physiol Regul Integr Comp Physiol 2015; 308:R250-65. [PMID: 25519732 PMCID: PMC4329465 DOI: 10.1152/ajpregu.00361.2014] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/12/2014] [Indexed: 11/22/2022]
Abstract
Stress activates multiple neural and endocrine systems to allow an animal to respond to and survive in a threatening environment. The corticotropin-releasing factor system is a primary initiator of this integrated response, which includes activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. The energetic response to acute stress is determined by the nature and severity of the stressor, but a typical response to an acute stressor is inhibition of food intake, increased heat production, and increased activity with sustained changes in body weight, behavior, and HPA reactivity. The effect of chronic psychological stress is more variable. In humans, chronic stress may cause weight gain in restrained eaters who show increased HPA reactivity to acute stress. This phenotype is difficult to replicate in rodent models where chronic psychological stress is more likely to cause weight loss than weight gain. An exception may be hamsters subjected to repeated bouts of social defeat or foot shock, but the data are limited. Recent reports on the food intake and body composition of subordinate members of group-housed female monkeys indicate that these animals have a similar phenotype to human stress-induced eaters, but there are a limited number of investigators with access to the model. Few stress experiments focus on energy balance, but more information on the phenotype of both humans and animal models during and after exposure to acute or chronic stress may provide novel insight into mechanisms that normally control body weight.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
34
|
Distinct proteomic profiles in post-mortem pituitary glands from bipolar disorder and major depressive disorder patients. J Psychiatr Res 2015; 60:40-8. [PMID: 25455508 DOI: 10.1016/j.jpsychires.2014.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/11/2014] [Accepted: 09/30/2014] [Indexed: 11/21/2022]
Abstract
Disturbances of the hypothalamic-pituitary-adrenal axis have been implicated in the pathophysiology of bipolar disorder (BD) and major depressive disorder (MDD). To examine this further, we carried out proteomic profiling of post-mortem pituitaries from 13 BD and 14 MDD patients, in comparison to 15 controls. Liquid chromatography-mass spectrometry (LC-MS(E)) analysis showed that BD patients had significantly increased levels of the major pituitary hormones pro-opiomelanocortin (POMC) and galanin. BD patients also showed changes in proteins associated with gene transcription, stress response, lipid metabolism and growth signalling. In contrast, LC-MS(E) profiling revealed that MDD patients had significantly decreased levels of the prohormone-converting enzyme carboxypeptidease E and follow-up enzymatic analysis showed decreased activity of prolyl-oligopeptidase convertase. This suggested that altered prohormone processing may occur in pituitaries of MDD patients. In addition, MDD patients had significant changes in proteins involved in intracellular transport and cytoskeletal signalling. Finally, we carried out selective reaction monitoring (SRM) mass spectrometry profiling for validation of protein changes in key biological pathways. This confirmed increased POMC levels in BD patients with no change in the levels of this prohormone in MDD. This study demonstrates that proteomic profiling analysis of the pituitary can lead to new insights into the pathophysiology of BD and MDD. Also, given that the pituitary directly releases a variety of bioactive molecules into the bloodstream, many of the proteins identified here could serve as focal points in the search for peripheral biomarkers in clinical or drug treatment studies of BD and MDD patients.
Collapse
|
35
|
Miller AA, Spencer SJ. Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun 2014; 42:10-21. [PMID: 24727365 DOI: 10.1016/j.bbi.2014.04.001] [Citation(s) in RCA: 532] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/19/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022] Open
Abstract
Obesity is a growing problem worldwide and is associated with a range of comorbidities, including cognitive dysfunction. In this review we will address the evidence that obesity and high fat feeding can lead to cognitive dysfunction. We will also examine the idea that obesity-associated systemic inflammation leads to inflammation within the brain, particularly the hypothalamus, and that this is partially responsible for these negative cognitive outcomes. Thus, obesity, and high fat feeding, lead to systemic inflammation and excess circulating free fatty acids. Circulating cytokines, free fatty acids and immune cells reach the brain at the level of the hypothalamus and initiate local inflammation, including microglial proliferation. This local inflammation likely causes synaptic remodeling and neurodegeneration within the hypothalamus, altering internal hypothalamic circuitry and hypothalamic outputs to other brain regions. The result is disruption to cognitive function mediated by regions such as hippocampus, amygdala, and reward-processing centers. Central inflammation is also likely to affect these regions directly. Thus, central inflammation in obesity leads not just to disruption of hypothalamic satiety signals and perpetuation of overeating, but also to negative outcomes on cognition.
