1
|
Lan M, Tang X, Zhang J, Yao Z. Insights in pathogenesis of multiple sclerosis: nitric oxide may induce mitochondrial dysfunction of oligodendrocytes. Rev Neurosci 2018; 29:39-53. [PMID: 28822986 DOI: 10.1515/revneuro-2017-0033] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/15/2017] [Indexed: 01/01/2023]
Abstract
Demyelinating diseases, such as multiple sclerosis (MS), are kinds of common diseases in the central nervous system (CNS), and originated from myelin loss and axonal damage. Oligodendrocyte dysfunction is the direct reason of demyelinating lesions in the CNS. Nitric oxide (NO) plays an important role in the pathological process of demyelinating diseases. Although the neurotoxicity of NO is more likely mediated by peroxynitrite rather than NO itself, NO can impair oligodendrocyte energy metabolism through mediating the damaging of mitochondrial DNA, mitochondrial membrane and mitochondrial respiratory chain complexes. In the progression of MS, NO can mainly mediate demyelination, axonal degeneration and cell death. Hence, in this review, we extensively discuss endangerments of NO in oligodendrocytes (OLs), which is suggested to be the main mediator in demyelinating diseases, e.g. MS. We hypothesize that NO takes part in MS through impairing the function of monocarboxylate transporter 1, especially causing axonal degeneration. Then, it further provides a new insight that NO for OLs may be a reliable therapeutic target to ameliorate the course of demyelinating diseases.
Collapse
Affiliation(s)
- Minghong Lan
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyi Tang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Jie Zhang
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Zhongxiang Yao
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
2
|
Pentón-Rol G, Marín-Prida J, Falcón-Cama V. C-Phycocyanin and Phycocyanobilin as Remyelination Therapies for Enhancing Recovery in Multiple Sclerosis and Ischemic Stroke: A Preclinical Perspective. Behav Sci (Basel) 2018; 8:bs8010015. [PMID: 29346320 PMCID: PMC5791033 DOI: 10.3390/bs8010015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Myelin loss has a crucial impact on behavior disabilities associated to Multiple Sclerosis (MS) and Ischemic Stroke (IS). Although several MS therapies are approved, none of them promote remyelination in patients, limiting their ability for chronic recovery. With no available therapeutic options, enhanced demyelination in stroke survivors is correlated with a poorer behavioral recovery. Here, we show the experimental findings of our group and others supporting the remyelinating effects of C-Phycocyanin (C-PC), the main biliprotein of Spirulina platensis and its linked tetrapyrrole Phycocyanobilin (PCB), in models of these illnesses. C-PC promoted white matter regeneration in rats and mice affected by experimental autoimmune encephalomyelitis. Electron microscopy analysis in cerebral cortex from ischemic rats revealed a potent remyelinating action of PCB treatment after stroke. Among others biological processes, we discussed the role of regulatory T cell induction, the control of oxidative stress and pro-inflammatory mediators, gene expression modulation and COX-2 inhibition as potential mechanisms involved in the C-PC and PCB effects on the recruitment, differentiation and maturation of oligodendrocyte precursor cells in demyelinated lesions. The assembled evidence supports the implementation of clinical trials to demonstrate the recovery effects of C-PC and PCB in these diseases.
Collapse
Affiliation(s)
- Giselle Pentón-Rol
- Center for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Cubanacan, P.O. Box 6162, Playa, Havana 10600, Cuba.
| | - Javier Marín-Prida
- Center for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/214 y 222, La Lisa, PO Box 430, Havana 13600, Cuba.
| | - Viviana Falcón-Cama
- Center for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Cubanacan, P.O. Box 6162, Playa, Havana 10600, Cuba.
