1
|
Kujawowicz K, Mirończuk-Chodakowska I, Cyuńczyk M, Witkowska AM. Malnutrition Risk in Older Adults: Evaluating the Diagnostic Relevance of Serum Biomarkers: SIRT-1, CCK-8, Melatonin, and Total Antioxidant Capacity (TAC). Nutrients 2025; 17:726. [PMID: 40005054 PMCID: PMC11858257 DOI: 10.3390/nu17040726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Addressing the risk of malnutrition at an early stage is crucial to preventing its development, which can have a detrimental impact on physical and mental health status. This study investigates the potential role of biochemical biomarkers such as sirtuin 1 (SIRT-1), melatonin, cholecystokinin-8 (CCK-8), and total antioxidant capacity (TAC) in identifying the risk of malnutrition. Methods: This cross-sectional study assessed malnutrition risk in 153 community-dwelling older adults using the Mini Nutritional Assessment (MNA). Serum levels of SIRT-1, melatonin, and CCK-8 were analyzed with enzyme-linked immunosorbent assay (ELISA), and total antioxidant capacity (TAC) was measured using the ferric reducing ability of plasma (FRAP) method. Results: Serum levels of TAC and CCK-8 were significantly positively correlated with grip strength and visceral adipose tissue, with TAC levels also showing associations with appendicular skeletal muscle mass index (ASMI), total body water, total energy expenditure, fat-free mass index, and fat mass index (p < 0.001). CCK-8 emerged as a strong predictor of malnutrition risk (AUC = 0.58 in females, AUC = 0.64 in males), whereas SIRT-1 (AUC = 0.57 for both sexes), melatonin (AUC = 0.46 for females, AUC = 0.51 for males), and TAC (AUC = 0.42 for females, AUC = 0.54 for males) exhibited weaker predictive abilities. A multivariate model incorporating CCK-8 demonstrated excellent predictive accuracy (AUC = 0.84, 95% CI: 0.77-0.90) and indicated a potential association between elevated CCK-8 levels and a higher risk of malnutrition. Conclusions: In conclusion, this study highlights the effectiveness of a multi-parameter model incorporating CCK-8 as a reliable approach for assessing malnutrition risk in older adults, offering a comprehensive evaluation of the condition. However, further research is needed to confirm its applicability and accuracy in diverse elderly populations and clinical settings.
Collapse
Affiliation(s)
- Karolina Kujawowicz
- Department of Food Biotechnology, Medical University of Białystok, ul. Szpitalna 37, 15-285 Białystok, Poland; (I.M.-C.); (M.C.); (A.M.W.)
| | | | | | | |
Collapse
|
2
|
Silvestrini A, Mancini A. The Double-Edged Sword of Total Antioxidant Capacity: Clinical Significance and Personal Experience. Antioxidants (Basel) 2024; 13:933. [PMID: 39199179 PMCID: PMC11351343 DOI: 10.3390/antiox13080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress (OS) could be a condition underlying several human diseases, despite the physiological role of reactive oxygen species (oxidative eustress). Therefore, antioxidant compounds could represent a modulatory mechanism for maintaining a proper redox balance and redox signaling. When antioxidants are insufficient or overwhelmed, OS ensues, causing multiple damages at molecular, tissue, and cellular levels. This study focuses on the role of total antioxidant capacity (TAC) as a biomarker to be interpreted according to several clinical scenarios. After a brief description of various assay methods to elucidate terminology and physiopathological roles, we focus on the hormonal influence on TAC in blood plasma and other biological fluids, as different endocrine systems can modulate the antioxidant response. Furthermore, OS characterizes several endocrinopathies through different mechanisms: an inadequate antioxidant response to an increase in reducing equivalents (reductive distress) or a marked consumption of antioxidants (oxidative distress), which leads to low TAC values. An increased TAC could instead represent an adaptive mechanism, suggesting a situation of OS. Hence, the clinical context is fundamental for a correct interpretation of TAC. This review aims to provide the reader with a general overview of oxidative stress in several clinical examples of endocrine relevance, such as metabolic syndrome, non-thyroid illness syndrome, hypopituitarism, and infertility. Finally, the impact of dietary and surgical interventions on TAC in the model of metabolic syndrome is highlighted, along with personal experience.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| |
Collapse
|
3
|
