1
|
Deng S, Zhang Y, Shen S, Li C, Qin C. Immunometabolism of Liver Xenotransplantation and Prospective Solutions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407610. [PMID: 39912334 PMCID: PMC11884532 DOI: 10.1002/advs.202407610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Indexed: 02/07/2025]
Abstract
End-stage liver diseases, such as hepatocellular carcinoma or acute liver failure, critically necessitate liver transplantation. However, the shortage of available organ donors fails to meet the rapidly growing transplantation demand. Due to the high similarity of liver tissue structure and metabolism between miniature pigs and humans, xenotransplantation of pig livers is considered as a potentially viable solution to organ scarcity. In the 2024, teams from China first time have successfully transplanted a genetically modified Bama miniature pig liver into a clinically brain-dead man lasting for 10 days. This milestone in human xenotransplantation research not only confirms the feasibility of clinical application of xenotransplantation, but also underscores the daunting and protracted nature of this pathway. Despite advanced gene-editing technologies theoretically circumventing the occurrence of most transplant rejection reactions, patients still face challenges such as chronic immune rejection, coagulation disorders, and thrombotic microangiopathy after receiving xenografts. Moreover, prolonged use of immunosuppressive drugs may induce irreversible immune dysfunction, leading to opportunistic infections and metabolic disorders. This article compares the similarities and differences in livers between humans and pigs, summarizes the immunometabolism of xenotransplantation based on current findings, and provides research perspectives on pre-transplantation and post-transplantation strategies for prolonging the survival time of xenografts.
Collapse
Affiliation(s)
- Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| | - Yi Zhang
- Department of MedicinePanzhihua UniversitySichuan61700China
| | - Shasha Shen
- Department of MedicinePanzhihua UniversitySichuan61700China
| | - Chongyang Li
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Chuan Qin
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| |
Collapse
|
2
|
Hong S, Heo H, Kim HJ, Jeong HS, Lee H, Lee J. Avenanthramides Ameliorate Insulin Resistance by Modulating Gluconeogenesis and Glycogen Synthesis in HepG2 Cells. J Med Food 2025; 28:18-27. [PMID: 39527253 DOI: 10.1089/jmf.2024.k.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is a multifaceted metabolic condition, mainly defined by elevated blood glucose levels. A feature of type 2 DM includes insulin resistance (IR), which involves impairments within the insulin signaling pathways. Avenanthramides (AVNs) are phenolic alkaloids found in Avena sativa L. The major AVNs are AVN A, AVN B, and AVN C. They have been reported to offer benefits in preventing inflammation, cancer, and cardiovascular diseases. However, the effects of AVNs on the liver glucose metabolism pathways remain unknown. This study examined the effects and underlying mechanisms through which AVNs alleviate IR induced by free fatty acid (FFA) in HepG2 cells. The results indicated that FFA treatment significantly decreased glucose consumption by 34.54% compared to the control. However, treatments with AVN A, B, and C at 100 μM increased glucose uptake by 57.93%, 58.28%, and 53.10%, respectively, compared to FFA treatment alone. This effect occurs through the increased expression of glucose transporter 4. Furthermore, AVNs significantly enhanced the glycogen content. AVNs induced increased phosphorylation of insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (Akt). AVNs treatment decreased the levels of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in HepG2 cells. This effect was attributed to AMP-activated protein kinase activation and inhibition of forkhead box protein O1. Collectively, these results suggest that AVNs regulate glucose metabolism by activating the IRS-1/PI3K/Akt pathway, which is related to glycogen synthesis, and by inhibiting key molecules that promote gluconeogenesis.
Collapse
Affiliation(s)
- Seonghwa Hong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Hyun-Joo Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Korea
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
3
|
Beck DL, Gilbert ER, Cline MA. Embryonic thermal challenge is associated with increased stressor resiliency later in life: Molecular and morphological mechanisms in the small intestine. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111724. [PMID: 39111617 DOI: 10.1016/j.cbpa.2024.111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
Developing chick embryos that are subjected to increased incubation temperature are more stressor-resilient later in life, but the underlying process is poorly understood. The potential mechanism may involve changes in small intestine function. In this study, we determined behavioral, morphological, and molecular effects of increased embryonic incubation temperatures and post-hatch heat challenge in order to understand how embryonic heat conditioning (EHC) affects gut function. At 4 days post-hatch, duodenum, jejunum, and ileum samples were collected at 0, 2, and 12 h relative to the start of heat challenge. In EHC chicks, we found that markers of heat and oxidative stress were generally lower while those of nutrient transport and antioxidants were higher. Temporally, gene expression changes in response to the heat challenge were similar in control and EHC chicks for markers of heat and oxidative stress. Crypt depth was greater in control than EHC chicks at 2 h post-challenge, and the villus height to crypt depth ratio increased from 2 to 12 h in both control and EHC chicks. Collectively, these results suggest that EHC chicks might be more energetically efficient at coping with thermal challenge, preferentially allocating nutrients to other tissues while protecting the mucosal layer from oxidative damage. These results provide targets for future studies aimed at understanding the molecular mechanisms underlying effects of embryonic heat exposure on intestinal function and stressor resiliency later in life.
Collapse
Affiliation(s)
- David L Beck
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Ahwin P, Martinez D. The relationship between SGLT2 and systemic blood pressure regulation. Hypertens Res 2024; 47:2094-2103. [PMID: 38783146 PMCID: PMC11298408 DOI: 10.1038/s41440-024-01723-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The sodium-glucose cotransporter 2 (SGLT2) is a glucose transporter that is located within the proximal tubule of the kidney's nephrons. While it is typically associated with the kidney, it was later identified in various areas of the central nervous system, including areas modulating cardiorespiratory regulation like blood pressure. In the kidney, SGLT2 functions by reabsorbing glucose from the nephron's tubule into the bloodstream. SGLT2 inhibitors are medications that hinder the function of SGLT2, thus preventing the absorption of glucose and allowing for its excretion through the urine. While SGLT2 inhibitors are not the first-line choice, they are given in conjunction with other pharmaceutical interventions to manage hyperglycemia in individuals with diabetes mellitus. SGLT2 inhibitors also have a surprising secondary effect of decreasing blood pressure independent of blood glucose levels. The implication of SGLT2 inhibitors in lowering blood pressure and its presence in the central nervous system brings to question the role of SGLT2 in the brain. Here, we evaluate and review the function of SGLT2, SGLT2 inhibitors, their role in blood pressure control, the future of SGLT2 inhibitors as antihypertensive agents, and the possible mechanisms of SGLT2 blood pressure control in the central nervous system.