| |
Collapse
|
3
|
Mato S, Sánchez-Gómez MV, Bernal-Chico A, Matute C. Cytosolic zinc accumulation contributes to excitotoxic oligodendroglial death. Glia 2013; 61:750-64. [PMID: 23440871 DOI: 10.1002/glia.22470] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/27/2012] [Indexed: 01/01/2023]
Abstract
Dyshomeostasis of cytosolic Zn(2+) is a critical mediator of neuronal damage during excitotoxicity. However, the role of this cation in oligodendrocyte pathophysiology is not well understood. The current study examined the contribution of Zn(2+) deregulation to oligodendrocyte injury mediated by AMPA receptors. Oligodendrocytes loaded with the Zn(2+)-selective indicator FluoZin-3 responded to mild stimulation of AMPA receptors with fast cytosolic Zn(2+) rises that resulted from intracellular release, as they were not blocked by the extracellular Zn(2+) chelator Ca-EDTA. Pharmacological experiments suggested that AMPA-induced Zn(2+) mobilization depends on cytosolic Ca(2+) accumulation, arises from mitochondria and protein-bound pools, and is triggered by mechanisms that do not involve the generation of reactive oxygen species. Moreover, intracellular Zn(2+) rises resulting from AMPA receptor activation seem to be promoted by Ca(2+)-dependent cytosolic acidification. Addition of the cell-permeable Zn(2+) chelator TPEN significantly reduced mitochondrial membrane depolarization, reactive oxygen species production, and cell death by sub-maximal activation of AMPA receptors both in vitro and in situ, suggesting that Zn(2+) deregulation is an important mediator of oligodendrocyte excitotoxicity. These data provide evidence that strategies aimed at maintaining Zn(2+) homeostasis may be useful for the treatment of disorders in which excitotoxicity is an important trigger of oligodendroglial death.
Collapse
Affiliation(s)
- Susana Mato
- Departamento de Neurociencias, Universidad del País Vasco-UPV/EHU, E-48940 Leioa, Spain.
| | | | | | | |
Collapse
|
4
|
Peluffo H, Alí-Ruiz D, Ejarque-Ortíz A, Heras-Alvarez V, Comas-Casellas E, Martínez-Barriocanal A, Kamaid A, Alvarez-Errico D, Negro ML, Lago N, Schwartz S, Villaverde A, Sayós J. Overexpression of the immunoreceptor CD300f has a neuroprotective role in a model of acute brain injury. Brain Pathol 2011; 22:318-28. [PMID: 21951326 DOI: 10.1111/j.1750-3639.2011.00537.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
It is well known that cell surface immune receptors play a critical role in regulating immune and inflammatory processes in the central nervous system (CNS). We have analyzed the function of cluster of differentiation (CD)300f immunoreceptor in a model of excitotoxic rat brain damage. First, to explore the presence of endogenous ligand(s) for this receptor we used a human CD300f-Ig soluble protein and confocal microscopy, showing specific staining mainly in CNS white matter and on the surface of oligodendrocytes and certain astrocytes. Next, we demonstrated in a model of in vivo rat brain excitotoxic damage that the overexpression of human CD300f induced a significant reduction in the lesion volume. To validate these results, we cloned the rat ortholog of CD300f protein (rCD300f). The overexpression of rCD300f receptor had a comparable neuroprotective effect after the acute brain injury and a similar CNS staining pattern when stained with the rCD300f-Ig soluble protein. Interestingly, when we analyzed the expression pattern of rCD300f in brain cells by quantitative polymerase chain reaction and immunohistochemistry, we detected the expression of CD300f as expected in microglial cells, but also in oligodendrocytes and neurons. These data suggest that the neuroprotective role of CD300f would be the result of a complex network of cell interactions.
