1
|
Kalezic A, Korac A, Korac B, Jankovic A. l-Arginine Induces White Adipose Tissue Browning-A New Pharmaceutical Alternative to Cold. Pharmaceutics 2022; 14:pharmaceutics14071368. [PMID: 35890263 PMCID: PMC9324995 DOI: 10.3390/pharmaceutics14071368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
The beneficial effects of l-arginine supplementation in obesity and type II diabetes involve white adipose tissue (WAT) reduction and increased substrate oxidation. We aimed to test the potential of l-arginine to induce WAT browning. Therefore, the molecular basis of browning was investigated in retroperitoneal WAT (rpWAT) of rats exposed to cold or treated with 2.25% l-arginine for 1, 3, and 7 days. Compared to untreated control, levels of inducible nitric oxide (NO) synthase protein expression and NO signaling increased in both cold-exposed and l-arginine-treated groups. These increases coincided with the appearance of multilocular adipocytes and increased expression levels of uncoupling protein 1 (UCP1), thermogenic and beige adipocyte-specific genes (Cidea, Cd137, and Tmem26), mitochondriogenesis markers (peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α, mitochondrial DNA copy number), nuclear respiratory factor 1, PPARα and their respective downstream lipid oxidation enzymes after l-arginine treatment. Such browning phenotype in the l-arginine-treated group was concordant with end-course decreases in leptinaemia, rpWAT mass, and body weight. In conclusion, l-arginine mimics cold-mediated increases in NO signaling in rpWAT and induces molecular and structural fingerprints of rpWAT browning. The results endorse l-arginine as a pharmaceutical alternative to cold exposure, which could be of great interest in obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Andjelika Kalezic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.K.); (B.K.)
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, 11060 Belgrade, Serbia;
| | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.K.); (B.K.)
| | - Aleksandra Jankovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.K.); (B.K.)
- Correspondence: ; Tel.: +381-11-2078-307
| |
Collapse
|
2
|
Nasution Z, Jirapakkul W, Tongkhao K, Chanput W. The Effect of Coconut Water on Adipocyte Differentiation and Lipid Accumulation in 3T3-L1 Cells. J Nutr Sci Vitaminol (Tokyo) 2021; 66:S343-S348. [PMID: 33612622 DOI: 10.3177/jnsv.66.s343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Coconut water is reported to have lipid-lowering effects in animal studies. However, there is lack of published reports regarding its effect on adipocytes. This study observed the effect of coconut water on adipocyte differentiation and lipid accumulation in 3T3-L1 cells. The sample used in this study was mature coconut water from tall variety. Based on a preliminary study, the sample was heat-treated and added with certain amino acids as precursors for Maillard reaction to improve its original flavor. As a comparison, aromatic coconut water was used since it is highly preferred as a fresh beverage. Six samples were supplemented to 3T3-L1 cells, which were then analyzed for cell proliferation, lipid accumulation, triglyceride content, and gene expression. Arginine and vitamin C contents of the samples were also determined. The data were analyzed with ANOVA and followed by Tukey's test. Results showed that aromatic coconut water could slightly suppress lipid accumulation, while mature coconut water had a significantly lower percentage of accumulation compared to the control sample (p<0.05). Canned and fresh samples had no significant difference in terms of lipid-lowering activity (p>0.05). Similarly, the addition of lysine and proline in canned samples did not significantly affect the cells' differentiation. There was no significant effect on expressions of C/EBP-α and PPARγ, indicating the possibility of other pathways involved in hypolipidemic effect of coconut water. This study showed that coconut water might have potential to inhibit adipogenesis in 3T3-L1 cells due to its bioactive compounds.