Collapse
Affiliation(s)
- Alyson A Miller
- School of Medical Sciences and Health Innovations Research Institute (HIRi), RMIT University, Melbourne, Vic., Australia
| | - Sarah J Spencer
- School of Health Sciences and HIRi, RMIT University, Melbourne, Vic., Australia.
| |
Collapse
|
36
|
Innes KE, Selfe TK. Meditation as a therapeutic intervention for adults at risk for Alzheimer's disease - potential benefits and underlying mechanisms. Front Psychiatry 2014; 5:40. [PMID: 24795656 PMCID: PMC4005947 DOI: 10.3389/fpsyt.2014.00040] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/31/2014] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic, progressive, brain disorder that affects at least 5.3 million Americans at an estimated cost of $148 billion, figures that are expected to rise steeply in coming years. Despite decades of research, there is still no cure for AD, and effective therapies for preventing or slowing progression of cognitive decline in at-risk populations remain elusive. Although the etiology of AD remains uncertain, chronic stress, sleep deficits, and mood disturbance, conditions common in those with cognitive impairment, have been prospectively linked to the development and progression of both chronic illness and memory loss and are significant predictors of AD. Therapies such as meditation that specifically target these risk factors may thus hold promise for slowing and possibly preventing cognitive decline in those at risk. In this study, we briefly review the existing evidence regarding the potential utility of meditation as a therapeutic intervention for those with and at risk for AD, discuss possible mechanisms underlying the observed benefits of meditation, and outline directions for future research.
Collapse
Affiliation(s)
- Kim E. Innes
- Department of Epidemiology, West Virginia University, Morgantown, WV, USA
- Center for the Study of Complementary and Alternative Therapies, University of Virginia Health System, Charlottesville, VA, USA
| | - Terry Kit Selfe
- Department of Epidemiology, West Virginia University, Morgantown, WV, USA
- Center for the Study of Complementary and Alternative Therapies, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
37
|
Abstract
Although it is well known that water is essential for human homeostasis and survival, only recently have we begun to understand its role in the maintenance of brain function. Herein, we integrate emerging evidence regarding the effects of both dehydration and additional acute water consumption on cognition and mood. Current findings in the field suggest that particular cognitive abilities and mood states are positively influenced by water consumption. The impact of dehydration on cognition and mood is particularly relevant for those with poor fluid regulation, such as the elderly and children. We critically review the most recent advances in both behavioural and neuroimaging studies of dehydration and link the findings to the known effects of water on hormonal, neurochemical and vascular functions in an attempt to suggest plausible mechanisms of action. We identify some methodological weaknesses, including inconsistent measurements in cognitive assessment and the lack of objective hydration state measurements as well as gaps in knowledge concerning mediating factors that may influence water intervention effects. Finally, we discuss how future research can best elucidate the role of water in the optimal maintenance of brain health and function.
Collapse
|
38
|
Rose AJ, Herzig S. Metabolic control through glucocorticoid hormones: an update. Mol Cell Endocrinol 2013; 380:65-78. [PMID: 23523966 DOI: 10.1016/j.mce.2013.03.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/21/2013] [Accepted: 03/08/2013] [Indexed: 01/28/2023]
Abstract
In the past decades, glucocorticoid (GC) hormones and their cognate, intracellular receptor, the glucocorticoid receptor (GR), have been well established as critical checkpoints in mammalian energy homeostasis. Whereas many aspects in healthy nutrient metabolism require physiological levels and/or action of GC, aberrant GC/GR signalling has been linked to severe metabolic dysfunction, including obesity, insulin resistance and type 2 diabetes. Consequently, studies of the molecular mechanisms within the GC signalling axis have become a major focus in biomedical research, up-to-date particularly focusing on systemic glucose and lipid handling. However, with the availability of novel high throughput technologies and more sophisticated metabolic phenotyping capabilities, as-yet non-appreciated, metabolic functions of GC have been recently discovered, including regulatory roles of the GC/GR axis in protein and bile acid homeostasis as well as metabolic inter-organ communication. Therefore, this review summarises recent advances in GC/GR biology, and summarises findings relevant for basic and translational metabolic research.