Collapse
Affiliation(s)
- Hugo Peluffo
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kim DH, Yoon BH, Jung WY, Kim JM, Park SJ, Park DH, Huh Y, Park C, Cheong JH, Lee KT, Shin CY, Ryu JH. Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice. Neuropharmacology 2010; 59:20-30. [PMID: 20363233 DOI: 10.1016/j.neuropharm.2010.03.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 01/27/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
Abstract
Excitotoxin induces neurodegeneration via glutamatergic activation or oxidative stress, which means that the blockade of glutamate receptors and the scavenging of free radicals are potential therapeutic targets in neurodegenerative diseases. Sinapic acid (SA) has a GABA(A) receptor agonistic property and free radical scavenging activity. We investigated the neuroprotective effects of SA on kainic acid (KA)-induced hippocampal brain damage in mice. SA (10 mg/kg) by oral administration has an anticonvulsant effect on KA-induced seizure-like behavior. Moreover, SA (10 mg/kg) significantly attenuated KA-induced neuronal cell death in the CA1 and CA3 hippocampal regions when administered as late as 6 h after KA. In addition, flumazenil, a GABA(A) antagonist, blocked the effect of SA administered immediately after KA but not the effect of SA administered 6 h after KA. This late protective effect of SA was accompanied by reduced levels of reactive gliosis, inducible nitric oxide synthase expression, and nitrotyrosine formation in the hippocampus. In the passive avoidance task, KA-induced memory impairments were ameliorated by SA. These results suggest that the potential therapeutic effect of SA is due to its attenuation of KA-induced neuronal damage in the brain via its anti-convulsive activity through GABA(A) receptor activation and radical scavenging activity.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lee JK, Won JS, Singh AK, Singh I. Statin inhibits kainic acid-induced seizure and associated inflammation and hippocampal cell death. Neurosci Lett 2008; 440:260-4. [PMID: 18583044 DOI: 10.1016/j.neulet.2008.05.112] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/30/2008] [Accepted: 05/22/2008] [Indexed: 10/22/2022]
Abstract
Statins are inhibitors of HMG-CoA reductase that have been recently recognized as anti-inflammatory and neuroprotective drugs. Herein, we investigated anti-excitotoxic and anti-seizure effects of statins by using kainic acid (KA)-rat seizure model, an animal model for temporal lobe epilepsy and excitotoxic neurodegeneration. We observed that pre-treatment with Lipitor (atorvastatin) efficiently reduced KA-induced seizure activities, hippocampal neuron death, monocyte infiltration and proinflammatory gene expression. In addition, we also observed that lovastatin treatment attenuated KA- or glutamate-induced excitotoxicity of cultured hippocampal neurons. These observations suggest a potential for use of statin treatment in modulation of seizures and other neurological diseases associated with excitotoxicity.
Collapse
Affiliation(s)
- Jin-Koo Lee
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Cerebral white matter injury, characterised by loss of premyelinating oligodendrocytes (pre-OLs), is the most common form of injury to the preterm brain and is associated with a high risk of neurodevelopmental impairment. The unique cerebrovascular anatomy and physiology of the premature baby underlies the exquisite sensitivity of white matter to the abnormal milieu of preterm extrauterine life, in particular ischaemia and inflammation. These two upstream mechanisms can coexist and amplify their effects, leading to activation of two principal downstream mechanisms: excitotoxicity and free radical attack. Upstream mechanisms trigger generation of reactive oxygen and nitrogen species. The pre-OL is intrinsically vulnerable to free radical attack due to immaturity of antioxidant enzyme systems and iron accumulation. Ischaemia and inflammation trigger glutamate receptor-mediated injury leading to maturation-dependent cell death and loss of cellular processes. This review looks at recent evidence for pathogenetic mechanisms in white matter injury with emphasis on targets for prevention and treatment of injury.