Collapse
Affiliation(s)
- Priscilla Ahwin
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ, 08103, USA
| | - Diana Martinez
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ, 08103, USA.
| |
Collapse
|
5
|
Amirkhosravi L, Kordestani Z, Nikooei R, Safi Z, Yeganeh-Hajahmadi M, Mirtajaddini-Goki M. Exercise-related alterations in MCT1 and GLUT4 expressions in the liver and pancreas of rats with STZ-induced diabetes. J Diabetes Metab Disord 2023; 22:1355-1363. [PMID: 37975118 PMCID: PMC10638214 DOI: 10.1007/s40200-023-01255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/19/2023] [Indexed: 11/19/2023]
Abstract
Background The liver and pancreas tissues play a central role in controlling glucose homeostasis. In patients with type I diabetes mellitus (T1DM), the function of these tissues is impaired. The positive effects of exercise have been shown in diabetic patients. To demonstrate the positive effects of exercise in T1DM, we examined the effects of moderate-intensity endurance training (MIET) on the liver enzymes and expression of MCT1 and GLUT4 genes. Methods Male Wistar rats were allocated into 4 groups of control (C), training (T), diabetic control (DC), and diabetes + training (DT). The serum levels of liver enzymes such as alanine aminotransferase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) were determined by ELIZA. MCT1 and GLUT4 mRNA expressions in the liver and pancreas tissues were evaluated through real-time qPCR after 10 weeks of training. Results The mRNA levels of MCT1 and GLUT4 decreased in DC group and increased in DT group. T1DM led to weight loss, but the weight loss was less in the DT group. T1DM caused an increase in liver enzymes such as ALT, AST and ALP, whereas endurance training preserved enzymatic levels. Conclusion These results suggested that MIET increases levels of MCT1 and GLUT4 liver and pancreas in the diabetic rats and improves liver function tests. Upregulation of MCT1 and GLUT4 can probably improve the function of liver and pancreas tissues and promote glucose homeostasis in T1DM.
Collapse
Affiliation(s)
- Ladan Amirkhosravi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zeinab Kordestani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Rohollah Nikooei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zohreh Safi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboobeh Yeganeh-Hajahmadi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryamossadat Mirtajaddini-Goki
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
6
|
Subramaniam M, Loewen ME. Review: A species comparison of the kinetic homogeneous and heterogeneous organization of sodium-dependent glucose transport systems along the intestine. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111492. [PMID: 37536429 DOI: 10.1016/j.cbpa.2023.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The targeted use of carbohydrates by feed and food industries to create balanced and cost-effective diets has generated a tremendous amount of research in carbohydrate digestion and absorption in different species. Specifically, this research has led us to a larger observation that identified different organizations of intestinal sodium-dependent glucose absorption across species, which has not been previously collated and reviewed. Thus, this review will compare the kinetic segregation of sodium-dependent glucose transport across the intestine of different species, which we have termed either homogeneous or heterogeneous systems. For instance, the pig follows a heterogeneous system of sodium-dependent glucose transport with a high-affinity, super-low-capacity (Ha/sLc) in the jejunum, and a high-affinity, super-high-capacity (Ha/sHc) in the ileum. This is achieved by multiple sodium-dependent glucose transporters contributing to each segment. In contrast, tilapia have a homogenous system characterized by high-affinity, high-capacity (Ha/Hc) throughout the intestine. Additionally, we are the first to report glucose transporter patterns across species presented from vertebrates to invertebrates. Finally, other kinetic transport systems are briefly covered to illustrate possible contributions/modulations to sodium-dependent glucose transporter organization. Overall, we present a new perspective on the organization of glucose absorption along the intestinal tract.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
7
|
Chun HJ, Kim ER, Lee M, Choi DH, Kim SH, Shin E, Kim JH, Cho JW, Han DH, Cha BS, Lee YH. Increased expression of sodium-glucose cotransporter 2 and O-GlcNAcylation in hepatocytes drives non-alcoholic steatohepatitis. Metabolism 2023:155612. [PMID: 37277060 DOI: 10.1016/j.metabol.2023.155612] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
AIMS Steatosis reducing effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors in non-alcoholic steatohepatitis (NASH) has been consistently reported in humans, but their mechanism remains uncertain. In this study, we examined the expression of SGLT2 in human livers and investigated the crosstalk between SGLT2 inhibition and hepatic glucose uptake, intracellular O-GlcNAcylation, and autophagic regulation in NASH. MATERIALS AND METHODS Human liver samples obtained from subjects with/without NASH were analyzed. For in vitro studies, human normal hepatocytes and hepatoma cells were treated with SGLT2 inhibitor under high-glucose and high-lipid conditions. NASH in vivo was induced by a high-fat, -fructose, and -cholesterol Amylin liver NASH (AMLN) diet for 10 weeks followed by an additional 10 weeks with/without SGLT2 inhibitor (empagliflozin 10 mg/kg/day). RESULTS Liver samples from subjects with NASH were associated with increased SGLT2 and O-GlcNAcylation expression compared with controls. Under NASH condition (in vitro condition with high glucose and lipid), intracellular O-GlcNAcylation and inflammatory markers were increased in hepatocytes and SGLT2 expression was upregulated; SGLT2 inhibitor treatment blocked these changes by directly reducing hepatocellular glucose uptake. In addition, decreased intracellular O-GlcNAcylation by SGLT2 inhibitor promoted autophagic flux through AMPK-TFEB activation. In the AMLN diet-induced NASH mice model, SGLT2 inhibitor alleviated lipid accumulation, inflammation, and fibrosis through autophagy activation related to decreased SGLT2 expression and O-GlcNAcylation in the liver. CONCLUSIONS This study firstly demonstrates increased SGLT2 expression in NASH and secondly reveals the novel effect of SGLT2 inhibition on NASH by activating autophagy mediated by inhibition of hepatocellular glucose uptake and consequently decreasing intracellular O-GlcNAcylation.
Collapse
Affiliation(s)
- Hye Jin Chun
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eun Ran Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.; Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chungbuk 28159, Republic of Korea
| | - Minyoung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.; Institute of Endocrine Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Da Hyun Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Soo Hyun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eugene Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Won Cho
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Department of Systems Biology, Glycosylation Network Research Center, Yonsei University, Seoul 03722, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea..
| | - Bong-Soo Cha
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.; Institute of Endocrine Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea..
| | - Yong-Ho Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.; Institute of Endocrine Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea..
| |
Collapse
|
8
|
Cline PM, Tsai TC, Lents CA, Stelzleni AM, Dove CR, Azain M. Interaction of dietary carbohydrate and fat on glucose metabolism in growing pigs. Domest Anim Endocrinol 2022; 78:106655. [PMID: 34478942 DOI: 10.1016/j.domaniend.2021.106655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022]
Abstract
Increased consumption of fructose has been suggested to be a contributing cause of the increased rates of obesity in humans. Rodent studies have shown an increase in de novo lipogenesis and decreased insulin sensitivity in response to feeding high levels of fructose, but it is unclear if these effects occur in the same progression in humans. We aimed to develop a swine model for studying changes in glucose metabolism and insulin resistance resulting from dietary carbohydrate alone or in combination with high dietary fat. Two experiments were conducted to determine if the source of dietary carbohydrate, with or without added fat, had an effect on body weight gain, glucose metabolism, or insulin response in growing pigs. In the first experiment, pigs (24 barrows, initial body weight 28 kg) were fed one of 4 diets in which the source of carbohydrate was varied: 1) 20% starch; 2) 10% glucose + 10% starch; 3) 10% fructose + 10% starch; and 4) 20% fructose for 9 weeks. There were no differences in growth rate or glucose clearance observed. Experiment 2 was conducted as a 3 × 2 factorial with the main effects of carbohydrate source (20% starch, glucose, or fructose) and added fat level (0 vs 10%). Pigs (24 barrows, initial body weight 71 kg) were fed one of 6 experimental diets for 9 weeks. Compared to the other dietary treatments, pigs fed fructose with high fat had an elevated glucose area under the curve during the GTT (Carbohydrate x Fat interaction, P < 0.01). This same group had a lower insulin response (Carbohydrate x Fat, P < 0.05). This work demonstrates that pigs can be a viable model to assess the long-term effects of dietary carbohydrates on metabolism and body composition. Studies of longer duration are needed to determine if these changes are indicative of insulin resistance.
