1
|
Afas KC, Goldman D. A two-layer continuously distributed capillary O 2 transport model applied to blood flow regulation in resting skeletal muscle. J Theor Biol 2022; 539:111058. [PMID: 35181287 DOI: 10.1016/j.jtbi.2022.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
The microcirculation is the site of direct oxygen transfer from blood to tissue, and also of oxygen delivery control via regulation of local blood flow. In addition, a number of diseases including type II diabetes mellitus (DMII) and sepsis are known to produce microcirculatory dysfunction in their early phases. Given the complexity of microvascular structure and physiology, and the difficulty of measuring tissue oxygenation at the micro-scale, mathematical modelling has been necessary for understanding the physiology and pathophysiology of O2 transport in the microcirculation and for interpreting in vivo experiments. To advance this area, a model of blood-tissue O2 transport in skeletal muscle was recently developed which uses continuously distributed capillaries and includes O2 diffusion, convection, and consumption. The present work extends this model to two adjacent layers of skeletal muscle with different blood flow rates and applies it to study steady-state O2 transport when flow regulation is stimulated using an O2 exchange chamber. To generate a model which may be validated through in vivo experiments, an overlying O2 permeable membrane is included. The model is solved using traditional methods including separation of variables and Fourier decomposition, and to ensure smooth profiles at the muscle-muscle and muscle-membrane interfaces matching conditions are developed. The study presents qualitative verification for the model, using visualizations of tissue PO2 distributions for varying capillary density (CD), and presents capillary velocity response values in the near layer for varying chamber PO2 under the assumption that outlet capillary O2 saturation is equalized between adjacent layers. These compensatory velocity profiles, along with effective 'no-flux' chamber PO2 values, are presented for varying CD and tissue O2 consumption values. Insights gained from the two-layer model provide guidance for interpreting and planning future in-vivo experiments, and also provide motivation for further development of the model to improve understanding of the interaction between O2 transport and blood flow regulation.
Collapse
Affiliation(s)
- Keith Christian Afas
- School of Biomedical Engineering, University of Western Ontario, London, N6G1G8, Ontario, CA
| | - Daniel Goldman
- School of Biomedical Engineering, University of Western Ontario, London, N6G1G8, Ontario, CA; Department of Medical Biophysics, University of Western Ontario, London, N6A5C1, Ontario, CA; Department of Applied Mathematics, University of Western Ontario, London, N6A5C1, Ontario, CA.
| |
Collapse
|
2
|
Zhang Q, Gheres KW, Drew PJ. Origins of 1/f-like tissue oxygenation fluctuations in the murine cortex. PLoS Biol 2021; 19:e3001298. [PMID: 34264930 PMCID: PMC8282088 DOI: 10.1371/journal.pbio.3001298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/24/2021] [Indexed: 01/07/2023] Open
Abstract
The concentration of oxygen in the brain spontaneously fluctuates, and the distribution of power in these fluctuations has a 1/f-like spectra, where the power present at low frequencies of the power spectrum is orders of magnitude higher than at higher frequencies. Though these oscillations have been interpreted as being driven by neural activity, the origin of these 1/f-like oscillations is not well understood. Here, to gain insight of the origin of the 1/f-like oxygen fluctuations, we investigated the dynamics of tissue oxygenation and neural activity in awake behaving mice. We found that oxygen signal recorded from the cortex of mice had 1/f-like spectra. However, band-limited power in the local field potential did not show corresponding 1/f-like fluctuations. When local neural activity was suppressed, the 1/f-like fluctuations in oxygen concentration persisted. Two-photon measurements of erythrocyte spacing fluctuations and mathematical modeling show that stochastic fluctuations in erythrocyte flow could underlie 1/f-like dynamics in oxygenation. These results suggest that the discrete nature of erythrocytes and their irregular flow, rather than fluctuations in neural activity, could drive 1/f-like fluctuations in tissue oxygenation.
Collapse
Affiliation(s)
- Qingguang Zhang
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (QZ); (PJD)
| | - Kyle W. Gheres
- Graduate Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Patrick J. Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Neurosurgery, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (QZ); (PJD)
| |
Collapse
|
3
|
Simulation of angiogenesis in three dimensions: Application to cerebral cortex. PLoS Comput Biol 2021; 17:e1009164. [PMID: 34170925 PMCID: PMC8266096 DOI: 10.1371/journal.pcbi.1009164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/08/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
The vasculature is a dynamic structure, growing and regressing in response to embryonic development, growth, changing physiological demands, wound healing, tumor growth and other stimuli. At the microvascular level, network geometry is not predetermined, but emerges as a result of biological responses of each vessel to the stimuli that it receives. These responses may be summarized as angiogenesis, remodeling and pruning. Previous theoretical simulations have shown how two-dimensional vascular patterns generated by these processes in the mesentery are consistent with experimental observations. During early development of the brain, a mesh-like network of vessels is formed on the surface of the cerebral cortex. This network then forms branches into the cortex, forming a three-dimensional network throughout its thickness. Here, a theoretical model is presented for this process, based on known or hypothesized vascular response mechanisms together with experimentally obtained information on the structure and hemodynamics of the mouse cerebral cortex. According to this model, essential components of the system include sensing of oxygen levels in the midrange of partial pressures and conducted responses in vessel walls that propagate information about metabolic needs of the tissue to upstream segments of the network. The model provides insights into the effects of deficits in vascular response mechanisms, and can be used to generate physiologically realistic microvascular network structures.
Collapse
|
4
|
Celaya-Alcala JT, Lee GV, Smith AF, Li B, Sakadžić S, Boas DA, Secomb TW. Simulation of oxygen transport and estimation of tissue perfusion in extensive microvascular networks: Application to cerebral cortex. J Cereb Blood Flow Metab 2021; 41:656-669. [PMID: 32501155 PMCID: PMC7922761 DOI: 10.1177/0271678x20927100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/23/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
Advanced imaging techniques have made available extensive three-dimensional microvascular network structures. Simulation of oxygen transport by such networks requires information on blood flow rates and oxygen levels in vessels crossing boundaries of the imaged region, which is difficult to obtain experimentally. Here, a computational method is presented for estimating blood flow rates, oxygen levels, tissue perfusion and oxygen extraction, based on incomplete boundary conditions. Flow rates in all segments are estimated using a previously published method. Vessels crossing the region boundary are classified as arterioles, capillaries or venules. Oxygen levels in inflowing capillaries are assigned based on values in outflowing capillaries, and similarly for venules. Convective and diffusive oxygen transport is simulated. Contributions of each vessel to perfusion are computed in proportion to the decline in oxygen concentration along that vessel. For a vascular network in the mouse cerebral cortex, predicted tissue oxygen levels show a broad distribution, with 99% of tissue in the range of 20 to 80 mmHg under reference conditions, and steep gradients near arterioles. Perfusion and extraction estimates are consistent with experimental values. A 30% reduction in perfusion or a 30% increase in oxygen demand, relative to reference levels, is predicted to result in tissue hypoxia.
Collapse
Affiliation(s)
| | - Grace V Lee
- Program in Applied Mathematics,
University of Arizona, Tucson, AZ, USA
| | - Amy F Smith
- Department of Physiology, University
of Arizona, Tucson, AZ, USA
| | - Bohan Li
- Department of Mathematics,
University of Arizona, Tucson, AZ, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for
Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA
| | - David A Boas
- Athinoula A. Martinos Center for
Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA
- Department of Biomedical
Engineering, Boston University, Boston, MA, USA
| | - Timothy W Secomb
- Department of Mathematics,
University of Arizona, Tucson, AZ, USA
- Program in Applied Mathematics,
University of Arizona, Tucson, AZ, USA
- Department of Physiology, University
of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Fry BC, Harris A, Siesky B, Arciero J. Blood flow regulation and oxygen transport in a heterogeneous model of the mouse retina. Math Biosci 2020; 329:108476. [PMID: 32920096 DOI: 10.1016/j.mbs.2020.108476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/24/2020] [Accepted: 09/05/2020] [Indexed: 11/25/2022]
Abstract
Elevated intraocular pressure is the primary risk factor for glaucoma, yet vascular health and ocular hemodynamics have also been established as important risk factors for the disease. The precise physiological mechanisms and processes by which flow impairment and reduced tissue oxygenation relate to retinal ganglion cell death are not fully known. Mathematical modeling has emerged as a useful tool to help decipher the role of hemodynamic alterations in glaucoma. Several previous models of the retinal microvasculature and tissue have investigated the individual impact of spatial heterogeneity, flow regulation, and oxygen transport on the system. This study combines all three of these components into a heterogeneous mathematical model of retinal arterioles that includes oxygen transport and acute flow regulation in response to changes in pressure, shear stress, and oxygen demand. The metabolic signal (Si) is implemented as a wall-derived signal that reflects the oxygen deficit along the network, and three cases of conduction are considered: no conduction, a constant signal, and a flow-weighted signal. The model shows that the heterogeneity of the downstream signal serves to regulate flow better than a constant conducted response. In fact, the increases in average tissue PO2 due to a flow-weighted signal are often more significant than if the entire level of signal is increased. Such theoretical work supports the importance of the non-uniform structure of the retinal vasculature when assessing the capability and/or dysfunction of blood flow regulation in the retinal microcirculation.