Collapse
Affiliation(s)
- O Khwaja
- Department of Neurology, Children's Hospital Boston, 300 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
8
|
Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP, Beckman JS. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci U S A 2006; 103:15038-43. [PMID: 17015830 PMCID: PMC1586181 DOI: 10.1073/pnas.0601945103] [Citation(s) in RCA: 635] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The putative oxidation of hydroethidine (HE) has become a widely used fluorescent assay for the detection of superoxide in cultured cells. By covalently joining HE to a hexyl triphenylphosphonium cation (Mito-HE), the HE moiety can be targeted to mitochondria. However, the specificity of HE and Mito-HE for superoxide in vivo is limited by autooxidation as well as by nonsuperoxide-dependent cellular processes that can oxidize HE probes to ethidium (Etd). Recently, superoxide was shown to react with HE to generate 2-hydroxyethidium [Zhao, H., Kalivendi, S., Zhang, H., Joseph, J., Nithipatikom, K., Vasquez-Vivar, J. & Kalyanaraman, B. (2003) Free Radic. Biol. Med. 34, 1359-1368]. However, 2-hydroxyethidium is difficult to distinguish from Etd by conventional fluorescence techniques exciting at 510 nm. While investigating the oxidation of Mito-HE by superoxide, we found that the superoxide product of both HE and Mito-HE could be selectively excited at 396 nm with minimal interference from other nonspecific oxidation products. The oxidation of Mito-HE monitored at 396 nm by antimycin-stimulated mitochondria was 30% slower than at 510 nm, indicating that superoxide production may be overestimated at 510 nm by even a traditional superoxide-stimulating mitochondrial inhibitor. The rate-limiting step for oxidation by superoxide was 4x10(6) M-1.s-1, which is proposed to involve the formation of a radical from Mito-HE. The rapid reaction with a second superoxide anion through radical-radical coupling may explain how Mito-HE and HE can compete for superoxide in vivo with intracellular superoxide dismutases. Monitoring oxidation at both 396 and 510 nm of excitation wavelengths can facilitate the more selective detection of superoxide in vivo.
Collapse
Affiliation(s)
- Kristine M. Robinson
- *Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Michael S. Janes
- *Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
- Invitrogen–Molecular Probes Labeling and Detection Technologies, Eugene, OR 97402
| | - Mariana Pehar
- Departamento de Neurobiología Celular, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600 Montevideo, Uruguay
| | - Jeffrey S. Monette
- *Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Meredith F. Ross
- Medical Research Council, Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, United Kingdom; and
| | - Tory M. Hagen
- *Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Michael P. Murphy
- Medical Research Council, Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, United Kingdom; and
| | - Joseph S. Beckman
- *Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Boullerne AI, Benjamins JA. Nitric oxide synthase expression and nitric oxide toxicity in oligodendrocytes. Antioxid Redox Signal 2006; 8:967-80. [PMID: 16771686 DOI: 10.1089/ars.2006.8.967] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oligodendrocytes (OLG) have more complex interactions with nitric oxide (NO) than initially suspected. Historically, OLG were seen only as targets of high NO levels released from other cells. Expression of nitric oxide synthase type II (NOS-2) in primary cultures of OLGs stimulated by cytokines led to controversy due to the presence of small numbers of microglia, cells also inducible for NOS-2 expression. The present review summarizes the findings that immature OLG express NOS-2, but that they do not in their most mature stage in culture as membrane sheet-bearing cells. This raises questions about the regulation of NOS-2 expression in OLG. Additionally, novel data are presented on NOS-3 expression in cultured OLG. If confirmed in vivo, this finding suggests that constitutive NOS-3 expression may play a key role in OLG injury due to its activation by calcium, in interaction with pathways mediating glutamate toxicity. The authors discuss in vivo NO levels to place in vitro findings in context, and compare OLG sensitivity to NO with that of other brain cells. Lastly, the multiple interactions of NO are considered with regard to glutamate cytotoxicity, the antioxidant glutathione, mitochondrial function, and myelin architecture.
Collapse
Affiliation(s)
- Anne I Boullerne
- Department of Anesthesiology, University of Illinois at Chicago, 60612, USA.