Collapse
Affiliation(s)
- P M Cline
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - T C Tsai
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - C A Lents
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - A M Stelzleni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - C R Dove
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - M Azain
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Lin W, Jin Y, Hu X, Huang E, Zhu Q. AMPK/PGC-1α/GLUT4-Mediated Effect of Icariin on Hyperlipidemia-Induced Non-Alcoholic Fatty Liver Disease and Lipid Metabolism Disorder in Mice. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1407-1417. [PMID: 34906049 DOI: 10.1134/s0006297921110055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/21/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. Therapeutic activity of icariin, a major bioactive component of Epimedii Herba, in NAFLD is still unknown. Herein, the C57BL/6J mice were fed with a high-fat diet for 16 weeks to establish a NAFLD model. Mice were assigned to five groups: control group, NAFLD group, and icariin treatment groups. Effects of icariin on blood indices, glucose tolerance, insulin sensitivity, histopathological morphology, cell apoptosis, lipid accumulation, and AMPK signaling were analyzed. In addition, another cohort of mice were assigned to five groups: control group, NAFLD group, dorsomorphin treatment group, icariin treatment group, and dorsomorphin + icariin treatment group. Expression of proteins in liver tissues associated with AMPK signaling, and levels of ALT and AST were evaluated. Icariin attenuated the NAFLD-induced increase of the TG, TC, LDL-C, ALT, AST levels. HDL-C levels were affected neither by NAFLD nor by icariin. Furthermore, icariin treatment (100-200 mg/kg) counteracted the NAFLD-reduced glucose tolerance and insulin sensitivity and modulated histopathological changes, cell apoptosis, and lipid accumulation in liver tissues. Additionally, icariin mitigated the NAFLD-induced up-regulation of the cleaved caspase 3/9, SREBP-1c, and DGAT-2 levels, and enhanced the expression level of CPT-1, p-ACC/ACC, AMPKα1, PGC-1α, and GLUT4. Effects of icariin on the AMPK signaling and levels of AST and ALT could be reversed by AMPK inhibitor, dorsomorphin. This paper investigates the glucose-reducing and lipid-lowering effects of icariin in NAFLD. Moreover, icariin might function through activating the AMPKα1/PGC-1α/GLTU4 pathway.
Collapse
Affiliation(s)
- Wei Lin
- Department of General Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yin Jin
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xiang Hu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Erjiong Huang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Qihan Zhu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
10
|
Expression of glucose and magnesium transport-associated genes in whole blood RNA of lactating ewes supplemented with magnesium. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Orita E, Becker D, Mueller M, Hefti M, Schuler MJ, Bautista Borrego L, Dutkowski P, Zeimpekis K, Treyer V, Kaufmann PA, Eshmuminov D, Clavien PA, Huellner MW. FDG-PET/CT: novel method for viability assessment of livers perfused ex vivo. Nucl Med Commun 2021; 42:826-832. [PMID: 33741853 DOI: 10.1097/mnm.0000000000001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Ex vivo liver machine perfusion is a promising option to rescue marginal liver grafts mitigating the donated organ shortage. Recently, a novel liver perfusion machine that can keep injured liver grafts alive for 1 week ex vivo was developed and reported in Nature Biotechnology. However, liver viability assessment ex vivo is an unsolved issue and the value of 18F-fluorodeoxyglucose (FDG)-PET/CT for such purpose was explored. MATERIALS AND METHODS Discarded two human and six porcine liver grafts underwent FDG-PET/CT for viability assessment after 1 week of ex vivo perfusion. PET parameters [standardized uptake value (SUV)max, SUVmean, SUVpeak and total lesion glycolysis] were compared between hepatic lobes and between porcine and human livers. The prevalence of FDG-negative organ parts was recorded. The estimated effective radiation dose for PET/CT was calculated. RESULTS All organs were viable with essentially homogeneous FDG uptake. Of note, viability was preserved in contact areas disclosing the absence of pressure necrosis. Four porcine and two human organs had small superficial FDG-negative areas confirmed as biopsy sites. Total lesion glycolysis was significantly higher in the right hepatic lobe (P = 0.012), while there was no significant difference of SUVmax, SUVmean and SUVpeak between hepatic lobes. There was no significant difference in FDG uptake parameters between porcine and human organs. The estimated effective radiation dose was 1.99 ± 1.67 mSv per organ. CONCLUSION This study demonstrates the feasibility of FDG-PET/CT for viability assessment of ex vivo perfused liver grafts after 1 week.
Collapse
Affiliation(s)
- Erika Orita
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich
| | - Dustin Becker
- Wyss Zurich, ETH Zurich and University of Zurich
- Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich
| | - Matteo Mueller
- Wyss Zurich, ETH Zurich and University of Zurich
- Department of Surgery & Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Max Hefti
- Wyss Zurich, ETH Zurich and University of Zurich
- Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich
| | - Martin J Schuler
- Wyss Zurich, ETH Zurich and University of Zurich
- Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich
| | - Lucia Bautista Borrego
- Wyss Zurich, ETH Zurich and University of Zurich
- Department of Surgery & Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Wyss Zurich, ETH Zurich and University of Zurich
- Department of Surgery & Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | | | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich
| | - Dilmurodjon Eshmuminov
- Wyss Zurich, ETH Zurich and University of Zurich
- Department of Surgery & Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery & Transplantation, Swiss Hepato-Pancreato-Biliary (HPB) Center, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich
| |
Collapse
|
12
|
Briens JM, Subramaniam M, Kilgour A, Loewen ME, Desai KM, Adolphe JL, Zatti KM, Drew MD, Weber LP. Glycemic, insulinemic and methylglyoxal postprandial responses to starches alone or in whole diets in dogs versus cats: Relating the concept of glycemic index to metabolic responses and gene expression. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110973. [PMID: 33933629 DOI: 10.1016/j.cbpa.2021.110973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Species differences between domestic cats (Felis catus) and dogs (Canis familiaris) has led to differences in their ability to digest, absorb and metabolize carbohydrates through poorly characterized mechanisms. The current study aimed to first examine biopsied small intestine, pancreas, liver and skeletal muscle from laboratory beagles and domestic cats for mRNA expression of key enzymes involved in starch digestion (amylase), glucose transport (sodium-dependent SGLTs and -independent glucose transporters, GLUT) and glucose metabolism (hexokinase and glucokinase). Cats had lower mRNA expression of most genes examined in almost all tissues compared to dogs (p < 0.05). Next, postprandial glucose, insulin, methylglyoxal (a toxic glucose metabolite) and d-lactate (metabolite of methylglyoxal) after single feedings of different starch sources were tested in fasted dogs and cats. After feeding pure glucose, peak postprandial blood glucose and methylglyoxal were surprisingly similar between dogs and cats, except cats had a longer time to peak and a greater area under the curve consistent with lower glycolytic enzyme expression. After feeding starches or whole diets to dogs, postprandial glycemic response, glycemic index, insulin, methylglyoxal and d-lactate followed reported glycemic index trends in humans. In contrast, cats showed very low to negligible postprandial glycemic responses and low insulin after feeding different starch sources, but not whole diets, with no relationship to methylglyoxal or d-lactate. Thus, the concept of glycemic index appears valid in dogs, but not cats. Differences in amylase, glucose transporters, and glycolytic enzymes are consistent with species differences in starch and glucose handling between cats and dogs.