Collapse
Affiliation(s)
- Zuraidah Nasution
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University.,Department of Community Nutrition, Faculty of Human Ecology, IPB University
| | - Wannee Jirapakkul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University
| | - Kullanart Tongkhao
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University
| | - Wasaporn Chanput
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University
| |
Collapse
|
3
|
Manivannan A, Lee ES, Han K, Lee HE, Kim DS. Versatile Nutraceutical Potentials of Watermelon-A Modest Fruit Loaded with Pharmaceutically Valuable Phytochemicals. Molecules 2020; 25:E5258. [PMID: 33187365 PMCID: PMC7698065 DOI: 10.3390/molecules25225258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Watermelon (Citrulus lantus) is an important horticultural crop which belongs to the Curcubitaceae family. The nutraceutical potential of watermelon has been illustrated by several researchers, which makes it a better choice of functional food. Watermelon has been used to treat various ailments, such as cardio-vascular diseases, aging related ailments, obesity, diabetes, ulcers, and various types of cancers. The medicinal properties of watermelon are attributed by the presence of important phytochemicals with pharmaceutical values such as lycopene, citrulline, and other polyphenolic compounds. Watermelon acts as vital source of l-citrulline, a neutral-alpha amino acid which is the precursor of l-arginine, an essential amino acid necessary for protein synthesis. Supplementation of l-citrulline and lycopene displayed numerous health benefits in in vitro and in vivo studies. Similarly, the dietary intake of watermelon has proven benefits as functional food in humans for weight management. Apart from the fruits, the extracts prepared from the seeds, sprouts, and leaves also evidenced medicinal properties. The present review provides a comprehensive overview of benefits of watermelon for the treatment of various ailments.
Collapse
Affiliation(s)
| | | | | | | | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea; (A.M.); (E.-S.L.); (K.H.); (H.-E.L.)
| |
Collapse
|
4
|
Zhang XY, Zhu MK, Yuan C, Zou XT. Proteomic analysis of hypothalamus and liver proteins affected by dietary l-arginine supplementation in laying hens. J Anim Physiol Anim Nutr (Berl) 2018; 102:1553-1563. [PMID: 30091229 DOI: 10.1111/jpn.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022]
Abstract
The goal of this study was to investigate the influence of l-arginine (l-Arg) supplementation on diet-induced changes in hypothalamus and liver proteome of laying hens. Layers were fed either an isonitrogenous control diet or a l-Arg diet. The test included a 2-week acclimation period and a 12-week experimental period. Eight layers per group were sacrificed at terminal of the experiment underwent 12 fasting. Blood and tissue samples of hypothalamus and liver were collected for further analysis. The levels of serum nitric oxide and hypothalamus neuropeptide Y of layers in l-Arg group were increased in comparison with those in control group. Quantitative proteomic analyses showed that a total of 3,715 hypothalamus proteins (235 differentially expressed) and 3797 liver proteins (373 differentially expressed) were detected between control and l-Arg-fed groups. A further enriched Gene Ontology term analysis of proteins found that 17 hypothalamus proteins (11 upregulated and six downregulated) and 29 liver proteins (14 upregulated and 15 downregulated) were altered differentially between the two groups. Our findings revealed the changes in metabolic and hormonal signals in central nervous system and peripheral tissues by responding to l-Arg feeding, which provides a possible way to gain a better understanding of l-Arg function in laying hens.
Collapse
Affiliation(s)
- X Y Zhang
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
| | - M K Zhu
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
| | - C Yuan
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
| | - X T Zou
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Pinto E, Anselmo M, Calha M, Bottrill A, Duarte I, Andrew PW, Faleiro ML. The intestinal proteome of diabetic and control children is enriched with different microbial and host proteins. MICROBIOLOGY-SGM 2017; 163:161-174. [PMID: 28270263 DOI: 10.1099/mic.0.000412] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, the intestinal microbial proteome of children with established type 1 diabetes (T1D) was compared with the proteome of healthy children (Control) with the aim to identify differences in the activity of the intestinal microbiota that not only will contribute to a deeper knowledge of the functionality of the gut in these children but also may provide new approaches to improve the control of the disease. Faecal protein extracts collected from three T1D children (aged 9.3±0.6 years) and three Control children (aged 9.3±1.5 years) were analysed using a combination of 2D gel electrophoresis and spectral counting. The results evidenced markedly differences between the intestinal proteome of T1D children and the Control. The T1D microbial intestinal proteome was enriched with proteins of clostridial cluster XVa and cluster IV and Bacteroides. In contrast, the Control proteome was enriched with bifidobacterial proteins. In both groups, proteins with moonlight function were observed. Human proteins also distinguished the two groups with T1D children depleted in exocrine pancreatic enzymes.