Collapse
Affiliation(s)
- Brendan C Fry
- Department of Mathematics and Statistics, Metropolitan State University of Denver, P.O. Box 173362, Campus Box 38, Denver, CO 80217, USA.
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, One Gustave L. Levy Place, Box 1183, New York, NY 10029, USA.
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, One Gustave L. Levy Place, Box 1183, New York, NY 10029, USA.
| | - Julia Arciero
- Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 N. Blackford St, LD 270, Indianapolis, IN 46202, USA.
| |
Collapse
|
6
|
Secomb TW, Bullock KV, Boas DA, Sakadžić S. The mass transfer coefficient for oxygen transport from blood to tissue in cerebral cortex. J Cereb Blood Flow Metab 2020; 40:1634-1646. [PMID: 31423930 PMCID: PMC7370375 DOI: 10.1177/0271678x19870068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The functioning of cerebral cortex depends on adequate tissue oxygenation. MRI-based techniques allow estimation of blood oxygen levels, tissue perfusion, and oxygen consumption rate (CMRO2), but do not directly measure partial pressure of oxygen (PO2) in tissue. To address the estimation of tissue PO2, the oxygen mass transfer coefficient (KTO2) is here defined as the CMRO2 divided by the difference in spatially averaged PO2 between blood and tissue, and is estimated by analyzing Krogh-cylinder type models. Resistance to radial diffusion of oxygen from microvessels to tissue is distributed within vessels and in the extravascular tissue. The value of KTO2 is shown to depend strongly on vascular length density and also on microvessel tube hematocrits and diameters, but to be insensitive to blood flow rate and to transient changes in flow or oxygen consumption. Estimated values of KTO2 are higher than implied by previous studies, implying smaller declines in PO2 from blood to tissue. Average tissue PO2 can be estimated from MRI-based measurements as average blood PO2 minus the product of KTO2 and CMRO2. For oxygen consumption rates and vascular densities typical of mouse cortex, the predicted difference between average blood and tissue PO2 is about 10 mmHg.
Collapse
Affiliation(s)
- Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, USA.,Program in Applied Mathematics, University of Arizona, Tucson, AZ, USA.,Physiological Sciences Graduate Program, University of Arizona, Tucson, AZ, USA
| | - Katherine V Bullock
- Physiological Sciences Graduate Program, University of Arizona, Tucson, AZ, USA
| | - David A Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Kremheller J, Vuong AT, Schrefler BA, Wall WA. An approach for vascular tumor growth based on a hybrid embedded/homogenized treatment of the vasculature within a multiphase porous medium model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3253. [PMID: 31441222 DOI: 10.1002/cnm.3253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/04/2019] [Accepted: 08/16/2019] [Indexed: 05/13/2023]
Abstract
The aim of this work is to develop a novel computational approach to facilitate the modeling of angiogenesis during tumor growth. The preexisting vasculature is modeled as a 1D inclusion and embedded into the 3D tissue through a suitable coupling method, which allows for nonmatching meshes in 1D and 3D domain. The neovasculature, which is formed during angiogenesis, is represented in a homogenized way as a phase in our multiphase porous medium system. This splitting of models is motivated by the highly complex morphology, physiology, and flow patterns in the neovasculature, which are challenging and computationally expensive to resolve with a discrete, 1D angiogenesis and blood flow model. Moreover, it is questionable if a discrete representation generates any useful additional insight. By contrast, our model may be classified as a hybrid vascular multiphase tumor growth model in the sense that a discrete, 1D representation of the preexisting vasculature is coupled with a continuum model describing angiogenesis. It is based on an originally avascular model which has been derived via the thermodynamically constrained averaging theory. The new model enables us to study mass transport from the preexisting vasculature into the neovasculature and tumor tissue. We show by means of several illustrative examples that it is indeed capable of reproducing important aspects of vascular tumor growth phenomenologically.
Collapse
Affiliation(s)
- Johannes Kremheller
- Institute for Computational Mechanics, Technical University of Munich, Garching, Germany
| | - Anh-Tu Vuong
- Institute for Computational Mechanics, Technical University of Munich, Garching, Germany
| | - Bernhard A Schrefler
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Padua, Italy
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, Garching, Germany
| |
Collapse
|
8
|
Erlich A, Nye GA, Brownbill P, Jensen OE, Chernyavsky IL. Quantifying the impact of tissue metabolism on solute transport in feto-placental microvascular networks. Interface Focus 2019; 9:20190021. [PMID: 31485311 PMCID: PMC6710657 DOI: 10.1098/rsfs.2019.0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
The primary exchange units in the human placenta are terminal villi, in which fetal capillary networks are surrounded by a thin layer of villous tissue, separating fetal from maternal blood. To understand how the complex spatial structure of villi influences their function, we use an image-based theoretical model to study the effect of tissue metabolism on the transport of solutes from maternal blood into the fetal circulation. For solute that is taken up under first-order kinetics, we show that the transition between flow-limited and diffusion-limited transport depends on two new dimensionless parameters defined in terms of key geometric quantities, with strong solute uptake promoting flow-limited transport conditions. We present a simple algebraic approximation for solute uptake rate as a function of flow conditions, metabolic rate and villous geometry. For oxygen, accounting for nonlinear kinetics using physiological parameter values, our model predicts that villous metabolism does not significantly impact oxygen transfer to fetal blood, although the partitioning of fluxes between the villous tissue and the capillary network depends strongly on the flow regime.
Collapse
Affiliation(s)
- Alexander Erlich
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Gareth A. Nye
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- Chester Medical School, University of Chester, Chester CH1 4AR, UK
| | - Paul Brownbill
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Oliver E. Jensen
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Igor L. Chernyavsky
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| |
Collapse
|
9
|
Erlich A, Pearce P, Mayo RP, Jensen OE, Chernyavsky IL. Physical and geometric determinants of transport in fetoplacental microvascular networks. SCIENCE ADVANCES 2019; 5:eaav6326. [PMID: 31001587 PMCID: PMC6469945 DOI: 10.1126/sciadv.aav6326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/01/2019] [Indexed: 05/14/2023]
Abstract
Across mammalian species, solute exchange takes place in complex microvascular networks. In the human placenta, the primary exchange units are terminal villi that contain disordered networks of fetal capillaries and are surrounded externally by maternal blood. We show how the irregular internal structure of a terminal villus determines its exchange capacity for diverse solutes. Distilling geometric features into three parameters, obtained from image analysis and computational fluid dynamics, we capture archetypal features of the structure-function relationship of terminal villi using a simple algebraic approximation, revealing transitions between flow- and diffusion-limited transport at vessel and network levels. Our theory accommodates countercurrent effects, incorporates nonlinear blood rheology, and offers an efficient method for testing network robustness. Our results show how physical estimates of solute transport, based on carefully defined geometrical statistics, provide a viable method for linking placental structure and function and offer a framework for assessing transport in other microvascular systems.
Collapse
Affiliation(s)
- Alexander Erlich
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Philip Pearce
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| | - Romina Plitman Mayo
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Homerton College, University of Cambridge, Cambridge CB2 8PH, UK
| | - Oliver E. Jensen
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Igor L. Chernyavsky
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| |
Collapse
|
10
|
A Mechanistic Analysis of Possible Blood Transfusion Failure to Increase Circulatory Oxygen Delivery in Anemic Patients. Ann Biomed Eng 2019; 47:1094-1105. [PMID: 30659435 DOI: 10.1007/s10439-019-02200-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
The effects of changing hematocrit (Hct) on the rate of circulatory oxygen ([Formula: see text]) delivery were modeled analytically to describe transfusion of 0.5-3.0 units of packed red blood cells (pRBC, 300 mL/unit, 60% Hct) to anemic patients. In our model, Hct affects [Formula: see text] delivery to the microcirculation by changing blood [Formula: see text] carrying capacity and blood viscosity, which in turn affects blood flow velocity and, therefore, [Formula: see text] delivery. Changing blood velocity impacts the [Formula: see text] delivery by affecting the oxygen diffusive losses as blood transits through the arteriolar vasculature. An increase in Hct has two opposite effects: it increases the blood [Formula: see text] carrying capacity and decreases the flow velocity. This suggests the existence of an optimal Hct that maximizes [Formula: see text] delivery. Our results show that maximal [Formula: see text] delivery occurs in the anemic range, where [Formula: see text]%. Optimal blood management is associated with transfusing enough units up to reaching maximal [Formula: see text] delivery. Although somewhat complex to implement, this practice would result in both substantial blood savings and improved [Formula: see text] delivery.
Collapse
|
11
|
Roy TK, Secomb TW. Effects of pulmonary flow heterogeneity on oxygen transport parameters in exercise. Respir Physiol Neurobiol 2018; 261:75-79. [PMID: 30321626 DOI: 10.1016/j.resp.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Accepted: 10/12/2018] [Indexed: 11/29/2022]
Abstract
Under resting normoxic conditions, the healthy lung has ample oxygen uptake capacity relative to oxygen demand, but during exercise, increased oxygen demand and utilization become increasingly dependent on ventilation-perfusion matching. A mathematical model is used to investigate the effect of pulmonary flow heterogeneity, as characterized by the coefficient of variation (CV) of capillary blood flow, on pulmonary oxygen uptake in exercise. The model reveals that any level of heterogeneity up to a CV of 3 is consistent with the observed level of arterial oxygen tension under resting conditions, but that such high levels of heterogeneity are incompatible with the levels of oxygen uptake observed during exercise. If a normal diffusing capacity is assumed, the best fit to literature data on arterial oxygen content of exercising humans under normoxic and hypoxic conditions is found with a relatively low CV of 0.48, suggesting that local flow regulation mechanisms such as hypoxic pulmonary vasoconstriction play an important role in ventilation-perfusion matching during exercise.