Collapse
Affiliation(s)
- Adam J Rose
- Joint Research Division, Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH), Heidelberg University, Network Aging Research, University Hospital Heidelberg, Germany
| | | |
Collapse
|
39
|
Lidfors L, Wichman A, Ewaldsson B, Lindh AS. Enriched cages for groups of laboratory male rats and their effects on behaviour, weight gain and adrenal glands. Lab Anim 2013; 48:36-49. [DOI: 10.1177/0023677213505085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We investigated if there were any negative effects on the behaviour and physiology of rats housed in groups of five in two types of enriched cages and compared them with paired-housed rats housed in traditional cages. Eighty-four male Wistar and Sprague-Dawley rats were housed in an enriched rat cage (ERC), a rebuilt rabbit cage (RRC) or a Makrolon III cage (MC) system from 5–16 weeks of age with access to different enrichments. Recordings of behaviour and cage use (3 × 24 h video recording), weekly weighing, measuring food consumption four days/week and water consumption two days/week, were carried out. The rats’ muscle strength was assessed using the ‘inclined plane’ at the end of the study, and after euthanasia the adrenal glands were removed and weighed. Being in the shelter was the most common behaviour in the ERC and RRC groups. In the MC group, which lacked a shelter, rats performed the highest percentage of lying, grooming, rearing, play fighting and manipulating paper shreds. Rats in the RRC had the highest percentage of standing and manipulating gnawing sticks. Water consumption was higher in MC than in ERC and RRC rats. Rats from the RRC managed to remain at a steeper angle on the ‘inclined plane’ than rats from the MC. There were no significant effects of cage type on weight gain, food consumption or relative weights of adrenal glands. In conclusion, male rats kept in groups of five in larger enriched cages benefited from the enrichments, and no negative effects were found in the larger groups.
Collapse
Affiliation(s)
- L Lidfors
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - A Wichman
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - B Ewaldsson
- AstraZeneca R&D in Mölndal, Bioscience, Animal Science and Technology, Mölndal, Sweden
| | - A-S Lindh
- AstraZeneca R&D in Mölndal, Bioscience, Animal Science and Technology, Mölndal, Sweden
| |
Collapse
|
40
|
Shaefer JR, Holland N, Whelan JS, Velly AM. Pain and temporomandibular disorders: a pharmaco-gender dilemma. Dent Clin North Am 2013; 57:233-62. [PMID: 23570804 DOI: 10.1016/j.cden.2013.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gender is the biggest risk factor in the development of temporomandibular disorders (TMD) and orofacial pain. Gender differences in pain thresholds, temporal summation, pain expectations, and somatic awareness exist in patients with chronic TMD or orofacial pain. There are gender differences in pharmacokenetics and pharmacodynamics of medications used to treat pain. A better understanding of the mechanisms that contribute to the increased incidence and persistence of chronic pain in females is needed. Future research will elucidate the sex effects on factors that protect against developing pain or prevent debilitating pain. Gender-based treatments for TMD and orofacial pain treatment will evolve from the translational research stimulated by this knowledge.
Collapse
Affiliation(s)
- Jeffry R Shaefer
- Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
41
|
De Marco RJ, Groneberg AH, Yeh CM, Castillo Ramírez LA, Ryu S. Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish. Front Neural Circuits 2013; 7:82. [PMID: 23653595 PMCID: PMC3644639 DOI: 10.3389/fncir.2013.00082] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/11/2013] [Indexed: 11/28/2022] Open
Abstract
The stress response is a suite of physiological and behavioral processes that help to maintain or reestablish homeostasis. Central to the stress response is the hypothalamic-pituitary-adrenal (HPA) axis, as it releases crucial hormones in response to stress. Glucocorticoids (GCs) are the final effector hormones of the HPA axis, and exert a variety of actions under both basal and stress conditions. Despite their far-reaching importance for health, specific GC effects have been difficult to pin-down due to a lack of methods for selectively manipulating endogenous GC levels. Hence, in order to study stress-induced GC effects, we developed a novel optogenetic approach to selectively manipulate the rise of GCs triggered by stress. Using this approach, we could induce both transient hypercortisolic states and persistent forms of hypercortisolaemia in freely behaving larval zebrafish. Our results also established that transient hypercortisolism leads to enhanced locomotion shortly after stressor exposure. Altogether, we present a highly specific method for manipulating the gain of the stress axis with high temporal accuracy, altering endocrine and behavioral responses to stress as well as basal GC levels. Our study offers a powerful tool for the analysis of rapid (non-genomic) and delayed (genomic) GC effects on brain function and behavior, feedbacks within the stress axis and developmental programming by GCs.