Collapse
Affiliation(s)
- Elsa Pinto
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marisol Anselmo
- Núcleo de Diabetologia, Nutrição e Doenças Metabólicas (NDNDM) do Hospital de Faro, 8000-386 Faro, Portugal
| | - Manuela Calha
- Núcleo de Diabetologia, Nutrição e Doenças Metabólicas (NDNDM) do Hospital de Faro, 8000-386 Faro, Portugal
| | - Andrew Bottrill
- Protein and Nucleic Acid Chemistry Laboratory (PNACL), University of Leicester, Leicester LE1 7RH, UK
| | - Isabel Duarte
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Peter W Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK
| | - Maria L Faleiro
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
6
|
Kaore SN, Amane HS, Kaore NM. Citrulline: pharmacological perspectives and its role as an emerging biomarker in future. Fundam Clin Pharmacol 2012; 27:35-50. [DOI: 10.1111/j.1472-8206.2012.01059.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/18/2012] [Accepted: 06/08/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Shilpa N. Kaore
- Department of Pharmacology; People's College of Medical Sciences; Bhanpur Road; Bhopal; Madhya Pradesh; 462037; India
| | - Hanmant S. Amane
- Department of Pharmacology; People's College of Medical Sciences; Bhanpur Road; Bhopal; Madhya Pradesh; 462037; India
| | - Navinchandra M. Kaore
- Department of Microbiology; People's College of Medical Sciences; Bhanpur Road; Bhopal; Madhya Pradesh; 462037; India
| |
Collapse
|
7
|
|
8
|
Sandhya V, Rajamohan T. Comparative evaluation of the hypolipidemic effects of coconut water and lovastatin in rats fed fat–cholesterol enriched diet. Food Chem Toxicol 2008; 46:3586-92. [DOI: 10.1016/j.fct.2008.08.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/17/2008] [Accepted: 08/28/2008] [Indexed: 11/30/2022]
|
9
|
Wu G, Collins JK, Perkins-Veazie P, Siddiq M, Dolan KD, Kelly KA, Heaps CL, Meininger CJ. Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 2007; 137:2680-5. [PMID: 18029483 DOI: 10.1093/jn/137.12.2680] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Watermelon is rich in L-citrulline, an effective precursor of L-arginine. This study was conducted to determine whether dietary supplementation with watermelon pomace juice could ameliorate the metabolic syndrome in the Zucker diabetic fatty (ZDF) rat, an animal model of noninsulin-dependent diabetes mellitus. Nine-week-old ZDF rats were assigned randomly to receive drinking water containing 0% (control) or 0.2% L-arginine (as 0.24% L-arginine-HCl), 63% watermelon pomace juice, 0.01% lycopene, or 0.05% citrus pectin (n = 6 per treatment). At the end of the 4-wk supplementation period, blood samples, aortic rings, and hearts were obtained for biochemical and physiological analyses. Feed or energy intakes did not differ among the 5 groups of rats. However, dietary supplementation with watermelon pomace juice or L-arginine increased serum concentrations of arginine; reduced fat accretion; lowered serum concentrations of glucose, free fatty acids, homocysteine, and dimethylarginines; enhanced GTP cyclohydrolase-I activity and tetrahydrobiopterin concentrations in the heart; and improved acetylcholine-induced vascular relaxation. Compared with the control, dietary supplementation with lycopene or citrus pectin did not affect any measured parameter. These results provide the first evidence to our knowledge for a beneficial effect of watermelon pomace juice as a functional food for increasing arginine availability, reducing serum concentrations of cardiovascular risk factors, improving glycemic control, and ameliorating vascular dysfunction in obese animals with type-II diabetes.