Collapse
Affiliation(s)
- Tuhin K Roy
- Dept. of Anesthesiology, Mayo Clinic, Rochester, MN, 55905, United States.
| | - Timothy W Secomb
- Dept. of Physiology, University of Arizona, Tucson, AZ, 85724-5051, United States
| |
Collapse
|
12
|
Lücker A, Secomb TW, Weber B, Jenny P. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue. Microcirculation 2018; 24. [PMID: 27893186 DOI: 10.1111/micc.12337] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/24/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Oxygen transport to parenchymal cells occurs mainly at the microvascular level and depends on convective RBC flux, which is proportional in an individual capillary to the product of capillary hematocrit and RBC velocity. This study investigates the relative influence of these two factors on tissue PO2 . METHODS A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity, and RBC flow on tissue oxygenation around capillaries. Predicted tissue PO2 levels are compared with a detailed computational model. RESULTS Hematocrit is shown to have a larger influence on tissue PO2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained, and the discrepancies are explained. Significant dependence of MTCs on RBC velocity at low hematocrit is demonstrated. CONCLUSIONS For a given RBC flux in a capillary, the PO2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing IVR to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as those that occur in functional hyperemia in the brain.
Collapse
Affiliation(s)
- Adrien Lücker
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Sweeney PW, Walker-Samuel S, Shipley RJ. Insights into cerebral haemodynamics and oxygenation utilising in vivo mural cell imaging and mathematical modelling. Sci Rep 2018; 8:1373. [PMID: 29358701 PMCID: PMC5778006 DOI: 10.1038/s41598-017-19086-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/16/2017] [Indexed: 01/20/2023] Open
Abstract
The neurovascular mechanisms underpinning the local regulation of cerebral blood flow (CBF) and oxygen transport remain elusive. In this study we have combined novel in vivo imaging of cortical microvascular and mural cell architecture with mathematical modelling of blood flow and oxygen transport, to provide new insights into CBF regulation that would be inaccessible in a conventional experimental context. Our study indicates that vasoconstriction of smooth muscle actin-covered vessels, rather than pericyte-covered capillaries, induces stable reductions in downstream intravascular capillary and tissue oxygenation. We also propose that seemingly paradoxical observations in the literature around reduced blood velocity in response to arteriolar constrictions might be caused by a propagation of constrictions to upstream penetrating arterioles. We provide support for pericytes acting as signalling conduits for upstream smooth muscle activation, and erythrocyte deformation as a complementary regulatory mechanism. Finally, we caution against the use of blood velocity as a proxy measurement for flow. Our combined imaging-modelling platform complements conventional experimentation allowing cerebrovascular physiology to be probed in unprecedented detail.
Collapse
Affiliation(s)
- Paul W Sweeney
- Mechanical Engineering, University College London, London, UK
| | - Simon Walker-Samuel
- Centre for Advanced Biomedical Engineering, University College London, London, UK
| | | |
Collapse
|
14
|
Shimayoshi T, Yamamoto Y, Matsuda T. A computational model of myocardial microcirculation including interstitial flow. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:3668-3671. [PMID: 29060694 DOI: 10.1109/embc.2017.8037653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Contributions of interstitial fluid (ISF) flow within the myocardial microcirculation is not well understood despite its importance due to difficulties in measurements. For analysing a contribution of interstitial fluid flow within myocardial microcirculation, we developed a computational model of myocardial microcirculation by introducing convection by the ISF flow into an existing myocardial microcirculation model, and performed simulations with varied ISF flows in normal and hypoperfusion conditions. Simulation results show that the ISF flow has a contribution only with low capillary flow. This might suggest partial comensation of oxygen supply by the ISF flow under ischemic conditions.
Collapse
|
15
|
Reglin B, Secomb TW, Pries AR. Structural Control of Microvessel Diameters: Origins of Metabolic Signals. Front Physiol 2017; 8:813. [PMID: 29114229 PMCID: PMC5660852 DOI: 10.3389/fphys.2017.00813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/03/2017] [Indexed: 11/17/2022] Open
Abstract
Diameters of microvessels undergo continuous structural adaptation in response to hemodynamic and metabolic stimuli. To ensure adequate flow distribution, metabolic responses are needed to increase diameters of vessels feeding poorly perfused regions. Possible modes of metabolic control include release of signaling substances from vessel walls, from the supplied tissue and from red blood cells (RBC). Here, a theoretical model was used to compare the abilities of these metabolic control modes to provide adequate tissue oxygenation, and to generate blood flow velocities in agreement with experimental observations. Structural adaptation of vessel diameters was simulated for an observed mesenteric network structure in the rat with 576 vessel segments. For each mode of metabolic control, resulting distributions of oxygen and deviations between simulated and experimentally observed flow velocities were analyzed. It was found that wall-derived and tissue-derived growth signals released in response to low oxygen levels could ensure adequate oxygen supply, but RBC-derived signals caused inefficient oxygenation. Closest agreement between predicted and observed flow velocities was obtained with wall-derived growth signals proportional to vessel length. Adaptation in response to oxygen-independent release of a metabolic signal substance from vessel walls or the supplied tissue was also shown to be effective for ensuring tissue oxygenation due to a dilution effect if growth signal substances are released into the blood. The present results suggest that metabolic signals responsible for structural adaptation of microvessel diameters are derived from vessel walls or from perivascular tissue.
Collapse
Affiliation(s)
- Bettina Reglin
- Department of Physiology and Center for Cardiovascular Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Axel R Pries
- Department of Physiology and Center for Cardiovascular Research, Charité Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Herzzentrum Berlin, Berlin, Germany
| |
Collapse
|
16
|
Hyakutake T, Kishimoto T. Numerical investigation of oxygen transport by hemoglobin-based carriers through microvessels. J Artif Organs 2017; 20:341-349. [PMID: 28755016 DOI: 10.1007/s10047-017-0974-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/09/2017] [Indexed: 11/25/2022]
Abstract
The small size of hemoglobin-based oxygen carriers (HBOCs) may expand the realm of new treatment possibilities for various circulatory diseases. The parametric evaluation of HBOC performance for oxygen transport within tissue is essential for effectively characterizing its performance for each circulatory disease assessed. Thus, the overarching objective of this present study was to numerically investigate the reaction-diffusion phenomenon of oxygenated HBOCs and oxygen on tissues through microvessels. We considered dissociation rate coefficients, oxygen affinity, and diffusion coefficients due to Brownian motion as the biophysical parameters for estimating HBOC performance for oxygen transport. A two-dimensional computational domain, including vessel and tissue regions, was, therefore, accordingly assumed. It was observed that HBOC flows in a microvessel with a diameter of 25 μm and a length of 1 mm, and that the dissociated oxygen diffuses to the tissue region. The results indicated that oxyhemoglobin saturation and partial oxygen tension in a downstream region changed according to each biophysical parameter of HBOC. Moreover, the change in oxygen consumption rate in the tissue region had considerable influence on the oxyhemoglobin saturation level within the vessel. Comparison between simulation results and existing in vitro experimental data of actual HBOCs and RBC showed qualitatively good agreement. These results provide important information for the effective design of robust HBOCs in future.
Collapse
Affiliation(s)
- Toru Hyakutake
- Faculty of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama, 240-8501, Japan.
| | - Takumi Kishimoto
- Graduate School of Engineering, Yokohama National University, 79-5, Hodogaya, Yokohama, 240-8501, Japan
| |
Collapse
|
17
|
Yeager T, Roy S. Evolution of Gas Permeable Membranes for Extracorporeal Membrane Oxygenation. Artif Organs 2017; 41:700-709. [DOI: 10.1111/aor.12835] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Torin Yeager
- Department of Bioengineering and Therapeutic Sciences; University of California; San Francisco CA USA
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences; University of California; San Francisco CA USA
| |
Collapse
|
18
|
Gould IG, Tsai P, Kleinfeld D, Linninger A. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J Cereb Blood Flow Metab 2017; 37:52-68. [PMID: 27780904 PMCID: PMC5363755 DOI: 10.1177/0271678x16671146] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 06/15/2016] [Accepted: 07/30/2016] [Indexed: 01/09/2023]
Abstract
The cortical angioarchitecture is a key factor in controlling cerebral blood flow and oxygen metabolism. Difficulties in imaging the complex microanatomy of the cortex have so far restricted insight about blood flow distribution in the microcirculation. A new methodology combining advanced microscopy data with large scale hemodynamic simulations enabled us to quantify the effect of the angioarchitecture on the cerebral microcirculation. High-resolution images of the mouse primary somatosensory cortex were input into with a comprehensive computational model of cerebral perfusion and oxygen supply ranging from the pial vessels to individual brain cells. Simulations of blood flow, hematocrit and oxygen tension show that the wide variation of hemodynamic states in the tortuous, randomly organized capillary bed is responsible for relatively uniform cortical tissue perfusion and oxygenation. Computational analysis of microcirculatory blood flow and pressure drops further indicates that the capillary bed, including capillaries adjacent to feeding arterioles (d < 10 µm), are the largest contributors to hydraulic resistance.