Collapse
Affiliation(s)
- Rodrigo J De Marco
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research Heidelberg, Germany
| | | | | | | | | |
Collapse
|
42
|
Trawalter S, Chung VS, DeSantis AS, Simon CD, Adam EK. Physiological stress responses to the 2008 U.S. presidential election: The role of policy preferences and social dominance orientation. GROUP PROCESSES & INTERGROUP RELATIONS 2011. [DOI: 10.1177/1368430211428163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examines physiological stress responses to the 2008 U.S. presidential election. The week before and after Election Day, participants provided three daily saliva samples, assayed for cortisol (a principal “stress hormone”) and testosterone. Results revealed that, on Election Day, all participants on average and Republicans in particular exhibited stunted cortisol and testosterone rhythms, perhaps reflecting participants’ anticipation. After Election Day, participants’ political affiliation was not a strong predictor of physiological responses. Their social dominance orientation—that is, their tolerance of social inequalities—was predictive of responses. Those higher in social dominance orientation had higher cortisol and testosterone morning values. These changes suggest that individuals higher in social dominance orientation were distressed but ready to fight back. The present findings add to an emerging body of work showing that sociopolitical differences can influence biological systems relevant to health and behavior.
Collapse
|
43
|
Papargiris MM, Rivalland ETA, Hemsworth PH, Morrissey AD, Tilbrook AJ. Acute and chronic stress-like levels of cortisol inhibit the oestradiol stimulus to induce sexual receptivity but have no effect on sexual attractivity or proceptivity in female sheep. Horm Behav 2011; 60:336-45. [PMID: 21741382 DOI: 10.1016/j.yhbeh.2011.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 11/18/2022]
Abstract
Stress-like levels of cortisol inhibit sexual receptivity in ewes but the mechanism of this action is not understood. One possibility is that cortisol interferes with the actions of oestradiol to induce sexual receptivity. We tested this hypothesis in 2 experiments with ovariectomised ewes that were artificially induced into oestrus by 12 days of i.m. injections of progesterone followed by an i.m. injection of oestradiol benzoate (ODB) 48 h later. In Experiment 1, ewes were randomly allocated to the following groups: saline infusion+25 μg ODB, saline infusion+50 μg ODB, cortisol infusion+25 μg ODB or cortisol infusion+50 μg ODB (n=5 per group). Saline or cortisol was infused i.v. for 40 h beginning at the ODB injection. In Experiment 2, ewes were infused with saline or cortisol (n=5 per group) for 5h beginning 1h before ODB injection. In both experiments, ewe sexual behaviour (attractivity, proceptivity and receptivity) was quantified every 6h. Blood samples were also collected. The cortisol infusion yielded plasma concentrations of cortisol similar to those seen during psychosocial stress. In both experiments, cortisol suppressed receptivity index (number of immobilisations by ewe/courtship displays by ram) and the number of times ewes were mounted but had no effect on attractivity or proceptivity, irrespective of the dose of ODB (Experiment 1). Cortisol also suppressed LH pulse amplitude. These results suggest that both an acute (5h) and chronic (40 h) infusion of cortisol inhibit oestradiol-induced sexual receptivity in ewes and that increasing the dose of ODB does not overcome the inhibitory effects of cortisol.