Collapse
Affiliation(s)
- Guoyao Wu
- Faculty of Nutrition and Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu YH. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 2007; 56:1647-54. [PMID: 17360978 DOI: 10.2337/db07-0123] [Citation(s) in RCA: 405] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leucine, as an essential amino acid and activator of mTOR (mammalian target of rapamycin), promotes protein synthesis and suppresses protein catabolism. However, the effect of leucine on overall glucose and energy metabolism remains unclear, and whether leucine has beneficial effects as a long-term dietary supplement has not been examined. In the present study, we doubled dietary leucine intake via leucine-containing drinking water in mice with free excess to either a rodent chow or a high-fat diet (HFD). While it produced no major metabolic effects in chow-fed mice, increasing leucine intake resulted in up to 32% reduction of weight gain (P < 0.05) and a 25% decrease in adiposity (P < 0.01) in HFD-fed mice. The reduction of adiposity resulted from increased resting energy expenditure associated with increased expression of uncoupling protein 3 in brown and white adipose tissues and in skeletal muscle, while food intake was not decreased. Increasing leucine intake also prevented HFD-induced hyperglycemia, which was associated with improved insulin sensitivity, decreased plasma concentrations of glucagon and glucogenic amino acids, and downregulation of hepatic glucose-6-phosphatase. Additionally, plasma levels of total and LDL cholesterol were decreased by 27% (P < 0.001) and 53% (P < 0.001), respectively, in leucine supplemented HFD-fed mice compared with the control mice fed the same diet. The reduction in cholesterol levels was largely independent of leucine-induced changes in adiposity. In conclusion, increases in dietary leucine intake substantially decrease diet-induced obesity, hyperglycemia, and hypercholesterolemia in mice with ad libitum consumption of HFD likely via multiple mechanisms.
Collapse
Affiliation(s)
- Yiying Zhang
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G. Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 2006; 17:571-88. [PMID: 16524713 DOI: 10.1016/j.jnutbio.2005.12.001] [Citation(s) in RCA: 467] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/30/2005] [Accepted: 12/02/2005] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is synthesized from L-arginine by NO synthase in virtually all cell types. Emerging evidence shows that NO regulates the metabolism of glucose, fatty acids and amino acids in mammals. As an oxidant, pathological levels of NO inhibit nearly all enzyme-catalyzed reactions through protein oxidation. However, as a signaling molecule, physiological levels of NO stimulate glucose uptake as well as glucose and fatty acid oxidation in skeletal muscle, heart, liver and adipose tissue; inhibit the synthesis of glucose, glycogen, and fat in target tissues (e.g., liver and adipose); and enhance lipolysis in adipocytes. Thus, an inhibition of NO synthesis causes hyperlipidemia and fat accretion in rats, whereas dietary arginine supplementation reduces fat mass in diabetic fatty rats. The putative underlying mechanisms may involve multiple cyclic guanosine-3',5'-monophosphate-dependent pathways. First, NO stimulates the phosphorylation of adenosine-3',5'-monophosphate-activated protein kinase, resulting in (1) a decreased level of malonyl-CoA via inhibition of acetyl-CoA carboxylase and activation of malonyl-CoA decarboxylase and (2) a decreased expression of genes related to lipogenesis and gluconeogenesis (glycerol-3-phosphate acyltransferase, sterol regulatory element binding protein-1c and phosphoenolpyruvate carboxykinase). Second, NO increases the phosphorylation of hormone-sensitive lipase and perilipins, leading to the translocation of the lipase to the neutral lipid droplets and, hence, the stimulation of lipolysis. Third, NO activates expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha, thereby enhancing mitochondrial biogenesis and oxidative phosphorylation. Fourth, NO increases blood flow to insulin-sensitive tissues, promoting substrate uptake and product removal via the circulation. Modulation of the arginine-NO pathway through dietary supplementation with L-arginine or L-citrulline may aid in the prevention and treatment of the metabolic syndrome in obese humans and companion animals, and in reducing unfavorable fat mass in animals of agricultural importance.