Collapse
Affiliation(s)
- Ian Gopal Gould
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Philbert Tsai
- Department of Physics, University of California at San Diego, San Diego, CA, USA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, San Diego, CA, USA
| | - Andreas Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Sové RJ, Fraser GM, Goldman D, Ellis CG. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies. PLoS One 2016; 11:e0166289. [PMID: 27829071 PMCID: PMC5102494 DOI: 10.1371/journal.pone.0166289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/26/2016] [Indexed: 01/09/2023] Open
Abstract
Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices.
Collapse
Affiliation(s)
- Richard J. Sové
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Graham M. Fraser
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Cardiovascular Research Group, Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, Newfoundland, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | |
Collapse
|
20
|
Snelling EP, Seymour RS, Green JEF, Meyer LCR, Fuller A, Haw A, Mitchell D, Farrell AP, Costello MA, Izwan A, Badenhorst M, Maloney SK. A structure-function analysis of the left ventricle. J Appl Physiol (1985) 2016; 121:900-909. [PMID: 27586835 DOI: 10.1152/japplphysiol.00435.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022] Open
Abstract
This study presents a structure-function analysis of the mammalian left ventricle and examines the performance of the cardiac capillary network, mitochondria, and myofibrils at rest and during simulated heavy exercise. Left ventricular external mechanical work rate was calculated from cardiac output and systemic mean arterial blood pressure in resting sheep (Ovis aries; n = 4) and goats (Capra hircus; n = 4) under mild sedation, followed by perfusion-fixation of the left ventricle and quantification of the cardiac capillary-tissue geometry and cardiomyocyte ultrastructure. The investigation was then extended to heavy exercise by increasing cardiac work according to published hemodynamics of sheep and goats performing sustained treadmill exercise. Left ventricular work rate averaged 0.017 W/cm3 of tissue at rest and was estimated to increase to ∼0.060 W/cm3 during heavy exercise. According to an oxygen transport model we applied to the left ventricular tissue, we predicted that oxygen consumption increases from 195 nmol O2·s-1·cm-3 of tissue at rest to ∼600 nmol O2·s-1·cm-3 during heavy exercise, which is within 90% of the oxygen demand rate and consistent with work remaining predominantly aerobic. Mitochondria represent 21-22% of cardiomyocyte volume and consume oxygen at a rate of 1,150 nmol O2·s-1·cm-3 of mitochondria at rest and ∼3,600 nmol O2·s-1·cm-3 during heavy exercise, which is within 80% of maximum in vitro rates and consistent with mitochondria operating near their functional limits. Myofibrils represent 65-66% of cardiomyocyte volume, and according to a Laplacian model of the left ventricular chamber, generate peak fiber tensions in the range of 50 to 70 kPa at rest and during heavy exercise, which is less than maximum tension of isolated cardiac tissue (120-140 kPa) and is explained by an apparent reserve capacity for tension development built into the left ventricle.
Collapse
Affiliation(s)
- Edward P Snelling
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa;
| | - Roger S Seymour
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - J E F Green
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Leith C R Meyer
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa; Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa; Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Anna Haw
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa; School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada; Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary-Ann Costello
- Central Animal Service, University of the Witwatersrand, Johannesburg, South Africa; and
| | - Adian Izwan
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| | - Margaret Badenhorst
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shane K Maloney
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa; School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
21
|
Gagnon L, Smith AF, Boas DA, Devor A, Secomb TW, Sakadžić S. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation. Front Comput Neurosci 2016; 10:82. [PMID: 27630556 PMCID: PMC5006088 DOI: 10.3389/fncom.2016.00082] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023] Open
Abstract
Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.
Collapse
Affiliation(s)
- Louis Gagnon
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Amy F Smith
- Institut de Mécanique des Fluides de ToulouseToulouse, France; Department of Physiology, University of ArizonaTucson, AZ, USA
| | - David A Boas
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Anna Devor
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolCharlestown, MA, USA; Departments of Neurosciences and Radiology, University of California, San DiegoLa Jolla, CA, USA
| | | | - Sava Sakadžić
- Optics Division, Department of Radiology, MHG/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| |
Collapse
|
22
|
Welter M, Fredrich T, Rinneberg H, Rieger H. Computational Model for Tumor Oxygenation Applied to Clinical Data on Breast Tumor Hemoglobin Concentrations Suggests Vascular Dilatation and Compression. PLoS One 2016; 11:e0161267. [PMID: 27547939 PMCID: PMC4993476 DOI: 10.1371/journal.pone.0161267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/05/2016] [Indexed: 12/15/2022] Open
Abstract
We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation were carried out for ninety tumor and associated normal vessel networks starting from various assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the extra-vascular partial oxygen pressure distribution can be related to various tumor compartments characterized by varying capillary densities and blood flow characteristics. The reported higher average hemoglobin concentration of tumors is explained by growth and dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consumption in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are above normal. Such tumors are likely associated with high tumor blood flow caused by high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be achieved by reducing tumor vessel radii during growth by a randomly selected factor, simulating compression caused by intra-tumoral solid stress due to proliferation of cells and extracellular matrix. Since compression of blood vessels will impede chemotherapy we conclude that tumors with oxy- to total hemoglobin concentration below normal are less likely to respond to chemotherapy. Such behavior was recently reported for neo-adjuvant chemotherapy of locally advanced breast tumors.
Collapse
Affiliation(s)
- Michael Welter
- Theoretical Physics, Saarland University, Saarbrücken, Germany
| | | | - Herbert Rinneberg
- Division of Medical Physics and Metrological Information Technology, Physikalisch Technische Bundesanstalt PTB Berlin, Germany
| | - Heiko Rieger
- Theoretical Physics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
23
|
Ng YC, Namgung B, Leo HL, Kim S. Erythrocyte aggregation may promote uneven spatial distribution of NO/O2 in the downstream vessel of arteriolar bifurcations. J Biomech 2015; 49:2241-2248. [PMID: 26684432 DOI: 10.1016/j.jbiomech.2015.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/07/2015] [Indexed: 11/16/2022]
Abstract
This study examined the effect of red blood cell (RBC) aggregation on nitric oxide (NO) and oxygen (O2) distributions in the downstream vessels of arteriolar bifurcations. Particular attention was paid to the inherent formation of asymmetric cell-free layer (CFL) widths in the downstream vessels and its consequential impact on the NO/O2 bioavailability after the bifurcations. A microscopic image-based two-dimensional transient model was used to predict the NO/O2 distribution by utilizing the in vivo CFL width data obtained under non-, normal- and hyper-aggregating conditions at the pseudoshear rate of 15.6±2.0s(-1). In vivo experimental result showed that the asymmetry of CFL widths was enhanced by the elevation in RBC aggregation level. The model demonstrated that NO bioavailability was regulated by the dynamic fluctuation of the local CFL widths, which is corollary to its modulation of wall shear stress. Accordingly, the uneven distribution of NO/O2 was prominent at opposite sides of the arterioles up to six vessel-diameter (6D) away from the bifurcating point, and this was further enhanced by increasing the levels of RBC aggregation. Our findings suggested that RBC aggregation potentially augments both the formation of asymmetric CFL widths and its influence on the uneven distribution of NO/O2 in the downstream flow of an arteriolar bifurcation. The extended heterogeneity of NO/O2 downstream (2D-6D) also implied its potential propagation throughout the entire arteriolar microvasculature.
Collapse
Affiliation(s)
- Yan Cheng Ng
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Bumseok Namgung
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Hwa Liang Leo
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Sangho Kim
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore; Department of Surgery, National University of Singapore, Singapore.
| |
Collapse
|
24
|
Fry BC, Edwards A, Layton AT. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study. Am J Physiol Renal Physiol 2015; 310:F237-47. [PMID: 26831340 DOI: 10.1152/ajprenal.00334.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/13/2015] [Indexed: 01/05/2023] Open
Abstract
The goal of this study was to investigate the effects of nitric oxide (NO)-mediated vasodilation in preventing medullary hypoxia, as well as the likely pathways by which superoxide (O2(-)) conversely enhances medullary hypoxia. To do so, we expanded a previously developed mathematical model of solute transport in the renal medulla that accounts for the reciprocal interactions among oxygen (O2), NO, and O2(-) to include the vasoactive effects of NO on medullary descending vasa recta. The model represents the radial organization of the vessels and tubules, centered around vascular bundles in the outer medulla and collecting ducts in the inner medulla. Model simulations suggest that NO helps to prevent medullary hypoxia both by inducing vasodilation of the descending vasa recta (thus increasing O2 supply) and by reducing the active sodium transport rate (thus reducing O2 consumption). That is, the vasodilative properties of NO significantly contribute to maintaining sufficient medullary oxygenation. The model further predicts that a reduction in tubular transport efficiency (i.e., the ratio of active sodium transport per O2 consumption) is the main factor by which increased O2(-) levels lead to hypoxia, whereas hyperfiltration is not a likely pathway to medullary hypoxia due to oxidative stress. Finally, our results suggest that further increasing the radial separation between vessels and tubules would reduce the diffusion of NO towards descending vasa recta in the inner medulla, thereby diminishing its vasoactive effects therein and reducing O2 delivery to the papillary tip.