Collapse
|
44
|
Tennese AA, Wevrick R. Impaired hypothalamic regulation of endocrine function and delayed counterregulatory response to hypoglycemia in Magel2-null mice. Endocrinology 2011; 152:967-78. [PMID: 21248145 PMCID: PMC3198964 DOI: 10.1210/en.2010-0709] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hypothalamic dysfunction may underlie endocrine abnormalities in Prader-Willi syndrome (PWS), a genetic disorder that features GH deficiency, obesity, and infertility. One of the genes typically inactivated in PWS, MAGEL2, is highly expressed in the hypothalamus. Mice deficient for Magel2 are obese with increased fat mass and decreased lean mass and have blunted circadian rhythm. Here, we demonstrate that Magel2-null mice have abnormalities of hypothalamic endocrine axes that recapitulate phenotypes in PWS. Magel2-null mice had elevated basal corticosterone levels, and although male Magel2-null mice had an intact corticosterone response to restraint and to insulin-induced hypoglycemia, female Magel2-null mice failed to respond to hypoglycemia with increased corticosterone. After insulin-induced hypoglycemia, Magel2-null mice of both sexes became more profoundly hypoglycemic, and female mice were slower to recover euglycemia, suggesting an impaired hypothalamic counterregulatory response. GH insufficiency can produce abnormal body composition, such as that seen in PWS and in Magel2-null mice. Male Magel2-null mice had Igf-I levels similar to control littermates. Female Magel2-null mice had low Igf-I levels and reduced GH release in response to stimulation with ghrelin. Female Magel2-null mice did respond to GHRH, suggesting that their GH deficiency has a hypothalamic rather than pituitary origin. Female Magel2-null mice also had higher serum adiponectin than expected, considering their increased fat mass, and thyroid (T(4)) levels were low. Together, these findings strongly suggest that loss of MAGEL2 contributes to endocrine dysfunction of hypothalamic origin in individuals with PWS.
Collapse
Affiliation(s)
- Alysa A Tennese
- Department of Medical Genetics, 8-16 Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
45
|
Sturgill JL, Mathews J, Scherle P, Conrad DH. Glutamate signaling through the kainate receptor enhances human immunoglobulin production. J Neuroimmunol 2011; 233:80-9. [PMID: 21215464 DOI: 10.1016/j.jneuroim.2010.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/11/2010] [Accepted: 11/29/2010] [Indexed: 12/17/2022]
Abstract
CD23 is implicated as a regulator of IgE synthesis. A soluble form of CD23 (sCD23) is released following cleavage by ADAM10 and enhanced sCD23 is correlated with increased IgE. In the CNS, signaling through the kainate receptor (KAR) increases ADAM10. In B cells, activation of KARs produced a significant increase in ADAM10 and sCD23 release as well as an increase in B cell proliferation and immunoglobulin production. In addition, ADAM10 inhibitors reduce IgE synthesis from in vitro cultures of human B cells. Thus, we report for the first time the unique presence of the kainate receptor in B cells and that activation of KARs could serve as a novel mechanism for enhancing B cell activation.
Collapse
Affiliation(s)
- Jamie L Sturgill
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond VA, USA.
| | | | | | | |
Collapse
|
46
|
Herring NR, Gudelsky GA, Vorhees CV, Williams MT. (+)-Methamphetamine-induced monoamine reductions and impaired egocentric learning in adrenalectomized rats is independent of hyperthermia. Synapse 2010; 64:773-85. [PMID: 20698032 DOI: 10.1002/syn.20784] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Methamphetamine (MA) is widely abused and implicated in residual cognitive deficits. In rats, increases in plasma corticosterone and egocentric learning deficits are observed after a 1-day binge regimen of MA (10 mg/kg x 4 at 2-h intervals). The purpose of this experiment was to determine if adrenal inactivation during and following MA exposure would attenuate the egocentric learning deficits in the Cincinnati water maze (CWM). In the first experiment, the effects of adrenalectomy (ADX) or sham surgery (SHAM) on MA-induced neurotoxicity at 72 h were determined. SHAM-MA animals showed typical patterns of hyperthermia, whereas ADX-MA animals were normothermic. Both SHAM-MA- and ADX-MA-treated animals showed increased neostriatal glial fibrillary acidic protein and decreased monoamines in the neostriatum, hippocampus, and entorhinal cortex. In the second experiment, SHAM-MA- and ADX-MA-treated groups showed equivalently impaired CWM performance 2 weeks post-treatment (increased latencies, errors, and start returns) compared to SHAM-saline (SAL) and ADX-SAL groups with no effects on novel object recognition, elevated zero maze, or acoustic startle/prepulse inhibition. Post-testing, monoamine levels remained decreased in both MA-treated groups in all three brain regions, but were not as large as those observed at 72-h post-treatment. The data demonstrate that MA-induced learning deficits can be dissociated from drug-induced increases in plasma corticosterone or hyperthermia, but co-occur with dopamine and serotonin reductions.