Collapse
|
12
|
Sandhya VG, Rajamohan T. Beneficial Effects of Coconut Water Feeding on Lipid Metabolism in Cholesterol-Fed Rats. J Med Food 2006; 9:400-7. [PMID: 17004906 DOI: 10.1089/jmf.2006.9.400] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to determine the effect of coconut water feeding in cholesterol-fed rats. Male albino rats were fed tender coconut water and mature coconut water at a dose level of 4 mL/100 g of body weight. Cholesterol feeding caused a marked increase in total cholesterol, very low-density lipoprotein (VLDL) + low-density lipoprotein (LDL) cholesterol, and triglycerides in serum. Administration of coconut water counteracts the increase in total cholesterol, VLDL + LDL cholesterol, and triglycerides, while high-density lipoprotein cholesterol was higher. Lipid levels in the tissues viz. liver, heart, kidney, and aorta were markedly decreased in cholesterol-fed rats supplemented with coconut water. Feeding coconut water resulted in increased activities of 3-hydroxy-3-methylglutaryl-CoA reductase in liver, lipoprotein lipase in heart and adipose tissue, and plasma lecithin:cholesterol acyl transferase, while lipogenic enzymes showed decreased activities. An increased rate of cholesterol conversion to bile acid and an increased excretion of bile acids and neutral sterols were observed in rats fed coconut water. Histopathological studies of liver and aorta revealed much less fatty accumulation in these tissues in cholesterol-fed rats supplemented with coconut water. Feeding coconut water resulted in increased plasma L-arginine content, urinary nitrite level, and nitric oxide synthase activity. These results indicate that both tender and mature coconut water has beneficial effects on serum and tissue lipid parameters in rats fed cholesterol-containing diet.
Collapse
Affiliation(s)
- V G Sandhya
- Department of Biochemistry, University of Kerala, Trivandrum, Kerala, India
| | | |
Collapse
|
13
|
Fu WJ, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE, Carroll RJ, Meininger CJ, Wu G. Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 2005; 135:714-21. [PMID: 15795423 DOI: 10.1093/jn/135.4.714] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was conducted to test the hypothesis that dietary supplementation of arginine, the physiologic precursor of nitric oxide (NO), reduces fat mass in the Zucker diabetic fatty (ZDF) rat, a genetically obese animal model of type-II diabetes mellitus. Male ZDF rats, 9 wk old, were pair-fed Purina 5008 diet and received drinking water containing arginine-HCl (1.51%) or alanine (2.55%, isonitrogenous control) for 10 wk. Serum concentrations of arginine and NO(x) (oxidation products of NO) were 261 and 70% higher, respectively, in arginine-supplemented rats than in control rats. The body weights of arginine-treated rats were 6, 10, and 16% lower at wk 4, 7, and 10 after the treatment initiation, respectively, compared with control rats. Arginine supplementation reduced the weight of abdominal (retroperitoneal) and epididymal adipose tissues (45 and 25%, respectively) as well as serum concentrations of glucose (25%), triglycerides (23%), FFA (27%), homocysteine (26%), dimethylarginines (18-21%), and leptin (32%). The arginine treatment enhanced NO production (71-85%), lipolysis (22-24%), and the oxidation of glucose (34-36%) and octanoate (40-43%) in abdominal and epididymal adipose tissues. Results of the microarray analysis indicated that arginine supplementation increased adipose tissue expression of key genes responsible for fatty acid and glucose oxidation: NO synthase-1 (145%), heme oxygenase-3 (789%), AMP-activated protein kinase (123%), and peroxisome proliferator-activated receptor gamma coactivator-1alpha (500%). The induction of these genes was verified by real-time RT-PCR analysis. In sum, arginine treatment may provide a potentially novel and useful means to enhance NO synthesis and reduce fat mass in obese subjects with type-II diabetes mellitus.
Collapse
Affiliation(s)
- Wenjiang J Fu
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|