| | | |
Collapse
|
10
|
Alexander JJ, Jacob A, Bao L, Macdonald RL, Quigg RJ. Complement-dependent apoptosis and inflammatory gene changes in murine lupus cerebritis. THE JOURNAL OF IMMUNOLOGY 2006; 175:8312-9. [PMID: 16339572 DOI: 10.4049/jimmunol.175.12.8312] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of complement activation in the brains of MRL/lpr lupus mice was determined using the potent C3 convertase inhibitor, CR1-related y (Crry), administered both as an overexpressing Crry transgene and as Crry-Ig. Prominent deposition of complement proteins C3 and C9 in brains of MRL/lpr mice was indicative of complement activation and was significantly reduced by Crry. Apoptosis was determined in brain using different independent measures of apoptosis, including TUNEL staining, DNA laddering, and caspase-3 activity, all of which were markedly increased in lupus mice and could be blocked by inhibiting complement with Crry. Complement activation releases inflammatory mediators that can induce apoptosis. The mRNA for potentially proinflammatory proteins such as TNFR1, inducible NO synthase, and ICAM-1 were up-regulated in brains of lupus mice. Crry prevented the increased expression of these inflammatory molecules, indicating that the changes were complement dependent. Furthermore, microarray analysis revealed complement-dependent up-regulation of glutamate receptor (AMPA-GluR) expression in lupus brains, which was also validated for AMPA-GluR1 mRNA and protein. Our results clearly demonstrate that apoptosis is a prominent feature in lupus brains. Complement activation products either directly and/or indirectly through TNFR1, ICAM-1, inducible NO synthase, and AMPA-GluR, all of which were altered in MRL/lpr mouse brains, have the potential to induce such apoptosis. These findings present the exciting possibility that complement inhibition is a therapeutic option for lupus cerebritis.
Collapse
Affiliation(s)
- Jessy J Alexander
- Section of Nephrology, Department of Medicine, University of Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
11
|
Abstract
Periventricular leukomalacia is a form of white-matter injury that occurs in the setting of either primary or secondary hypoxia-ischemia in the premature infant. Hypoxia-ischemia induces increases in cerebral extracellular glutamate levels, thereby activating glutamate receptors on a variety of cell types within the white matter. This review examines the evidence of a role for glutamate receptors in white-matter injury and periventricular leukomalacia. Multiple glutamate receptor subtypes exist, and these appear to play differential roles depending on cell type and time after injury. Glutamate receptors are developmentally regulated on neurons and glia, and certain subtypes are transiently overexpressed in developing rodent brain and are expressed on immature oligodendrocytes in human white matter in the premature period. Pharmacologic agents acting on glutamate receptors might represent age-specific therapeutic strategies for the treatment of periventricular leukomalacia.
Collapse
Affiliation(s)
- Frances E Jensen
- Department of Neurology, Children's Hospital Boston, Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Abstract
Animal models have assisted in understanding the mechanisms of brain injury underlying cerebral palsy. Nevertheless, no such models replicate every aspect of the human disease. This review summarizes the classic and more recent studies of the neuropathology of human perinatal brain injury most commonly associated with cerebral palsy, for use by researchers and clinicians alike who need to analyze published animal models with respect to their fidelity to the human disorder. The neuropathology underlying cerebral palsy includes white-matter injury, known as periventricular leukomalacia, as well as germinal matrix hemorrhage with intraventricular extension, and injury to the cortex, basal ganglia, and thalamus. Each has distinctive features while sharing some risk factors, such as prematurity and/or hypoxia-ischemia in the perinatal period. Periventricular leukomalacia consists of diffuse injury of deep cerebral white matter, with or without focal necrosis. Recent work directly in human postmortem tissue has focused on the role of free radical injury, cytokine toxicity (especially in light of the epidemiologic association of periventricular leukomalacia with maternofetal infection), and excitotoxicity in the development of periventricular leukomalacia. Premyelinating oligodendrocytes, which predominate in periventricular regions during the window of vulnerability to periventricular leukomalacia (24-34 postconceptional weeks), are the targets of free radical injury, as determined by immunocytochemical markers of lipid peroxidation and protein nitration. This maturational susceptibility can be attributed in part to a relative deficiency of superoxide dismutases in developing white matter. Microglia, which respond to cytokines and to bacterial products such as lipopolysaccharide via Toll-like receptors, are increased in periventricular leukomalacia white matter and can contribute to cellular damage. Indeed, several cytokines, including tumor necrosis factor-a and interleukins 2 and 6, as well as interferon-g, have been demonstrated in periventricular leukomalacia. Preliminary work suggests a role for glutamate receptors and glutamate transporters in periventricular leukomalacia based on expression in human developing oligodendrocytes. Germinal matrix hemorrhage, with or without intraventricular hemorrhage, occurs in premature infants and can coexist with periventricular leukomalacia. Studies in human germinal matrix tissue have focused on maturation-based vascular factors, such as morphometry and expression of molecules related to the structure of the blood-brain barrier. Gray-matter injury, seen more commonly in term infants, includes cortical infarcts and status marmoratus. Subtle cortical injury overlying periventricular leukomalacia is the subject of current interest as a possible substrate for the cognitive difficulties seen in patients with cerebral palsy. In summary, it is hoped that work in human tissue, in conjunction with experimental animal models, will lead to eventual therapeutic or preventive strategies for the perinatal brain injury underlying cerebral palsy.