González-Arostegui LG, Muñoz-Prieto A, García-López G, Cerón JJ, Tvarijonaviciute A, Rubio CP. Changes in biomarkers of the redox status in whole blood and red blood cell lysates in canine hypothyroidism. Vet Res Commun 2024; 48:2185-2192. [PMID: 38662314 PMCID: PMC11315793 DOI: 10.1007/s11259-024-10382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Hypothyroidism is the most commonly diagnosed endocrine disease in dogs. The objective of this study was to evaluate the changes in the redox status in canine hypothyroidism using whole blood (WB) and red blood cell (RBCs) lysates. For this purpose, a panel of five antioxidants and five oxidants biomarkers was measured in WB and RBCs lysates of 30 dogs with hypothyroidism, 26 dogs with non-thyroidal illnesses and 15 healthy dogs. The antioxidants measured were cupric reducing antioxidant capacity (CUPRAC), ferric reducing ability of plasma (FRAP), Trolox equivalent antioxidant capacity (TEAC), thiol and paraoxonase type-1 (PON-1). Oxidants measured include the total oxidant status (TOS), peroxide-activity (POX-Act), reactive oxygen-derived metabolites (d-ROMs), advanced oxidation protein products (AOPP) and thiobarbituric acid reactive substances (TBARS). WB showed a significant decrease of the antioxidants CUPRAC, TEAC and thiol, and also an increase in TBARS and a decrease in AOPP in dogs with hypothyroidism compared to healthy dogs. Meanwhile, RBCs lysates showed a significant increase in FRAP and PON-1 in dogs with hypothyroidism. The changes in the redox biomarkers in this study show that WB in canine hypothyroidism had a higher number of changes in biomarkers of the redox status than RBCs lysates, making it a promising sample type for the evaluation of the redox status in this disease. In addition, WB is easier and simpler to process than RBCs lysates and unlike serum, it does not have any hemolysis interference.
Collapse
Affiliation(s)
- L G González-Arostegui
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, Murcia, 30100, Spain
| | - A Muñoz-Prieto
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, Murcia, 30100, Spain
| | - G García-López
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, Murcia, 30100, Spain
| | - J J Cerón
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, Murcia, 30100, Spain
| | - A Tvarijonaviciute
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, Murcia, 30100, Spain
| | - C P Rubio
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, Murcia, 30100, Spain.
| |
Collapse
|
4
|
Silvestrini A, Meucci E, Ricerca BM, Mancini A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int J Mol Sci 2023; 24:10978. [PMID: 37446156 DOI: 10.3390/ijms241310978] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the physiological role of oxidant molecules, oxidative stress (OS) could underlie several human diseases. When the levels of antioxidants are too low or too high, OS occurs, leading to damage at the molecular, tissue and cellular levels. Therefore, antioxidant compounds could represent a way to modulate OS and/or to maintain proper redox balance. This review provides an overview of the methods available to assess total antioxidant capacity (TAC) in biological systems to elucidate the correct terminology and the pathophysiological roles. The clinical context is fundamental to obtain a correct interpretation of TAC. Hence, we discuss metabolic syndrome and infertility, two clinical conditions that involve OS, including the potential prognostic role of TAC evaluation in monitoring antioxidant supplementation. This approach would provide more personalised and precise therapy.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
| | - Elisabetta Meucci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
| | - Bianca Maria Ricerca
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Mancini
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Gao Y, Zou Y, Wu G, Zheng L. Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome. Front Med (Lausanne) 2023; 10:1193749. [PMID: 37448805 PMCID: PMC10336225 DOI: 10.3389/fmed.2023.1193749] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is one of the leading causes of anovulatory infertility in women, affecting 5%-15% of women of reproductive age worldwide. The clinical manifestations of patients include ovulation disorders, amenorrhea, hirsutism, and obesity. Life-threatening diseases, such as endometrial cancer, type 2 diabetes, hyperlipidaemia, hypertension, and cardiovascular disease, can be distant complications of PCOS. PCOS has diverse etiologies and oxidative stress (OS) plays an important role. Mitochondria, as the core organelles of energy production, are the main source of reactive oxygen species (ROS). The process of follicular growth and development is extremely complex, and the granulosa cells (GCs) are inextricably linked to follicular development. The abnormal function of GCs may directly affect follicular development and alter many symptoms of PCOS. Significantly higher levels of OS markers and abnormal mitochondrial function in GCs have been found in patients with PCOS compared to healthy subjects, suggesting that increased OS is associated with PCOS progression. Therefore, the aim of this review was to summarize and discuss the findings suggesting that OS and mitochondrial dysfunction in GCs impair ovarian function and induce PCOS.