Collapse
Affiliation(s)
- Brendan C Fry
- Department of Mathematics, Duke University, Durham, North Carolina; and
| | - Aurélie Edwards
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 06, INSERM, Université Paris, Descartes, Sorbonne Paris Cité, UMRS 1138, ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina; and
| |
Collapse
|
25
|
Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation. Biomech Model Mechanobiol 2015; 15:525-42. [DOI: 10.1007/s10237-015-0708-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 07/14/2015] [Indexed: 11/26/2022]
|
26
|
Olgac U, Kurtcuoglu V. Renal oxygenation: preglomerular vasculature is an unlikely contributor to renal oxygen shunting. Am J Physiol Renal Physiol 2015; 308:F671-88. [DOI: 10.1152/ajprenal.00551.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/04/2014] [Indexed: 11/22/2022] Open
Abstract
The primary aim of this study was to assess the plausibility of preglomerular arterial-to-venous oxygen shunting in the kidney. To this end, we have developed a segment-wise three-dimensional computational model that takes into account transport processes in arteries, veins, cortical tissue, and capillaries. Our model suggests that the amount of preglomerular oxygen shunting is negligible. Consequently, it is improbable that preglomerular shunting contributes to the hypothesized regulation of renal oxygenation. Cortical tissue oxygenation is more likely determined by the interplay between oxygen supply, either from the preglomerular vasculature or from capillaries, and oxygen consumption. We show that reported differences in permeability to oxygen between perfused and unperfused tissue may be explained by what we refer to as advection-facilitated diffusion. We further show that the preglomerular vasculature is the primary source of oxygen for the tissue when cortical consumption is high or renal arterial blood is highly oxygenated, i.e., under hyperoxemic conditions. Conversely, when oxygen demand in the tissue is decreased, or under hypoxemic conditions, oxygen is supplied predominantly by capillaries.
Collapse
Affiliation(s)
- Ufuk Olgac
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Gandica Y, Schwarz T, Oliveira O, Travasso RDM. Hypoxia in vascular networks: a complex system approach to unravel the diabetic paradox. PLoS One 2014; 9:e113165. [PMID: 25409306 PMCID: PMC4237512 DOI: 10.1371/journal.pone.0113165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 10/20/2014] [Indexed: 01/30/2023] Open
Abstract
In this work we model the extent of hypoxia in the diabetic retina as a function of the area affected by vessel disruption. We find two regimes that differ on the ratio between the area of disrupted vasculature and the area of tissue in hypoxia. In the first regime the hypoxia is localized in the vicinity of the vascular disruption, while in the second regime there is a generalized hypoxia in the affected tissue. The transition between these two regimes occurs when the tissue area affected by individual sites of vessel damage is on the order of the square of the characteristic irrigation length in the tissue (the maximum distance that an irrigated point in the tissue is from an existing vessel). We observe that very high levels of hypoxia are correlated with the rupture of larger vessels in the retina, and with smaller radii of individual sites of vessel damage. Based on this property of vascular networks, we propose a novel mechanism for the transition between the nonproliferative and the proliferative stages in diabetic retinopathy.
Collapse
Affiliation(s)
- Yérali Gandica
- Center for Computational Physics, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Tobias Schwarz
- Center for Computational Physics, Department of Physics, University of Coimbra, Coimbra, Portugal
- Heinz-Brandt-Schule, Berlin, Germany
| | - Orlando Oliveira
- Center for Computational Physics, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Rui D. M. Travasso
- Center for Computational Physics, Department of Physics, University of Coimbra, Coimbra, Portugal
- Center of Ophthalmology and Vision Sciences(COCV), Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
28
|
Ngo JP, Kar S, Kett MM, Gardiner BS, Pearson JT, Smith DW, Ludbrook J, Bertram JF, Evans RG. Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney. Am J Physiol Renal Physiol 2014; 307:F1111-22. [DOI: 10.1152/ajprenal.00382.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal arterial-to-venous (AV) oxygen shunting limits oxygen delivery to renal tissue. To better understand how oxygen in arterial blood can bypass renal tissue, we quantified the radial geometry of AV pairs and how it differs according to arterial diameter and anatomic location. We then estimated diffusion of oxygen in the vicinity of arteries of typical geometry using a computational model. The kidneys of six rats were perfusion fixed, and the vasculature was filled with silicone rubber (Microfil). A single section was chosen from each kidney, and all arteries ( n = 1,628) were identified. Intrarenal arteries were largely divisible into two “types,” characterized by the presence or absence of a close physical relationship with a paired vein. Arteries with a close physical relationship with a paired vein were more likely to have a larger rather than smaller diameter, and more likely to be in the inner-cortex than the mid- or outer cortex. Computational simulations indicated that direct diffusion of oxygen from an artery to a paired vein can only occur when the two vessels have a close physical relationship. However, even in the absence of this close relationship oxygen can diffuse from an artery to periarteriolar capillaries and venules. Thus AV oxygen shunting in the proximal preglomerular circulation is dominated by direct diffusion of oxygen to a paired vein. In the distal preglomerular circulation, it may be sustained by diffusion of oxygen from arteries to capillaries and venules close to the artery wall, which is subsequently transported to renal veins by convection.
Collapse
Affiliation(s)
- Jennifer P. Ngo
- Department of Physiology, Monash University, Melbourne, Australia
| | - Saptarshi Kar
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - Michelle M. Kett
- Department of Physiology, Monash University, Melbourne, Australia
| | - Bruce S. Gardiner
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - James T. Pearson
- Department of Physiology, Monash University, Melbourne, Australia
- Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
| | - David W. Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | | | - John F. Bertram
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Roger G. Evans
- Department of Physiology, Monash University, Melbourne, Australia
| |
Collapse
|
29
|
Lücker A, Weber B, Jenny P. A dynamic model of oxygen transport from capillaries to tissue with moving red blood cells. Am J Physiol Heart Circ Physiol 2014; 308:H206-16. [PMID: 25398979 DOI: 10.1152/ajpheart.00447.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most oxygen required to support the energy needs of vertebrate tissues is delivered by diffusion from microvessels. The presence of red blood cells (RBCs) makes blood flow in the microcirculation highly heterogeneous. Additionally, flow regulation mechanisms dynamically respond to changes in tissue energy demand. These spatiotemporal variations directly affect the supply of oxygen to parenchymal cells. Due to various limiting assumptions, current models of oxygen transport cannot fully capture the consequences of complex hemodynamic effects on tissue oxygenation and are often not suitable for studying unsteady phenomena. With our new approach based on moving RBCs, the impact of blood flow heterogeneity on oxygen partial pressure (Po2) in the tissue can be quantified. Oxygen transport was simulated using parachute-shaped solid RBCs flowing through a capillary. With the use of a conical tissue domain with radii 19 and 13 μm, respectively, our computations indicate that Po2 at the RBC membrane exceeds Po2 between RBCs by 30 mmHg on average and that the mean plasma Po2 decreases by 9 mmHg over 50 μm. These results reproduce well recent intravascular Po2 measurements in the rodent brain. We also demonstrate that instantaneous variations of capillary hematocrit cause associated fluctuations of tissue Po2. Furthermore, our results suggest that homogeneous tissue oxygenation requires capillary networks to be denser on venular side than on arteriolar side. Our new model for oxygen transport will make it possible to quantify in detail the effects of blood flow heterogeneity on tissue oxygenation in realistic capillary networks.
Collapse
Affiliation(s)
- Adrien Lücker
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland; and
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland; and
| |
Collapse
|
30
|
Roy TK, Secomb TW. Theoretical analysis of the determinants of lung oxygen diffusing capacity. J Theor Biol 2014; 351:1-8. [PMID: 24560722 DOI: 10.1016/j.jtbi.2014.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
The process of pulmonary oxygen uptake is analyzed to obtain an explicit equation for lung oxygen diffusing capacity in terms of hematocrit and pulmonary capillary diameter. An axisymmetric model with discrete cylindrical erythrocytes is used to represent radial diffusion of oxygen from alveoli through the alveolar-capillary membrane into pulmonary capillaries, through the plasma, and into erythrocytes. Analysis of unsteady diffusion due to the passage of the erythrocytes shows that transport of oxygen through the alveolar-capillary membrane occurs mainly in the regions adjacent to erythrocytes, and that oxygen transport through regions adjacent to plasma gaps can be neglected. The model leads to an explicit formula for diffusing capacity as a function of geometric and oxygen transport parameters. For normal hematocrit and a capillary diameter of 6.75 μm, the predicted diffusing capacity is 102 ml O₂ min⁻¹ mmHg⁻¹. This value is 30-40% lower than values estimated previously by the morphometric method, which considers the total membrane area and the specific uptake rate of erythrocytes. Diffusing capacity is shown to increase with increasing hematocrit and decrease with increasing capillary diameter and increasing thickness of the membrane. Simulations of pulmonary oxygen uptake in humans under conditions of exercise or hypoxia based show closer agreement with experimental data than previous models, but still overestimate oxygen uptake. The remaining discrepancy may reflect effects of heterogeneity of perfusion and ventilation in the lung.