Collapse
Affiliation(s)
- Rebecca D Folkerth
- Department of Pathology, Brigham and Women's Hospital, Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Zeng C, Lee JT, Chen H, Chen S, Hsu CY, Xu J. Amyloid-β peptide enhances tumor necrosis factor-α-induced iNOS through neutral sphingomyelinase/ceramide pathway in oligodendrocytes. J Neurochem 2005; 94:703-12. [PMID: 16033420 DOI: 10.1111/j.1471-4159.2005.03217.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although accumulating evidence demonstrates that white matter degeneration contributes to pathology in Alzheimer's disease (AD), the underlying mechanisms are unknown. In order to study the roles of the amyloid-beta peptide in inducing oxidative stress damage in white matter of AD, we investigated the effects of amyloid-beta peptide 25-35 (Abeta) on proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha)-induced inducible nitric oxide synthase (iNOS) in cultured oligodendrocytes (OLGs). Although Abeta 25-35 by itself had little effect on iNOS mRNA, protein, and nitrite production, it enhanced TNF-alpha-induced iNOS expression and nitrite generation in OLGs. Abeta, TNF-alpha, or the combination of both, increased neutral sphingomyelinase (nSMase) activity, but not acidic sphingomyelinase (aSMase) activity, leading to ceramide accumulation. Cell permeable C2-ceramide enhanced TNF-alpha-induced iNOS expression and nitrite generation. Moreover, the specific nSMase inhibitor, 3-O-methyl-sphingomyelin (3-OMS), inhibited iNOS expression and nitrite production induced by TNF-alpha or by the combination of TNF-alpha and Abeta. Overexpression of a truncated mutant of nSMase with a dominant negative function inhibited iNOS mRNA production. 3-OMS also inhibited nuclear factor kappaB (NF-kappaB) binding activity induced by TNF-alpha or by the combination of TNF-alpha and Abeta. These results suggest that neutral sphingomyelinase/ceramide pathway is required but may not be sufficient for iNOS expression induced by TNF-alpha and the combination of TNF-alpha and Abeta.
Collapse
Affiliation(s)
- C Zeng
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
14
|
Segura Aguilar J, Kostrzewa RM. Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotox Res 2004; 6:615-30. [PMID: 15639792 DOI: 10.1007/bf03033456] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurotoxins, in the general sense, represent novel chemical structures which when administered in vivo or in vitro, are capable of producing neuronal damage or neurodegeneration--with some degree of specificity relating to neuronal phenotype or populations of neurons with specific characteristics (i.e., receptor type, ion channel type, astrocyte-dependence, etc.). The broader term 'neurotoxin' includes this categorization but extends the term to include intra- or extracellular mediators involved in the neurodegenerative event, including necrotic and apoptotic factors. Moreover, as it is recognized that astrocytes are essential supportive satellite cells for neurons, and because damage to these cells ultimately affects neuronal function, the term 'neurotoxin' might reasonably be extended to include those chemical species which also adversely affect astrocytes. This review is intended to highlight developments that have occurred in the field of 'neurotoxins' during the past 5 years, including MPTP/MPP+, 6-hydroxydopamine (6-OHDA), methamphetamine; salsolinol; leukoaminochrome-o-semiquinone; rotenone; iron; paraquat; HPP+; veratridine; soman; glutamate; kainate; 3-nitropropionic acid; peroxynitrite anion; and metals (copper, manganese, lead, mercury). Neurotoxins represent tools to help elucidate intra- and extra-cellular processes involved in neuronal necrosis and apoptosis, so that drugs can be developed towards targets that interrupt the processes leading towards neuronal death.