Collapse
|
6
|
Hung TY, Wu SN, Huang CW. The Modulation of Ubiquinone, a Lipid Antioxidant, on Neuronal Voltage-Gated Sodium Current. Nutrients 2022; 14:3393. [PMID: 36014898 PMCID: PMC9413396 DOI: 10.3390/nu14163393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Ubiquinone, composed of a 1,4-benzoquinone and naturally produced in the body, actively participates in the mitochondrial redox reaction and functions as an endogenous lipid antioxidant, protecting against peroxidation in the pituitary-dependent hormonal system. However, the questions of if and how ubiquinone directly affects neuronal ionic currents remain largely unsettled. We investigated its effects on ionic currents in pituitary neurons (GH3 and MMQ cells) with the aid of patch-clamp technology. Ubiquinone decreased the peak amplitude of the voltage-gated Na+ current (INa) with a slowing of the inactivation rate. Neither menadione nor superoxide dismutase modified the ubiquinone-induced INa inhibition. In response to an isosceles-triangular ramp pulse, the persistent INa (INa(P)) at high- and low- threshold potentials occurred concurrently with a figure-eight hysteresis loop. With ubiquinone, the INa(P) increased with no change in the intersection voltage, and the magnitude of the voltage-dependent hysteresis of the current was enhanced. Ubiquinone was ineffective in modifying the gating of hyperpolarization-activated cation currents. In MMQ lactotrophs, ubiquinone effectively decreased the amplitude of the INa and the current inactivation rate. In sum, the effects of ubiquinone demonstrated herein occur upstream of its effects on mitochondrial redox processes, involved in its modulation of sodium channels and neuronal excitability.
Collapse
Affiliation(s)
- Te-Yu Hung
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
7
|
Semenova NV, Brichagina AS, Madaeva IM, Kolesnikova LI. Enzymatic Component of the Glutathione System in Russian and Buryat Women Depends on the Menopausal Phase. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Khalid W, Maqbool Z, Arshad MS, Kousar S, Akram R, Siddeeg A, Ali A, Qin H, Aziz A, Saeed A, Rahim MA, Zubair Khalid M, Ali H. Plant-derived functional components: prevent from various disorders by regulating the endocrine glands. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | | | - Safura Kousar
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ramish Akram
- Department of Rehabilitation Sciences, The University of Faisalabad, Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
| | - Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, China
| | - Afifa Aziz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | | | | - Hina Ali
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
9
|
High Fructose and High Fat Diet Impair Different Types of Memory through Oxidative Stress in a Sex- and Hormone-Dependent Manner. Metabolites 2022; 12:metabo12040341. [PMID: 35448528 PMCID: PMC9024673 DOI: 10.3390/metabo12040341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Metabolic syndrome (MetS) contributes to the spread of cardiovascular diseases, diabetes mellitus type 2, and neurodegenerative diseases. Evaluation of sex- and hormone-dependent changes in body weight, blood pressure, blood lipids, oxidative stress markers, and alterations in different types of memory in Sprague–Dawley rats fed with a high fat and high fructose (HFHF) diet were evaluated. After 12 weeks of feeding the male and female rats with HFHF, body weight gain, increase in blood pressure, and generation of dyslipidemia compared to the animals fed with chow diet were observed. Regarding memory, it was noted that gonadectomy reverted the effects of HFHF in the 24 h novel object recognition task and in spatial learning/memory analyzed through Morris water maze, males being more affected than females. Nevertheless, gonadectomy did not revert long-term memory impairment in the passive avoidance task induced by HFHF nor in male or female rats. On the other hand, sex-hormone–diet interaction was observed in the plasma concentration of malondialdehyde and nitric oxide. These results suggest that the changes observed in the memory and learning of MetS animals are sex- and hormone-dependent and correlate to an increase in oxidative stress.
Collapse
|
10
|
Al-Saleh I, Coskun S, Al-Rouqi R, Al-Rajudi T, Eltabache C, Abduljabbar M, Al-Hassan S. Oxidative stress and DNA damage status in couples undergoing in vitro fertilization treatment. REPRODUCTION AND FERTILITY 2022; 2:117-139. [PMID: 35128448 PMCID: PMC8812407 DOI: 10.1530/raf-20-0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
This study examined the status of oxidative stress in 599 couples undertaking in vitro fertilization (IVF) treatment and its association with reproductive hormones, smoking, and outcomes. Oxidative stress biomarkers such as malondialdehyde, 8-hydroxy-2-deoxyguanosine, hydrogen peroxide (H2O2), catalase (CAT), and total antioxidant capacity (TAC) were determined in follicular fluid and seminal plasma. Tail moment (TM) was used to evaluate DNA damage in the sperm and granulosa cells. Reproductive hormones in serum and cotinine (COT) in urine, follicular fluid, and seminal plasma samples were determined. Separate multivariate linear regression was used to assess associations between levels of each oxidative stress biomarker and each hormone and smoking parameter (modeled as natural log-transformed). The findings indicate that some oxidative stress and DNA damage biomarkers played a role in disrupting certain reproductive hormones in women and their male partners