Collapse
Affiliation(s)
- Jennifer M Briens
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Marina Subramaniam
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Alyssa Kilgour
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Matthew E Loewen
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Kaushik M Desai
- Pharmacology & Physiology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jennifer L Adolphe
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Kyla M Zatti
- Animal & Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Murray D Drew
- Animal & Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Lynn P Weber
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
13
|
Brus M, Frangež R, Gorenjak M, Kotnik P, Knez Ž, Škorjanc D. Effect of Hydrolyzable Tannins on Glucose-Transporter Expression and Their Bioavailability in Pig Small-Intestinal 3D Cell Model. Molecules 2021; 26:molecules26020345. [PMID: 33440878 PMCID: PMC7827651 DOI: 10.3390/molecules26020345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022] Open
Abstract
Intestinal transepithelial transport of glucose is mediated by glucose transporters, and affects postprandial blood-glucose levels. This study investigates the effect of wood extracts rich in hydrolyzable tannins (HTs) that originated from sweet chestnut (Castanea sativa Mill.) and oak (Quercus petraea) on the expression of glucose transporter genes and the uptake of glucose and HT constituents in a 3D porcine-small-intestine epithelial-cell model. The viability of epithelial cells CLAB and PSI exposed to different HTs was determined using alamarBlue®. qPCR was used to analyze the gene expression of SGLT1, GLUT2, GLUT4, and POLR2A. Glucose uptake was confirmed by assay, and LC–MS/ MS was used for the analysis of HT bioavailability. HTs at 37 µg/mL were found to adversely affect cell viability and downregulate POLR2A expression. HT from wood extract Tanex at concentrations of 4 µg/mL upregulated the expression of GLUT2, as well as glucose uptake at 1 µg/mL. The time-dependent passage of gallic acid through enterocytes was influenced by all wood extracts compared to gallic acid itself as a control. These results suggest that HTs could modulate glucose uptake and gallic acid passage in the 3D cell model.
Collapse
Affiliation(s)
- Maksimiljan Brus
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
| | - Robert Frangež
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia;
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
| | - Petra Kotnik
- Department of Chemistry, Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia; (P.K.); (Ž.K.)
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Department of Chemistry, Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia; (P.K.); (Ž.K.)
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Dejan Škorjanc
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
- Correspondence: ; Tel.: +386-2-320-90-25
| |
Collapse
|
14
|
Subramaniam M, Enns CB, Luu K, Weber LP, Loewen ME. Comparison of intestinal glucose flux and electrogenic current demonstrates two absorptive pathways in pig and one in Nile tilapia and rainbow trout. Am J Physiol Regul Integr Comp Physiol 2019; 318:R245-R255. [PMID: 31746628 DOI: 10.1152/ajpregu.00160.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mucosal-to-serosal flux of 14C 3-O-methyl-d-glucose was compared against the electrogenic transport of d-glucose across ex vivo intestinal segments of Nile tilapia, rainbow trout, and pig in Ussing chambers. The difference in affinities (Km "fingerprints") between pig flux and electrogenic transport of glucose, and the absence of this difference in tilapia and trout, suggest two absorptive pathways in the pig and one in the fish species examined. More specifically, the total mucosal-to-serosal flux revealed a super high-affinity, high-capacity (sHa/Hc) total glucose transport system in tilapia; a super high-affinity, low-capacity (sHa/Lc) total glucose transport system in trout and a low-affinity, low-capacity (La/Lc) total glucose transport system in pig. Comparatively, electrogenic glucose absorption revealed similar Km in both fish species, with a super high-affinity, high capacity (sHa/Hc) system in tilapia; a super high-affinity/super low-capacity (sHa/sLc) system in trout; but a different Km fingerprint in the pig, with a high-affinity, low-capacity (Ha/Lc) system. This was supported by different responses to inhibitors of sodium-dependent glucose transporters (SGLTs) and glucose transporter type 2 (GLUT2) administered on the apical side between species. More specifically, tilapia flux was inhibited by SGLT inhibitors, but not the GLUT2 inhibitor, whereas trout lacked response to inhibitors. In contrast, the pig responded to inhibition by both SGLT and GLUT2 inhibitors with a higher expression of GLUT2. Altogether, it would appear that two pathways are working together in the pig, allowing it to have continued absorption at high glucose concentrations, whereas this is not present in both tilapia and trout.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cole B Enns
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Khanh Luu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Subramaniam M, Enns CB, Loewen ME. Sigmoidal kinetics define porcine intestinal segregation of electrogenic monosaccharide transport systems as having multiple transporter population involvement. Physiol Rep 2019; 7:e14090. [PMID: 31062524 PMCID: PMC6503033 DOI: 10.14814/phy2.14090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Kinetic characterization of electrogenic sodium-dependent transport in Ussing chambers of d-glucose and d-galactose demonstrated sigmoidal/Hill kinetics in the porcine jejunum and ileum, with the absence of transport in the distal colon. In the jejunum, a high-affinity, super-low-capacity (Ha/sLc) kinetic system accounted for glucose transport, and a low-affinity, low-capacity (La/Lc) kinetic system accounted for galactose transport. In contrast, the ileum demonstrated a high-affinity, super-high-capacity (Ha/sHc) glucose transport and a low-affinity, high-capacity (La/Hc) galactose transport systems. Jejunal glucose transport was not inhibited by dapagliflozin, but galactose transport was inhibited. Comparatively, ileal glucose and galactose transport were both sensitive to dapagliflozin. Genomic and gene expression analyses identified 10 of the 12 known SLC5A family members in the porcine jejunum, ileum, and distal colon. Dominant SGLT1 (SLC5A1) and SGLT3 (SLC5A4) expression was associated with the sigmoidal Ha/sLc glucose and La/Lc galactose transport systems in the jejunum. Comparatively, the dominant expression of SGLT1 (SLC5A1) in the ileum was only associated with Ha glucose and La galactose kinetic systems. However, the sigmoidal kinetics and overall high capacity (Hc) of transport is unlikely accounted for by SGLT1 (SLC5A1) alone. Finally, the absence of transport and lack of pharmacological inhibition in the colon was associated with the poor expression of SLC5A genes. Altogether, the results demonstrated intestinal segregation of monosaccharide transport fit different sigmoidal kinetic systems. This reveals multiple transporter populations in each system, supported by gene expression profiles and pharmacological inhibition. Overall, this work demonstrates a complexity to transporter involvement in intestinal electrogenic monosaccharide absorption systems not previously defined.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Cole B. Enns