Collapse
Affiliation(s)
- Nicole R Herring
- Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
47
|
Rose AJ, Vegiopoulos A, Herzig S. Role of glucocorticoids and the glucocorticoid receptor in metabolism: insights from genetic manipulations. J Steroid Biochem Mol Biol 2010; 122:10-20. [PMID: 20170729 DOI: 10.1016/j.jsbmb.2010.02.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/14/2009] [Accepted: 02/10/2010] [Indexed: 12/21/2022]
Abstract
Since the discovery of the beneficial effects of adrenocortical extracts for treating adrenal insufficiency more than 80 years ago, glucocorticoids and their cognate, intracellular receptor, the glucocorticoid receptor have been characterized as critical checkpoints in the delicate hormonal control of energy homeostasis in mammals. Whereas physiological levels of glucocorticoids are required for proper metabolic control, aberrant glucocorticoid action has been linked to a variety of pandemic metabolic diseases, such as type II diabetes and obesity. Based on its importance for human health, studies of the molecular mechanisms of within the glucocorticoid signaling axis have become a major focus in biomedical research. In particular, the understanding of tissue-specific functions of the glucocorticoid receptor pathway has been proven to be of substantial value for the development of novel therapies in the treatment of chronic metabolic disorders. Therefore, this review focuses on the consequences of endogenous and experimental modulation of glucocorticoid receptor expression for metabolic homeostasis and dysregulation, particularly emphasizing tissue-specific contributions of the glucocorticoid pathway to the control of energy metabolism.
Collapse
Affiliation(s)
- Adam J Rose
- Molecular Metabolic Control, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
48
|
Abstract
OBJECTIVE To test the hypothesis that dieting, or the restriction of caloric intake, is ineffective because it increases chronic psychological stress and cortisol production--two factors that are known to cause weight gain; and to examine the respective roles of the two main behaviors that comprise dieting--monitoring one's caloric intake and restricting one's caloric intake--on psychological and biological stress indicators. METHODS In a 2 (monitoring vs. not) x 2 (restricting vs. not) fully crossed, controlled experiment, 121 female participants were assigned randomly to one of four dietary interventions for 3 weeks. The monitoring + restricting condition tracked their caloric intake and restricted their caloric intake (1200 kcal/day); the monitoring only condition tracked their caloric intake but ate normally; the restricting only condition was provided 1200 kcal/day of food but did not track their calories, and the control group ate normally and did not track their intake. Before and after the interventions, participants completed measures of perceived stress and 2 days of diurnal saliva sampling to test for cortisol. RESULTS Restricting calories increased the total output of cortisol, and monitoring calories increased perceived stress. CONCLUSIONS Dieting may be deleterious to psychological well-being and biological functioning, and changes in clinical recommendations may be in order.
Collapse
|
49
|
A structural equation model relating adiposity, psychosocial indicators of body image and depressive symptoms among adolescents. Int J Obes (Lond) 2009; 33:588-96. [PMID: 19274053 DOI: 10.1038/ijo.2009.43] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Psychosocial factors, including pressure to be thin and body dissatisfaction, have been hypothesized to mediate the relationship between obesity and depression, especially during adolescence when vulnerability to social pressures around body shape and image is heightened. The objective was to test a model of the relationships among adiposity, psychosocial factors and depression in adolescents. METHOD In a population-based sample of 1127 boys and 1167 girls aged 13 and 16 years, a model of the relationships between adiposity, pressure to be thin, body dissatisfaction and depressive symptoms was tested using structural equation modeling. RESULTS Among girls, adiposity accounted for 62% of the total effect of depressive symptoms through its association with pressure to be thin and body dissatisfaction. Pressure to be thin was also uniquely related to depressive symptoms. Among boys, only body dissatisfaction was associated with depressive symptoms. CONCLUSION Results support a relationship between adiposity, body satisfaction, pressure to be thin and depressive symptoms. Depressive symptoms should be assessed in obese adolescents, and interventions to prevent and treat obesity should incorporate elements targeting body dissatisfaction.
Collapse
|
50
|
Catecholamine levels in the brain of rats exposed by inhalation to benzalkonium chloride. Int J Occup Med Environ Health 2009; 22:107-13. [DOI: 10.2478/v10001-009-0012-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|