Collapse
Affiliation(s)
- Juan Segura Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Casilla 70000, Santiago, Chile.
| | | |
Collapse
|
15
|
Doucette TA, Bernard PB, Husum H, Perry MA, Ryan CL, Tasker RA. Low doses of domoic acid during postnatal development produce permanent changes in rat behaviour and hippocampal morphology. Neurotox Res 2004; 6:555-63. [PMID: 15639787 DOI: 10.1007/bf03033451] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well established that the developing brain is a highly dynamic environment that is susceptible to toxicity produced by a number of pharmacological, chemical and environmental insults. We report herein on permanent behavioural and morphological changes produced by exposing newborn rats to very low (subconvulsive) doses of kainate receptor agonists during a critical window of brain development. Daily treatment of SD rat pups with either 5 or 20 microg/kg of domoic acid (DOM) from postnatal day 8-14 resulted in a permanent and reproducible seizure-like syndrome when animals were exposed to different tests of spatial cognition as adults. Similar results were obtained when animals were treated with equi-efficacious doses of kainic acid (KA; 25 or 100 microg/kg). Treated rats had significant increases in hippocampal mossy fiber staining and reductions in hippocampal cell counts consistent with effects seen in adult rats following acute injections of high doses of kainic acid. In situ hybridization also revealed an elevation in hippocampal brain derived neurotrophic factor (BDNF) mRNA in region CA1 without a corresponding increase in neuropeptide Y (NPY) mRNA. These results provide evidence of long-lasting behavioural and histochemical consequences arising from relatively subtle changes in glutamatergic activity during development, that may be relevant to understanding the aetiology of seizure disorders and other forms of neurological disease.
Collapse
Affiliation(s)
- T A Doucette
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 Canada
| | | | | | | | | | | |
Collapse
|
16
|
Kostrzewa RM, Segura-Aguilar J. Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. a review. Neurotox Res 2003; 5:375-83. [PMID: 14715440 DOI: 10.1007/bf03033166] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular mechanisms involved in neurodegeneration and neuroprotection are continuing to be explored, and this paper focuses on some novel discoveries that give further insight into these processes. Oligodendrocytes and activated astroglia are likely generators of the pro-inflammatory cytokines, such as the tumor necrosis factor family and interleukin family, and these glial support cells express adhesion receptors (e.g., VCAM) and release intercellular adhesion molecules (ICAM) that have a major role in neuronal apoptosis. Even brief exposure to some substances, in ontogeny and sometimes in adulthood, can have lasting effects on behaviors because of their prominent toxicity (e.g., NMDA receptor antagonists) or because they sensitize receptors (e.g., dopamine D2 agonists), possibly permanently, and thereby alter behavior for the lifespan. Cell cycle genes which may be derived from microglia, are the most-recent entry into the neuroprotection schema. Neuroprotection afforded by some common substances (e.g., melatonin) and uncommon substances [e.g., nicotine, green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG), trolox], ordinarily thought to be simple radical scavengers, now are thought to invoke previously unsuspected cellular mechanisms in the process of neuroprotection. Although Alzheimer's disease (AD) has features of a continuous spectrum of neural and functional decline, in vivo PET imaging and and functional magnetic resonance imaging, indicate that AD can be staged into an early phase treatable by inhibitors of beta and gamma secretase; and a late phase which may be more amenable to treatment by drugs that prevent or reverse tau phosphorylation. Neural transplantation, thought to be the last hope for neurally injured patients (e.g., Parkinsonians), may be displaced by non-neural tissue transplants (e.g., human umbilical cord blood; Sertoli cells) which seem to provide similar neurotrophic support and improved behavior - without posing the major ethical dilemma of removing tissue from aborted fetuses. The objective of this paper is to invite added research into the newly discovered (or postulated) novel mechanisms; and to stimulate discovery of additional mechanisms attending neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Richard M Kostrzewa
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | | |
Collapse
|