- Department of Veterinary Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Matthew E. Loewen
- Department of Veterinary Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
16
|
Subramaniam M, Weber LP, Loewen ME. Intestinal electrogenic sodium-dependent glucose absorption in tilapia and trout reveal species differences in SLC5A-associated kinetic segmental segregation. Am J Physiol Regul Integr Comp Physiol 2019; 316:R222-R234. [PMID: 30601703 PMCID: PMC6459381 DOI: 10.1152/ajpregu.00304.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022]
Abstract
Electrogenic sodium-dependent glucose transport along the length of the intestine was compared between the omnivorous Nile tilapia ( Oreochromis niloticus) and the carnivorous rainbow trout ( Oncorhynchus mykiss) in Ussing chambers. In tilapia, a high-affinity, high-capacity kinetic system accounted for the transport throughout the proximal intestine, midintestine, and hindgut segments. Similar dapagliflozin and phloridzin dihydrate inhibition across all segments support this homogenous high-affinity, high-capacity system throughout the tilapia intestine. Genomic and gene expression analysis supported findings by identifying 10 of the known 12 SLC5A family members, with homogeneous expression throughout the segments with dominant expression of sodium-glucose cotransporter 1 (SGLT1; SLC5A1) and sodium-myoinositol cotransporter 2 (SMIT2; SLC5A11). In contrast, trout's electrogenic sodium-dependent glucose absorption was 20-35 times lower and segregated into three significantly different kinetic systems found in different anatomical segments: a high-affinity, low-capacity system in the pyloric ceca; a super-high-affinity, low-capacity system in the midgut; and a low-affinity, low-capacity system in the hindgut. Genomic and gene expression analysis found 5 of the known 12 SLC5A family members with dominant expression of SGLT1 ( SLC5A1), sodium-glucose cotransporter 2 (SGLT2; SLC5A2), and SMIT2 ( SLC5A11) in the pyloric ceca, and only SGLT1 ( SLC5A1) in the midgut, accounting for differences in kinetics between the two. The hindgut presented a low-affinity, low-capacity system partially attributed to a decrease in SGLT1 ( SLC5A1). Overall, the omnivorous tilapia had a higher electrogenic glucose absorption than the carnivorous trout, represented with different kinetic systems and a greater expression and number of SLC5A orthologs. Fish differ from mammals, having hindgut electrogenic glucose absorption and segment specific transport kinetics.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| |
Collapse
|
17
|
Klinger S, Lange P, Brandt E, Hustedt K, Schröder B, Breves G, Herrmann J. Degree of SGLT1 phosphorylation is associated with but does not determine segment-specific glucose transport features in the porcine small intestines. Physiol Rep 2018; 6. [PMID: 29333720 PMCID: PMC5789657 DOI: 10.14814/phy2.13562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/18/2022] Open
Abstract
Glucose‐induced electrogenic ion transport is higher in the porcine ileum compared with the jejunum despite equal apical abundance of SGLT1. The objective of this study was a detailed determination of SGLT1 and GLUT2 expressions at mRNA and protein levels along the porcine small intestinal axis. Phosphorylation of SGLT1 at serine 418 was assessed as a potential modulator of activity. Porcine intestinal tissues taken along the intestinal axis 1 h or 3 h after feeding were analyzed for relative mRNA (RT‐PCR) and protein levels (immunoblot) of SGLT1, pSGLT1, GLUT2, (p)AMPK, β2‐receptor, and PKA substrates. Functional studies on electrogenic glucose transport were done (Ussing chambers: short circuit currents (Isc)). Additionally, effects of epinephrine (Epi) administration on segment‐specific glucose transport and pSGLT1 content were examined. SGLT1 and GLUT2 expression was similar throughout the small intestines but lower in the duodenum and distal ileum. pSGLT1 abundance was significantly lower in the ileum compared with the jejunum associated with significantly higher glucose‐induced Isc. SGLT1 phosphorylation was not inducible by Epi. Epi treatment decreased glucose‐induced Isc and glucose flux rates in the jejunum but increased basal Isc in the ileum. Epi‐induced PKA activation was detectable in jejunal tissue. These results may indicate that SGLT1 phosphorylation at Ser418 represents a structural change to compensate for certain conditions that may decrease glucose transport (unfavorable driving forces/changed apical membrane potential) rather than being the cause for the overall differences in glucose transport characteristics between the jejunum and ileum.
Collapse
Affiliation(s)
- Stefanie Klinger
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Patrick Lange
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Elisabeth Brandt
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karin Hustedt
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bernd Schröder
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jens Herrmann
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
18
|
Myrka AM, Welch KC. Evidence of high transport and phosphorylation capacity for both glucose and fructose in the ruby-throated hummingbird (Archilochus colubris). Comp Biochem Physiol B Biochem Mol Biol 2018; 224:253-261. [DOI: 10.1016/j.cbpb.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023]
|
19
|
Asrafuzzaman M, Rahman MM, Mandal M, Marjuque M, Bhowmik A, Rokeya B, Hassan Z, Faruque MO. Oyster mushroom functions as an anti-hyperglycaemic through phosphorylation of AMPK and increased expression of GLUT4 in type 2 diabetic model rats. J Taibah Univ Med Sci 2018; 13:465-471. [PMID: 31435363 PMCID: PMC6694896 DOI: 10.1016/j.jtumed.2018.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Traditionally, mushrooms have been used to reduce hyperglycaemia. However, the mechanism underlying this effect has not yet been explored. AMP-activated protein kinase (AMPK) is known to reduce hyperglycaemia through an insulin-independent pathway. This study aimed to observe the effect of oyster mushroom powder (OMP) on phosphorylation of AMPK (p-AMPK) and expression of GLUT4 mRNA in diabetic model rats. METHODS Long-Evans rats were used to develop type 2 diabetic model rats through intraperitoneal induction of streptozotocin (STZ). OMP was supplemented at 5% with the usual feed of rats for 8 consecutive weeks. Then, the rats were sacrificed. RNA was extracted by the TRIzol reagent, and proteins were extracted from different tissues with RIPA lysis buffer. Expression of GLUT4 mRNA was measured through cDNA-PCR techniques, and p-AMPK was detected using western blotting. The band intensities of the PCR products and proteins were measured using Image J software. RESULTS Supplementation of OMP for 8 weeks resulted in a reduction of the serum glucose level in STZ-induced, type 2 diabetic model rats. The levels of p-AMPK, as a ratio relative to β-actin, increased in the muscle and adipose tissues of mushroom-treated type 2 diabetic model rats, compared to those in control diabetic model rats. Expression of GLUT4, as a ratio relative to GAPDH, increased significantly in both the muscle and adipose tissues of mushroom-treated diabetic rats. CONCLUSION Oyster mushroom may decrease hyperglycaemia through increased p-AMPK and also expression of GLUT4 in the muscle and adipose tissues.