Collapse
Affiliation(s)
- Tuhin K Roy
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ 85724-5051, USA
| |
Collapse
|
31
|
Sanyal T, Chakraborty S. Multiscale analysis of simultaneous uptake of two reactive gases in the human lungs and its application to methemoglobin anemia. Comput Chem Eng 2013. [DOI: 10.1016/j.compchemeng.2013.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
A computational model of oxygen transport in the cerebrocapillary levels for normal and pathologic brain function. J Cereb Blood Flow Metab 2013; 33:1633-41. [PMID: 23921901 PMCID: PMC3790934 DOI: 10.1038/jcbfm.2013.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/23/2013] [Accepted: 06/17/2013] [Indexed: 01/03/2023]
Abstract
The oxygen exchange and correlation between the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) in the cortical capillary levels for normal and pathologic brain functions remain the subject of debate. A 3D realistic mesoscale model of the cortical capillary network (non-tree like) is constructed using a random Voronoi tessellation in which each edge represents a capillary segment. The hemodynamics and oxygen transport are numerically simulated in the model, which involves rheological laws in the capillaries, oxygen diffusion, and non-linear binding of oxygen to hemoglobin, respectively. The findings show that the cerebral hypoxia due to a significant decreased perfusion (as can occur in stroke) can be avoided by a moderate reduction in oxygen demand. Oxygen extraction fraction (OEF) can be an important indicator for the brain oxygen metabolism under normal perfusion and misery-perfusion syndrome (leading to ischemia). The results demonstrated that a disproportionately large increase in blood supply is required for a small increase in the oxygen demand, which, in turn, is strongly dependent on the resting OEF. The predicted flow-metabolism coupling in the model supports the experimental studies of spatiotemporal stimulations in humans by positron emission tomography and functional magnetic resonance imaging.
Collapse
|
33
|
Pittman RN. Oxygen transport in the microcirculation and its regulation. Microcirculation 2013; 20:117-37. [PMID: 23025284 DOI: 10.1111/micc.12017] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/27/2012] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen, which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries. METHODS This review focuses first on the historical development of techniques to measure oxygen at various sites in the microcirculation, including the blood, interstitium, and cells. RESULTS Next, approaches are described as to how these techniques have been employed to make discoveries about different aspects of oxygen transport. Finally, ways in which oxygen might participate in the regulation of blood flow toward matching oxygen supply to oxygen demand is discussed. CONCLUSIONS Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand, and their regulation are decided.
Collapse
Affiliation(s)
- Roland N Pittman
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
34
|
Torres Filho IP, Pedro JRP, Narayanan SV, Nguyen NM, Roseff SD, Spiess BD. Perfluorocarbon emulsion improves oxygen transport of normal and sickle cell human bloodin vitro. J Biomed Mater Res A 2013; 102:2105-15. [DOI: 10.1002/jbm.a.34885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/10/2013] [Accepted: 07/17/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Ivo P. Torres Filho
- Department of Physiology and Biophysics; Virginia Commonwealth University Reanimation Engineering Shock Center (VCURES), Virginia Commonwealth University; Richmond Virginia 23298-0695
- Department of Emergency Medicine; Virginia Commonwealth University Reanimation Engineering Shock Center (VCURES), Virginia Commonwealth University; Richmond Virginia 23298-0695
- US Army Institute of Surgical Research; Damage Control Resuscitation; San Antonio Texas 78234
| | - José Ricardo P. Pedro
- Department of Physiology and Biophysics; Virginia Commonwealth University Reanimation Engineering Shock Center (VCURES), Virginia Commonwealth University; Richmond Virginia 23298-0695
| | - Srinivasan V. Narayanan
- Department of Physiology and Biophysics; Virginia Commonwealth University Reanimation Engineering Shock Center (VCURES), Virginia Commonwealth University; Richmond Virginia 23298-0695
| | - Nguyen M. Nguyen
- Department of Physiology and Biophysics; Virginia Commonwealth University Reanimation Engineering Shock Center (VCURES), Virginia Commonwealth University; Richmond Virginia 23298-0695
| | - Susan D. Roseff
- Department of Pathology; Virginia Commonwealth University Reanimation Engineering Shock Center (VCURES), Virginia Commonwealth University; Richmond Virginia 23298-0695
| | - Bruce D. Spiess
- Department of Emergency Medicine; Virginia Commonwealth University Reanimation Engineering Shock Center (VCURES), Virginia Commonwealth University; Richmond Virginia 23298-0695
- Department of Anesthesiology; Virginia Commonwealth University Reanimation Engineering Shock Center (VCURES), Virginia Commonwealth University; Richmond Virginia 23298-0695
| |
Collapse
|
35
|
Secomb TW, Alberding JP, Hsu R, Dewhirst MW, Pries AR. Angiogenesis: an adaptive dynamic biological patterning problem. PLoS Comput Biol 2013; 9:e1002983. [PMID: 23555218 PMCID: PMC3605064 DOI: 10.1371/journal.pcbi.1002983] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/28/2013] [Indexed: 12/04/2022] Open
Abstract
Formation of functionally adequate vascular networks by angiogenesis presents a problem in biological patterning. Generated without predetermined spatial patterns, networks must develop hierarchical tree-like structures for efficient convective transport over large distances, combined with dense space-filling meshes for short diffusion distances to every point in the tissue. Moreover, networks must be capable of restructuring in response to changing functional demands without interruption of blood flow. Here, theoretical simulations based on experimental data are used to demonstrate that this patterning problem can be solved through over-abundant stochastic generation of vessels in response to a growth factor generated in hypoxic tissue regions, in parallel with refinement by structural adaptation and pruning. Essential biological mechanisms for generation of adequate and efficient vascular patterns are identified and impairments in vascular properties resulting from defects in these mechanisms are predicted. The results provide a framework for understanding vascular network formation in normal or pathological conditions and for predicting effects of therapies targeting angiogenesis. The blood vessels provide an efficient system for transport of substances to all parts of the body. They are capable of growing or regressing during development, in response to changing functional needs, and in disease states. This is achieved by structural adaptation, i.e. changes in the diameters and other characteristics of existing vessels, and by angiogenesis, i.e. growth of new blood vessels. Here, we address the question: How do the processes of structural adaptation and angiogenesis lead to the formation of organized vessel networks that can supply the changing needs of the tissue? We carried out theoretical simulations of network growth and adaptation, including vessel blood flows, oxygen transport to tissue, and the generation of a growth factor in low-oxygen regions, which stimulates angiogenesis by sprouting from existing vessels. We showed that the processes of over-abundant random angiogenesis together with structural adaptation including pruning of redundant vessels can generate adequate and efficient vessel networks that are capable of continuously adapting to changing tissue needs. Our work provides insight into the biological mechanisms that are essential for formation and maintenance of functional vessel networks, and may lead to new strategies for controlling blood vessel formation in diseases.
Collapse
Affiliation(s)
- Timothy W Secomb
- Department of Physiology and Arizona Research Laboratories, University of Arizona, Tucson, Arizona, United States of America.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Methemoglobinemia is a disease that results from abnormally high levels of methemoglobin (MetHb) in the red blood cell (RBC), which is caused by simultaneous uptake of oxygen (O(2)) and nitric oxide (NO) in the human lungs. MetHb is produced in the RBC by irreversible NO-induced oxidation of the oxygen carrying ferrous ion (Fe(2+)) present in the heme group of the hemoglobin (Hb) molecule to its non-oxygen binding ferric state (Fe(3+)). This paper studies the role of NO in the pathophysiology of methemoglobinemia and presents a multiscale quantitative analysis of the relation between the levels of NO inhaled by the patient and the hypoxemia resulting from the disease. Reactions of NO occurring in the RBC with both Hb and oxyhemoglobin are considered in conjunction with the usual reaction between oxygen and Hb to form oxyhemoglobin. Our dynamic simulations of NO and O(2) uptake in the RBC (micro scale), alveolar capillary (meso scale) and the entire lung (macro scale) under continuous, simultaneous exposure to both gases, reveal that NO uptake competes with the reactive uptake of O(2), thus suppressing the latter and causing hypoxemia. We also find that the mass transfer resistances increase from micro through meso to macro scales, thus decreasing O(2) saturation as one goes up the scales from the cellular to the organ (lung) level. We show that NO levels of 203 ppm or higher while breathing in room air may be considered to be fatal for methemoglobinemia patients since it causes severe hypoxemia by reducing the O(2) saturation below a critical value of 88%, at which Long Term Oxygen Therapy (LTOT) becomes necessary.