Collapse
Affiliation(s)
- Mohammad Asrafuzzaman
- Department of Physiology and Molecular Biology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Mohammad M. Rahman
- Department of Applied Laboratory Science, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Manoj Mandal
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Mohammad Marjuque
- Department of Applied Laboratory Science, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Amrita Bhowmik
- Department of Applied Laboratory Science, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Begum Rokeya
- Department of Pharmacology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Zahid Hassan
- Department of Physiology and Molecular Biology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | - Mohammad Omar Faruque
- Department of Nutrition and Food Technology, Jessore University of Science and Technology, Jessore, Bangladesh
| |
Collapse
|
20
|
Welch KC, Myrka AM, Ali RS, Dick MF. The Metabolic Flexibility of Hovering Vertebrate Nectarivores. Physiology (Bethesda) 2018; 33:127-137. [DOI: 10.1152/physiol.00001.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Foraging hummingbirds and nectar bats oxidize both glucose and fructose from nectar at exceptionally high rates. Rapid sugar flux is made possible by adaptations to digestive, cardiovascular, and metabolic physiology affecting shared and distinct pathways for the processing of each sugar. Still, how these animals partition and regulate the metabolism of each sugar and whether this occurs differently between hummingbirds and bats remain unclear.
Collapse
Affiliation(s)
- Kenneth C. Welch
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alexander M. Myrka
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Raafay Syed Ali
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Morag F. Dick
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Mokashi P, Khanna A, Pandita N. Flavonoids from Enicostema littorale blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway. Biomed Pharmacother 2017; 90:268-277. [DOI: 10.1016/j.biopha.2017.03.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/03/2017] [Accepted: 03/18/2017] [Indexed: 02/07/2023] Open
|
22
|
Herrmann J, Möller N, Lange P, Breves G. Different phlorizin binding properties to porcine mucosa of the jejunum and ileum in relation to SGLT1 activity. J Anim Sci 2016. [DOI: 10.2527/jas.2015-9702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Franssens L, Lesuisse J, Wang Y, Willems E, Willemsen H, Koppenol A, Guo X, Buyse J, Decuypere E, Everaert N. The effect of insulin on plasma glucose concentrations, expression of hepatic glucose transporters and key gluconeogenic enzymes during the perinatal period in broiler chickens. Gen Comp Endocrinol 2016; 232:67-75. [PMID: 26723190 DOI: 10.1016/j.ygcen.2015.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 12/27/2022]
Abstract
Chickens have blood glucose concentrations that are twofold higher than those observed in mammals. Moreover, the insulin sensitivity seems to decrease with postnatal age in both broiler and layer chickens. However, little is known about the response of insulin on plasma glucose concentrations and mRNA abundance of hepatic glucose transporters 1, 2, 3, 8, 9 and 12 (GLUT1, 2, 3, 8, 9 and 12) and three regulatory enzymes of the gluconeogenesis, phosphoenolpyruvate carboxykinase 1 and 2 (PCK1 and 2) or fructose-1,6-biphosphatase 1 (FBP1) in chicks during the perinatal period. In the present study, broiler embryos on embryonic day (ED)16, ED18 or newly-hatched broiler chicks were injected intravenously with bovine insulin (1μg/g body weight (BW)) to examine plasma glucose response and changes in hepatic mRNA abundance of the GLUTs, PCK1 and 2 and FBP1. Results were compared with a non-treated control group and a saline-injected sham group. Plasma glucose levels of insulin-treated ED18 embryos recovered faster from their minimum level than those of insulin-treated ED16 embryos or newly-hatched chicks. In addition, at the minimum plasma glucose level seven hours post-injection (PI), hepatic GLUT2, FBP1 and PCK2 mRNA abundance was decreased in insulin-injected embryos, compared to sham and control groups, being most pronounced when insulin injection occurred on ED16.
Collapse
Affiliation(s)
- Lies Franssens
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium
| | - Jens Lesuisse
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium
| | - Yufeng Wang
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium
| | - Els Willems
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium
| | - Hilke Willemsen
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium
| | - Astrid Koppenol
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium; ILVO Animal Sciences Unit, Scheldeweg 68, 9090 Melle, Belgium
| | - Xiaoquan Guo
- College of Animal Science and Technology, Jiangxi Agricultural University, 330045 Jiangxi, China
| | - Johan Buyse
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium.
| | - Eddy Decuypere
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium
| | - Nadia Everaert
- KU Leuven, Department of Biosystems, Laboratory of Livestock Physiology, Kasteelpark Arenberg 30, Box 2456, 3001 Leuven, Belgium; University of Liège, Gembloux Agro-Bio Tech, Animal Science Unit, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
24
|
Xu Y, Xiong J, Zhao Y, He B, Zheng Z, Chu G, Zhu Q. Calycosin Rebalances Advanced Glycation End Products-Induced Glucose Uptake Dysfunction of Hepatocyte In Vitro. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1191-210. [DOI: 10.1142/s0192415x15500688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diabetes mellitus (DM) often accompanies liver dysfunction. Astragali Radix is a traditional Chinese herbal medicine that is widely administrated to ameliorate the symptoms of diabetes as well as liver dysfunction, but its acting mechanism is still not yet fully recognized. Advanced glycation end products (AGEs) play a key role in promoting diabetic organ dysfunction. Both hyperglycemia and AGEs can induce insulin resistance, hepatocyte damage and liver dysfunction. We designed this study to explore the effects of the phytoestrogen Calycosin, a major active component of Astragali Radix, on AGEs-induced glucose uptake dysfunction in the hepatocyte cell line and relevant mechanisms. MTT and BrdU methods were applied to evaluate cell viability. 2-NBDG was used to observe glucose uptake by a live cell imaging system. Immunofluorescence method was carried out to investigate GLUT1, GLUT4, and RAGE protein expressions on cell membrane. cAMP content was determined by an EIA method. We found Calycosin concentration-dependently ameliorated AGEs-induced hepatocyte viability damage. AGEs dramatically reduced basal glucose uptake in hepatocytes, and this reduction could be reversed by Calycosin administration. By immunofluorescence detection, we observed that Calycosin could inhibit AGEs-induced GLUT1 expression down-regulation via estrogen receptor (ER). Furthermore, Calycosin decreased AGEs-promoted RAGE and cAMP elevation in hepatocytes. These findings strongly suggest that Calycosin can ameliorate AGEs-promoted glucose uptake dysfunction in hepatocytes; the protection of cell viability and ER-RAGE and GLUT1 pathways play a significant role in this modulation.
Collapse
Affiliation(s)
- Youhua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, The Institute for Translational Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, P.R. China
| | - Jianfeng Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, The Institute for Translational Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, P.R. China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, The Institute for Translational Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, P.R. China
| | - Bao He
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, P.R. China
| | - Zhaoguang Zheng
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, P.R. China
| | - Gejin Chu
- University Hospital, Macau University of Science and Technology Foundation, Macau, P.R. China
| | - Quan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, The Institute for Translational Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, P.R. China
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, P.R. China
| |
Collapse
|
25
|
Guo Y, Jin L, Wang F, He M, Liu R, Li M, Shuai S. Dynamic changes in genes related to glucose uptake and utilization during pig skeletal and cardiac muscle development. Biosci Biotechnol Biochem 2014; 78:1159-66. [PMID: 25229851 DOI: 10.1080/09168451.2014.915725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Skeletal and cardiac muscle have important roles in glucose uptake and utilization. However, changes in expression of protein coding genes and miRNAs that participate in glucose metabolism during development are not fully understood. In this study, we investigated the expression of genes related to glucose metabolism during muscle development. We found an age-dependent increase in gene expression in cardiac muscle, with enrichment in heart development- and energy-related metabolic processes. A subset of genes that were up-regulated until 30 or 180 days postnatally, and then down-regulated in psoas major muscle was significantly enriched in mitochondrial oxidative-related processes, while genes that up-regulated in longissimus doris muscle was significantly enriched in glycolysis-related processes. Meanwhile, expression of energy-related microRNAs decreased with increasing age. In addition, we investigated the correlation between microRNAs and mRNAs in three muscle types across different stages of development and found many potential microRNA-mRNA pairs involved in regulating glucose metabolism.
Collapse
Affiliation(s)
- Yanqin Guo
- a Institute of Animal Genetics and Breeding, College of Animal Science and Technology , Sichuan Agricultural University , Ya'an , P.R. China
| | | | | | | | | | | | | |
Collapse
|
26
|
Martínez-Quintana JA, Peregrino-Uriarte AB, Gollas-Galván T, Gómez-Jiménez S, Yepiz-Plascencia G. The glucose transporter 1 -GLUT1- from the white shrimp Litopenaeus vannamei is up-regulated during hypoxia. Mol Biol Rep 2014; 41:7885-98. [PMID: 25167855 DOI: 10.1007/s11033-014-3682-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
During hypoxia the shrimp Litopenaeus vannamei accelerates anaerobic glycolysis to obtain energy; therefore, a correct supply of glucose to the cells is needed. Facilitated glucose transport across the cells is mediated by a group of membrane embedded integral proteins called GLUT; being GLUT1 the most ubiquitous form. In this work, we report the first cDNA nucleotide and deduced amino acid sequences of a glucose transporter 1 from L. vannamei. A 1619 bp sequence was obtained by RT-PCR and RACE approaches. The 5´ UTR is 161 bp and the poly A tail is exactly after the stop codon in the mRNA. The ORF is 1485 bp and codes for 485 amino acids. The deduced protein sequence has high identity to GLUT1 proteins from several species and contains all the main features of glucose transporter proteins, including twelve transmembrane domains, the conserved motives and amino acids involved in transport activity, ligands binding and membrane anchor. Therefore, we decided to name this sequence, glucose transporter 1 of L. vannamei (LvGLUT1). A partial gene sequence of 8.87 Kbp was also obtained; it contains the complete coding sequence divided in 10 exons. LvGlut1 expression was detected in hemocytes, hepatopancreas, intestine gills, muscle and pleopods. The higher relative expression was found in gills and the lower in hemocytes. This indicates that LvGlut1 is ubiquitously expressed but its levels are tissue-specific and upon short-term hypoxia, the GLUT1 transcripts increase 3.7-fold in hepatopancreas and gills. To our knowledge, this is the first evidence of expression of GLUT1 in crustaceans.
Collapse
Affiliation(s)
- José A Martínez-Quintana
- Centro de Investigación en Alimentación y Desarrollo. A.C, P.O. Box 1735, Carretera a Ejido La Victoria Km. 0.6, 83304, Hermosillo, Sonora, Mexico
| | | | | | | | | |
Collapse
|
27
|
Oosterveer MH, Schoonjans K. Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci 2014; 71:1453-67. [PMID: 24196749 PMCID: PMC11114046 DOI: 10.1007/s00018-013-1505-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022]
Abstract
The hepatic glucose-sensing system is a functional network of enzymes and transcription factors that is critical for the maintenance of energy homeostasis and systemic glycemia. Here we review the recent literature on its components and metabolic actions. Glucokinase (GCK) is generally considered as the initial postprandial glucose-sensing component, which acts as the gatekeeper for hepatic glucose metabolism and provides metabolites that activate the transcription factor carbohydrate response element binding protein (ChREBP). Recently, liver receptor homolog 1 (LRH-1) has emerged as an upstream regulator of the central GCK-ChREBP axis, with a critical role in the integration of hepatic intermediary metabolism in response to glucose. Evidence is also accumulating that O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) and acetylation can act as glucose-sensitive modifications that may contribute to hepatic glucose sensing by targeting regulatory proteins and the epigenome. Further elucidation of the components and functional roles of the hepatic glucose-sensing system may contribute to the future treatment of liver diseases associated with deregulated glucose sensors.
Collapse
Affiliation(s)
- Maaike H. Oosterveer
- Department of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Kristina Schoonjans
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Hall JR, Clow KA, Short CE, Driedzic WR. Transcript levels of class I GLUTs within individual tissues and the direct relationship between GLUT1 expression and glucose metabolism in Atlantic cod (Gadus morhua). J Comp Physiol B 2014; 184:483-96. [DOI: 10.1007/s00360-014-0810-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/15/2014] [Accepted: 01/24/2014] [Indexed: 11/30/2022]
|
29
|
Karim S, Adams DH, Lalor PF. Hepatic expression and cellular distribution of the glucose transporter family. World J Gastroenterol 2012; 18:6771-81. [PMID: 23239915 PMCID: PMC3520166 DOI: 10.3748/wjg.v18.i46.6771] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/10/2012] [Accepted: 09/19/2012] [Indexed: 02/06/2023] Open
Abstract
Glucose and other carbohydrates are transported into cells using members of a family of integral membrane glucose transporter (GLUT) molecules. To date 14 members of this family, also called the solute carrier 2A proteins have been identified which are divided on the basis of transport characteristics and sequence similarities into several families (Classes 1 to 3). The expression of these different receptor subtypes varies between different species, tissues and cellular subtypes and each has differential sensitivities to stimuli such as insulin. The liver is a contributor to metabolic carbohydrate homeostasis and is a major site for synthesis, storage and redistribution of carbohydrates. Situations in which the balance of glucose homeostasis is upset such as diabetes or the metabolic syndrome can lead metabolic disturbances that drive chronic organ damage and failure, confirming the importance of understanding the molecular regulation of hepatic glucose homeostasis. There is a considerable literature describing the expression and function of receptors that regulate glucose uptake and release by hepatocytes, the most import cells in glucose regulation and glycogen storage. However there is less appreciation of the roles of GLUTs expressed by non parenchymal cell types within the liver, all of which require carbohydrate to function. A better understanding of the detailed cellular distribution of GLUTs in human liver tissue may shed light on mechanisms underlying disease pathogenesis. This review summarises the available literature on hepatocellular expression of GLUTs in health and disease and highlights areas where further investigation is required.
Collapse
|
30
|
Sabolic I, Vrhovac I, Eror DB, Gerasimova M, Rose M, Breljak D, Ljubojevic M, Brzica H, Sebastiani A, Thal SC, Sauvant C, Kipp H, Vallon V, Koepsell H. Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am J Physiol Cell Physiol 2012; 302:C1174-88. [PMID: 22262063 DOI: 10.1152/ajpcell.00450.2011] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
With a novel antibody against the rat Na(+)-D-glucose cotransporter SGLT2 (rSGLT2-Ab), which does not cross-react with rSGLT1 or rSGLT3, the ∼75-kDa rSGLT2 protein was localized to the brush-border membrane (BBM) of the renal proximal tubule S1 and S2 segments (S1 > S2) with female-dominant expression in adult rats, whereas rSglt2 mRNA expression was similar in both sexes. Castration of adult males increased the abundance of rSGLT2 protein; this increase was further enhanced by estradiol and prevented by testosterone treatment. In the renal BBM vesicles, the rSGLT1-independent uptake of [(14)C]-α-methyl-D-glucopyranoside was similar in females and males, suggesting functional contribution of another Na(+)-D-glucose cotransporter to glucose reabsorption. Since immunoreactivity of rSGLT2-Ab could not be detected with certainty in rat extrarenal organs, the SGLT2 protein was immunocharacterized with the same antibody in wild-type (WT) mice, with SGLT2-deficient (Sglt2 knockout) mice as negative control. In WT mice, renal localization of mSGLT2 protein was similar to that in rats, whereas in extrarenal organs neither mSGLT2 protein nor mSglt2 mRNA expression was detected. At variance to the findings in rats, the abundance of mSGLT2 protein in the mouse kidneys was male dominant, whereas the expression of mSglt2 mRNA was female dominant. Our results indicate that in rodents the expression of SGLT2 is kidney-specific and point to distinct sex and species differences in SGLT2 protein expression that cannot be explained by differences in mRNA.