Collapse
|
37
|
Modeling to link regional myocardial work, metabolism and blood flows. Ann Biomed Eng 2012; 40:2379-98. [PMID: 22915334 DOI: 10.1007/s10439-012-0613-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/21/2012] [Indexed: 12/13/2022]
Abstract
Given the mono-functional, highly coordinated processes of cardiac excitation and contraction, the observations that regional myocardial blood flows, rMBF, are broadly heterogeneous has provoked much attention, but a clear explanation has not emerged. In isolated and in vivo heart studies the total coronary flow is found to be proportional to the rate-pressure product (systolic mean blood pressure times heart rate), a measure of external cardiac work. The same relationship might be expected on a local basis: more work requires more flow. The validity of this expectation has never been demonstrated experimentally. In this article we review the concepts linking cellular excitation and contractile work to cellular energetics and ATP demand, substrate utilization, oxygen demand, vasoregulation, and local blood flow. Mathematical models of these processes are now rather well developed. We propose that the construction of an integrated model encompassing the biophysics, biochemistry and physiology of cardiomyocyte contraction, then combined with a detailed three-dimensional structuring of the fiber bundle and sheet arrangements of the heart as a whole will frame an hypothesis that can be quantitatively evaluated to settle the prime issue: Does local work drive local flow in a predictable fashion that explains the heterogeneity? While in one sense one can feel content that work drives flow is irrefutable, the are no cardiac contractile models that demonstrate the required heterogeneity in local strain-stress-work; quite the contrary, cardiac contraction models have tended toward trying to show that work should be uniform. The object of this review is to argue that uniformity of work does not occur, and is impossible in any case, and that further experimentation and analysis are necessary to test the hypothesis.
Collapse
|
38
|
Skeldon AC, Chaffey G, Lloyd DJB, Mohan V, Bradley DA, Nisbet A. Modelling and detecting tumour oxygenation levels. PLoS One 2012; 7:e38597. [PMID: 22761687 PMCID: PMC3386285 DOI: 10.1371/journal.pone.0038597] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/10/2012] [Indexed: 11/19/2022] Open
Abstract
Tumours that are low in oxygen (hypoxic) tend to be more aggressive and respond less well to treatment. Knowing the spatial distribution of oxygen within a tumour could therefore play an important role in treatment planning, enabling treatment to be targeted in such a way that higher doses of radiation are given to the more radioresistant tissue. Mapping the spatial distribution of oxygen in vivo is difficult. Radioactive tracers that are sensitive to different levels of oxygen are under development and in the early stages of clinical use. The concentration of these tracer chemicals can be detected via positron emission tomography resulting in a time dependent concentration profile known as a tissue activity curve (TAC). Pharmaco-kinetic models have then been used to deduce oxygen concentration from TACs. Some such models have included the fact that the spatial distribution of oxygen is often highly inhomogeneous and some have not. We show that the oxygen distribution has little impact on the form of a TAC; it is only the mean oxygen concentration that matters. This has significant consequences both in terms of the computational power needed, and in the amount of information that can be deduced from TACs.
Collapse
Affiliation(s)
- Anne C Skeldon
- Department of Mathematics, University of Surrey, Guildford, Surrey, United Kingdom.
| | | | | | | | | | | |
Collapse
|
39
|
Peng W, Wang X, Gao W, Lan K. In vitro kinetics of oxygen transport in erythrocyte suspension or unmodified hemoglobin solution from human and other animals. Can J Physiol Pharmacol 2011; 89:631-7. [DOI: 10.1139/y11-061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxygen transport behavior in erythrocyte suspension or in hemoglobin solution was studied as a potential therapeutic model for the clinical treatment of blood loss, and this can also provide physiological data with which to evaluate blood substitutes. In the present project, we examined the in vitro kinetics of hemoglobin binding to and releasing oxygen, to provide detailed oxygen-flux measurements for unmodified hemoglobin solutions and erythrocyte suspensions in human, as well as other vertebrates. An in vitro method was used, based on a widely used artificial system, with the oxygen saturation level being detected in real time. Results from this study indicated that the kinetic curves of human erythrocyte suspensions and hemoglobin solutions were either S-shaped or hyperbolic, respectively. Based on these curves, the significance of T50 emerged in our investigation, where T50 is defined as the time needed for 50% hemoglobin to be saturated with oxygen, and reflects the efficiency with which hemoglobin carries oxygen. This parameter may be used to diagnose blood diseases, and could be a standard for evaluating blood substitutes. In this study, we also compared the T50 of 4 species of vertebrates, and found that it shows a distinct efficiency of oxygen binding related to species, and potentially reveals the evolutionary function of hemoglobin and its possible adaptation to the environment.
Collapse
Affiliation(s)
- Weiyan Peng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, P.R. China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, P.R. China
| | - Wei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, P.R. China
| | - Ke Lan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, P.R. China
| |
Collapse
|
40
|
Abstract
Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO(2) gradient and that the permeability for oxygen along the intervening pathway is sufficient.
Collapse
Affiliation(s)
- R N Pittman
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
41
|
Gardiner BS, Smith DW, O'Connor PM, Evans RG. A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney. Am J Physiol Renal Physiol 2011; 300:F1339-52. [DOI: 10.1152/ajprenal.00544.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To understand how arterial-to-venous (AV) oxygen shunting influences kidney oxygenation, a mathematical model of oxygen transport in the renal cortex was created. The model consists of a multiscale hierarchy of 11 countercurrent systems representing the various branch levels of the cortical vasculature. At each level, equations describing the reactive-advection-diffusion of oxygen are solved. Factors critical in renal oxygen transport incorporated into the model include the parallel geometry of arteries and veins and their respective sizes, variation in blood velocity in each vessel, oxygen transport (along the vessels, between the vessels and between vessel and parenchyma), nonlinear binding of oxygen to hemoglobin, and the consumption of oxygen by renal tissue. The model is calibrated using published measurements of cortical vascular geometry and microvascular Po2. The model predicts that AV oxygen shunting is quantitatively significant and estimates how much kidney V̇o2 must change, in the face of altered renal blood flow, to maintain cortical tissue Po2 at a stable level. It is demonstrated that oxygen shunting increases as renal V̇o2 or arterial Po2 increases. Oxygen shunting also increases as renal blood flow is reduced within the physiological range or during mild hemodilution. In severe ischemia or anemia, or when kidney V̇o2 increases, AV oxygen shunting in proximal vascular elements may reduce the oxygen content of blood destined for the medullary circulation, thereby exacerbating the development of tissue hypoxia. That is, cortical ischemia could cause medullary hypoxia even when medullary perfusion is maintained. Cortical AV oxygen shunting limits the change in oxygen delivery to cortical tissue and stabilizes tissue Po2 when arterial Po2 changes, but renders the cortex and perhaps also the medulla susceptible to hypoxia when oxygen delivery falls or consumption increases.
Collapse
Affiliation(s)
- Bruce S. Gardiner
- School of Computer Science and Software Engineering, The University of Western Australia, Perth
| | - David W. Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth
| | - Paul M. O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Roger G. Evans
- Department of Physiology, Monash University, Melbourne, Australia
| |
Collapse
|
42
|
Hightower CM, Salazar Vázquez BY, Woo Park S, Sriram K, Martini J, Yalcin O, Tsai AG, Cabrales P, Tartakovsky DM, Johnson PC, Intaglietta M. Integration of cardiovascular regulation by the blood/endothelium cell-free layer. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:458-70. [PMID: 21523919 DOI: 10.1002/wsbm.150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cell-free layer (CFL) width separating red blood cells in flowing blood from the endothelial cell membrane is shown to be a regulator of the balance between nitric oxide (NO) production by the endothelium and NO scavenging by blood hemoglobin. The CFL width is determined by hematocrit (Hct) and the vessel wall flow velocity gradient. These factors and blood and plasma viscosity determine vessel wall shear stress which regulates the production of NO in the vascular wall. Mathematical modeling and experimental findings show that vessel wall NO concentration is a strong nonlinear function of Hct and that small Hct variations have comparatively large effects on blood pressure regulation. Furthermore, NO concentration is a regulator of inflammation and oxygen metabolism. Therefore, small, sustained perturbations of Hct may have long-term effects that can promote pro-hypertensive and pro-inflammatory conditions. In this context, Hct and its variability are directly related to vascular tone, peripheral vascular resistance, oxygen transport and delivery, and inflammation. These effects are relevant to the analysis and understanding of blood pressure regulation, as NO bioavailability regulates the contractile state of blood vessels. Furthermore, regulation of the CFL is a direct function of blood composition therefore understanding of its physiology relates to the design and management of fluid resuscitation fluids. From a medical perspective, these studies propose that it should be of clinical interest to note small variations in patient's Hct levels given their importance in modulating the CFL width and therefore NO bioavailability. WIREs Syst Biol Med 2011 3 458-470 DOI: 10.1002/wsbm.150
Collapse
Affiliation(s)
- C Makena Hightower
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Moschandreou TE, Ellis CG, Goldman D. Influence of tissue metabolism and capillary oxygen supply on arteriolar oxygen transport: a computational model. Math Biosci 2011; 232:1-10. [PMID: 21439980 DOI: 10.1016/j.mbs.2011.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 03/12/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
We present a theoretical model for steady-state radial and longitudinal oxygen transport in arterioles containing flowing blood (plasma and red blood cells) and surrounded by living tissue. This model combines a detailed description of convective and diffusive oxygen transport inside the arteriole with a novel boundary condition at the arteriolar lumen surface, and the results provide new mass transfer coefficients for computing arteriolar O(2) losses based on far-field tissue O(2) tension and in the presence of spatially distributed capillaries. A numerical procedure is introduced for calculating O(2) diffusion from an arteriole to a continuous capillary-tissue matrix immediately adjacent to the arteriole. The tissue O(2) consumption rate is assumed to be constant and capillaries act as either O(2) sources or sinks depending on the local O(2) environment. Using the model, O(2) saturation (SO(2)) and tension (PO(2)) are determined for the intraluminal region of the arteriole, as well as for the extraluminal region in the neighbouring tissue. Our model gives results that are consistent with available experimental data and previous intraluminal transport models, including appreciable radial decreases in intraluminal PO(2) for all vessel diameters considered (12-100 μm) and slower longitudinal decreases in PO(2) for larger vessels than for smaller ones, and predicts substantially less diffusion of O(2) from arteriolar blood than do models with PO(2) specified at the edge of the lumen. The dependence of the new mass transfer coefficients on vessel diameter, SO(2) and far-field PO(2) is calculated allowing their application to a wide range of physiological situations. This novel arteriolar O(2) transport model will be a vital component of future integrated models of microvascular regulation of O(2) supply to capillary beds and the tissue regions they support.