Collapse
Affiliation(s)
- Ivan Sabolic
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jahn MP, Gomes LF, Jacob MHVM, da Rocha Janner D, Araújo ASDR, Belló-Klein A, Ribeiro MFM, Kucharski LC. The effect of dehydroepiandrosterone (DHEA) on renal function and metabolism in diabetic rats. Steroids 2011; 76:564-70. [PMID: 21349280 DOI: 10.1016/j.steroids.2011.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 01/12/2023]
Abstract
Dehydroepiandrosterone (DHEA) is an endogenous steroid hormone involved in a number of biological actions in humans and rodents, but its effects on renal tissue have not yet been fully understood. The aim of this study is to assess the effect of DHEA treatment on diabetic rats, mainly in relation to renal function and metabolism. Diabetic rats were treated with subcutaneous injections of a 10mg/kg dose of DHEA diluted in oil. Plasma glucose and creatinine, in addition to urine creatinine, were quantified espectophotometrically. Glucose uptake and oxidation were quantified using radioactive glucose, the urinary Transforming Growth Factor β(1) (TGF-β(1)) was assessed by enzyme immunoassay, and the total glutathione in the renal tissue was also measured. The diabetic rats displayed higher levels of glycemia, and DHEA treatment reduced hyperglycemia. Plasmatic creatinine levels were higher in the diabetic rats treated with DHEA, while creatinine clearance was lower. Glucose uptake and oxidation were lower in the renal medulla of the diabetic rats treated with DHEA, and urinary TGF-β(1), as well as total gluthatione levels, were higher in the diabetic rats treated with DHEA. DHEA treatment was not beneficial to renal tissue, since it reduced the glomerular filtration rate and renal medulla metabolism, while increasing the urinary excretion of TGF-β(1) and the compensatory response by the glutathione system, probably due to a mechanism involving a pro-oxidant action or a pro-fibrotic effect of this androgen or its derivatives. In conclusion, this study reports that DHEA treatment may be harmful to renal tissue, but the mechanisms of this action have not yet been fully understood.
Collapse
Affiliation(s)
- Matheus Parmegiani Jahn
- Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Sarmento Leite, 500, Porto Alegre, Rio Grande do Sul CEP 90050-170, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Buckley A, Taylor N, Manjarin R, Schott H, Woodward A, Trottier N. Pituitary Pars Intermedia Dysfunction Down-regulates mRNA Abundance of Genes Encoding GLUT4 and Insulin Receptor in the Small Intestinal Mucosa of the Horse. J Equine Vet Sci 2011. [DOI: 10.1016/j.jevs.2011.03.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Nada SE, Thompson RC, Padmanabhan V. Developmental programming: differential effects of prenatal testosterone excess on insulin target tissues. Endocrinology 2010; 151:5165-73. [PMID: 20843997 PMCID: PMC2954716 DOI: 10.1210/en.2010-0666] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/10/2010] [Indexed: 02/01/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is the leading cause of infertility in reproductive-aged women with the majority manifesting insulin resistance. To delineate the causes of insulin resistance in women with PCOS, we determined changes in the mRNA expression of insulin receptor (IR) isoforms and members of its signaling pathway in tissues of adult control (n = 7) and prenatal testosterone (T)-treated (n = 6) sheep (100 mg/kg twice a week from d 30-90 of gestation), the reproductive/metabolic characteristics of which are similar to women with PCOS. Findings revealed that prenatal T excess reduced (P < 0.05) expression of IR-B isoform (only isoform detected), insulin receptor substrate-2 (IRS-2), protein kinase B (AKt), peroxisome proliferator-activated receptor-γ (PPARγ), hormone-sensitive lipase (HSL), and mammalian target of rapamycin (mTOR) but increased expression of rapamycin-insensitive companion of mTOR (rictor), and eukaryotic initiation factor 4E (eIF4E) in the liver. Prenatal T excess increased (P < 0.05) the IR-A to IR-B isoform ratio and expression of IRS-1, glycogen synthase kinase-3α and -β (GSK-3α and -β), and rictor while reducing ERK1 in muscle. In the adipose tissue, prenatal T excess increased the expression of IRS-2, phosphatidylinositol 3-kinase (PI3K), PPARγ, and mTOR mRNAs. These findings provide evidence that prenatal T excess modulates in a tissue-specific manner the expression levels of several genes involved in mediating insulin action. These changes are consistent with the hypothesis that prenatal T excess disrupts the insulin sensitivity of peripheral tissues, with liver and muscle being insulin resistant and adipose tissue insulin sensitive.
Collapse
Affiliation(s)
- Shadia E Nada
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109-5404, USA
| | | | | |
Collapse
|
34
|
Aljure O, Díez-Sampedro A. Functional characterization of mouse sodium/glucose transporter type 3b. Am J Physiol Cell Physiol 2010; 299:C58-65. [PMID: 20392930 DOI: 10.1152/ajpcell.00030.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite belonging to a family of sugar cotransporters, human sodium/glucose transporter type 3 (hSGLT3) does not transport sugar, but it depolarizes the cell in the presence of extracellular sugar, and thus it has been suggested to work as a sugar sensor. In the human genome there is one SGLT3 gene, yet in mouse there are two. In this study we cloned one of them, mouse SGLT3b (mSGLT3b) and characterized the protein. We found that mSGLT3b has low affinity for sugars, as does hSGLT3, but surprisingly, mSGLT3b transports sugar, although the sugar transport is not as tightly coupled to cations as in SGLT1. Moreover, the sugar specificity of mSGLT3b has characteristics reminiscent of both SGLT1 and hSGLT3: mSGLT3b does not respond to galactose, similar to hSGLT3, but neither does it respond to 1-deoxynojirimycin, unlike hSGLT3 but similar to SGLT1. mSGLT3b has low apparent affinities for sugar and Na(+) and, furthermore, displays pre-steady-state currents, which in SGLT1 report on conformational changes in the protein. Finally, phlorizin, the typical inhibitor of SGLT proteins, also inhibits mSGLT3b. In summary, although mSGLT3b has some characteristics that resemble SGLT1 and others that are similar to hSGLT3, its low sugar affinity and uncoupled sugar transport lead us to conclude that mSGLT3b likely functions as a physiological glucose sensor similar to hSGLT3.
Collapse
Affiliation(s)
- Oscar Aljure
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | |
Collapse
|