Collapse
Affiliation(s)
- T E Moschandreou
- Department of Medical Biophysics, University of Western Ontario, London, Canada.
| | | | | |
Collapse
|
45
|
Cabrales P, Meng F, Acharya SA. Tissue oxidative metabolism after extreme hemodilution with PEG-conjugated hemoglobin. J Appl Physiol (1985) 2010; 109:1852-9. [PMID: 20813980 DOI: 10.1152/japplphysiol.00344.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
NADH-localized fluorometry was used as a noninvasive technique to monitor changes in the energy state of intact tissue (muscle and connective tissue), without anesthesia, as a function of blood plasma O(2)-carrying capacity in the hamster window chamber model. Acute moderate isovolemic hemodilution was induced by two isovolemic hemodilution steps: in the first step, 6% 70-kDa dextran (Dex70) was used to induce an acute anemic state (18% Hct); in the second step, exchange transfusion of polyethylene glycol (PEG) maleimide-conjugated Hb (4 g/dl, PEG-Hb) or Dex70 (6 g/dl) was used to reduce erythrocytes to 75% of baseline (11% Hct). PEG-Hb had six copies of PEG (5 kDa) conjugated to each human Hb (0.48 g PEG/g Hb) through extension arm-facilitated chemistry. Systemic parameters, microvascular perfusion, functional capillary density, intravascular and interstitial Po(2), and intracellular NADH fluorescence were monitored. Mean arterial blood pressure after extreme hemodilution was statistically significantly reduced for Dex70 compared with PEG-Hb. The presence of PEG-Hb in the circulation maintained positive acid-base balance. While microvascular blood flows were not different, functional capillary density was significantly higher for PEG-Hb than Dex70. Arteriolar Po(2) was higher in the presence of PEG-Hb than Dex70, but tissue and venular Po(2) were not different. Cellular energy metabolism (intracellular O(2)) in the tissues was improved with PEG-Hb. Moderate hemodilution to 18% Hct (6.4 g Hb/dl) brings tissue O(2) delivery to the verge of inadequacy. Extreme hemodilution to 11% Hct (3.7 g Hb/dl) produces tissue anoxia, and high-O(2)-affinity PEG-Hb (Po(2) at which blood is 50% saturated with O(2) = 4 Torr, 1.1 g Hb/dl) only partially decreases anaerobic metabolism without increasing tissue Po(2).
Collapse
Affiliation(s)
- Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0412, USA.
| | | | | |
Collapse
|
46
|
Chen J, Edwards A, Layton AT. Effects of pH and medullary blood flow on oxygen transport and sodium reabsorption in the rat outer medulla. Am J Physiol Renal Physiol 2010; 298:F1369-83. [PMID: 20335320 DOI: 10.1152/ajprenal.00572.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used a mathematical model of O(2) transport and the urine concentrating mechanism of the outer medulla of the rat kidney to study the effects of blood pH and medullary blood flow on O(2) availability and Na(+) reabsorption. The model predicts that in vivo paracellular Na(+) fluxes across medullary thick ascending limbs (mTALs) are small relative to transcellular Na(+) fluxes and that paracellular fluxes favor Na(+) reabsorption from the lumen along most of the mTAL segments. In addition, model results suggest that blood pH has a significant impact on O(2) transport and Na(+) reabsorption owing to the Bohr effect, according to which a lower pH reduces the binding affinity of hemoglobin for O(2). Thus our model predicts that the presumed greater acidity of blood in the interbundle regions, where mTALs are located, relative to that in the vascular bundles, facilitates the delivery of O(2) to support the high metabolic requirements of the mTALs and raises the concentrating capability of the outer medulla. Model results also suggest that increases in vascular and tubular flow rates result in disproportional, smaller increases in active O(2) consumption and mTAL active Na(+) transport, despite the higher delivery of O(2) and Na(+). That is, at a sufficiently high medullary O(2) supply, O(2) demand in the outer medulla does not adjust precisely to changes in O(2) delivery.
Collapse
Affiliation(s)
- Jing Chen
- Department of Mathematics, Duke University, Durham, North Carolina, USA
| | | | | |
Collapse
|
47
|
Wang W. Oxygen Partial Pressure in Outer Layers of Skin: Simulation Using Three-Dimensional Multilayered Models. Microcirculation 2010; 12:195-207. [PMID: 15824040 DOI: 10.1080/10739680590905062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Papillary loops in dermal papillae are believed to facilitate oxygen delivery to the germinal layer in the epidermis. The study aims to simulate the distribution of the oxygen partial pressure, pO2, in superficial layers of skin and to quantify oxygen supply from different sources. METHODS A theoretical model that considered heterogeneity in tissue properties was developed based on the anatomical arrangement of the upper skin. Distribution of pO2 in tissues and in blood was solved numerically. Effects of the blood flow rate and the skin surface condition were investigated. RESULTS Under normal blood flow rate and skin surface conditions, approximately one-quarter of the oxygen consumed in the upper skin came from papillary loops. Subpapillary plexus was the main supplier, which accounted for more than 60% of the total oxygen supply. Oxygen diffusion into the skin from the air was restricted to superficial regions of the germinal layer and accounted for approximately 10% of the total oxygen uptake. CONCLUSIONS Papillary loops in dermal papillae facilitate oxygen delivery to the germinal layer from the circulation. The flow rate in papillary loops affects pO2 distribution in dermal papillae. In the epidermis, however, pO2 is strongly affected by skin surface conditions.
Collapse
Affiliation(s)
- Wen Wang
- Medical Engineering Division, Department of Engineering, Queen Mary University of London, London, UK.
| |
Collapse
|
48
|
|
49
|
Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:353-70. [PMID: 19496677 DOI: 10.1089/ten.teb.2009.0085] [Citation(s) in RCA: 652] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue engineering is currently limited by the inability to adequately vascularize tissues in vitro or in vivo. Issues of nutrient perfusion and mass transport limitations, especially oxygen diffusion, restrict construct development to smaller than clinically relevant dimensions and limit the ability for in vivo integration. There is much interest in the field as researchers have undertaken a variety of approaches to vascularization, including material functionalization, scaffold design, microfabrication, bioreactor development, endothelial cell seeding, modular assembly, and in vivo systems. Efforts to model and measure oxygen diffusion and consumption within these engineered tissues have sought to quantitatively assess and improve these design strategies. This review assesses the current state of the field by outlining the prevailing approaches taken toward producing vascularized tissues and highlighting their strengths and weaknesses.
Collapse
Affiliation(s)
- Michael Lovett
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
50
|
Reglin B, Secomb TW, Pries AR. Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors? Am J Physiol Heart Circ Physiol 2009; 297:H2206-19. [PMID: 19783778 DOI: 10.1152/ajpheart.00348.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maintenance of functional vascular networks requires structural adaptation of vessel diameters in response to hemodynamic and metabolic conditions. The mechanisms by which diameters respond to the metabolic state are not known, but may involve the release of vasoactive substances in response to low oxygen by tissue ("tissue signaling", e.g., CO2, adenosine), by vessel walls ("wall signaling", e.g., prostaglandins, adenosine), and/or by red blood cells (RBCs) ("RBC signaling", e.g., ATP and nitric oxide). Here, the goal was to test the potential of each of these locations of oxygen-dependent signaling to control steady-state vascular diameters and tissue oxygenation. A previously developed theoretical model of structural diameter adaptation based on experimental data on microvascular network morphology and hemodynamics was used. Resulting network characteristics were analyzed with regard to tissue oxygenation (Oxdef; percentage of tissue volume with PO2<1 Torr) and the difference between estimated blood flow velocities and corresponding experimental data [velocity error (Verr); root mean square deviation of estimated vs. measured velocity]. Wall signaling led to Oxdef<1% and to the closest hemodynamic similarity (Verr: 0.60). Tissue signaling also resulted in a low oxygen deficit, but a higher Verr (0.73) and systematic diameter deviations. RBC signaling led to widespread hypoxia (Oxdef: 4.7%), unrealistic velocity distributions (Verr: 0.81), and shrinkage of small vessels. The results suggest that wall signaling plays a central role in structural control of vessel diameters in microvascular networks of given angioarchitecture. Tissue-derived and RBC-derived signaling of oxygen levels may be more relevant for the regulation of angiogenesis and/or smooth muscle tone.
Collapse
Affiliation(s)
- Bettina Reglin
- Department of Physiology and Cardiovascular Research Center, Charité Berlin, Arnimallee 22, D-14195 Berlin, Germany
| | | | | |
Collapse
|