either by overproducing reactive oxygen species or reducing antioxidant defense capacity. Although women were nonsmokers, COT levels > 50 and 10 µg/L in urine and follicular were observed in 5.7 and 1.7%, respectively. Levels of follicular fluid COT were positively associated with H2O2 and TM. We used log-binomial multivariate regression to estimate relative risks for the association between oxidative stress/DNA damage and IVF binary outcomes (fertilization rate > 50%, biochemical pregnancy, clinical pregnancy, and live birth). An increase in the CAT levels of follicular fluid was associated with a 48 and 41% decrease in the risk of poor fertilization rate (≤50%) and unsuccessful live birth, respectively. After the models were adjusted for hormonal factors, the associations remained the same, except that the elevated TAC in follicular fluid became significantly associated with a decrease of 42% in the risk of poor fertilization rate (≤50%). The higher antioxidant activity (CAT and TAC) in follicular fluid might positively impact specific IVF outcomes.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reem Al-Rouqi
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Tahreer Al-Rajudi
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Chafica Eltabache
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mai Abduljabbar
- Environmental Health Program, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Saad Al-Hassan
- Reproductive Medicine Unit, Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Oxidative Stress and Low-Grade Inflammation in Polycystic Ovary Syndrome: Controversies and New Insights. Int J Mol Sci 2021; 22:ijms22041667. [PMID: 33562271 PMCID: PMC7915804 DOI: 10.3390/ijms22041667] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of Polycystic Ovary Syndrome (PCOS) is quite complex and different mechanisms could contribute to hyperandrogenism and anovulation, which are the main features of the syndrome. Obesity and insulin-resistance are claimed as the principal factors contributing to the clinical presentation; in normal weight PCOS either, increased visceral adipose tissue has been described. However, their role is still debated, as debated are the biochemical markers linked to obesity per se. Oxidative stress (OS) and low-grade inflammation (LGI) have recently been a matter of researcher attention; they can influence each other in a reciprocal vicious cycle. In this review, we summarize the main mechanism of radical generation and the link with LGI. Furthermore, we discuss papers in favor or against the role of obesity as the first pathogenetic factor, and show how OS itself, on the contrary, can induce obesity and insulin resistance; in particular, the role of GH-IGF-1 axis is highlighted. Finally, the possible consequences on vitamin D synthesis and activation on the immune system are briefly discussed. This review intends to underline the key role of oxidative stress and low-grade inflammation in the physiopathology of PCOS, they can cause or worsen obesity, insulin-resistance, vitamin D deficiency, and immune dyscrasia, suggesting an inverse interaction to what is usually considered.
Collapse
|
12
|
Atik H, Bülbül T, Özdemir V, Avci G, Bülbül A. Effect of myrtle (Myrtus communis L.) essential oil on oxidant-antioxidant balance in rats with propylthiouracil-induced hypothyroidism. J Food Biochem 2020; 44:e13498. [PMID: 33015880 DOI: 10.1111/jfbc.13498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Among today's health problems, metabolic diseases are at the forefront. Hypothyroidism (HT) is a disease characterized by increased TSH, decreased T3&T4 concentrations in serum, with overall metabolic slowdown. Although there are many studies in the literature about oxidative status in HT, statements in these studies are contradictory. In our study, the effect of essential oils obtained from the leaves, flowers, and roots of Myrtus communis L. on oxidative metabolism in an HT model induced by propylthiouracil (PTU) in rats was investigated. A total of 36 Wistar albino rats were randomly divided into six groups as follows: (1) Control, (2) PTU, (3) M. communis L. oil 200 (MO 200), (4) M. communis L. oil 400 (MO 400), (5) PTU + MO 200, and (6) PTU + MO 400. In our study, while oxidative status deteriorates in groups given PTU, antioxidant activity increases in groups given M. communis L. oil. PRACTICAL APPLICATIONS: Essential oils are aromatic oily liquids derived from different parts of plants. M. communis L. is one of the best-known herbs in the class of aromatic and medicinal plants. This paper emphasizes the effect of M. communis L. oil on the negative oxidative state that occurs in HT conditions. The present study provides a positive effect of essential oils obtained from the M. communis L. on the oxidative state seen in HT. In light of this information, it may be beneficial to use M. communis L. oil due to its antioxidative effect in HT conditions.
Collapse
Affiliation(s)
- Hülya Atik
- Department of Physiology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Tuba Bülbül
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Milas Veterinary Medicine, University of Mugla Sıtkı Kocman, Mugla, Turkey
| | - Vural Özdemir
- Department of Anatomy, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Gülcan Avci
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyonkarahisar, Turkey
| | - Aziz Bülbül
- Department of Physiology, Faculty of Milas Veterinary Medicine, University of Mugla Sıtkı Kocman, Mugla, Turkey
| |
Collapse
|
13
|
Vergani E, Bruno C, Silvestrini A, Meucci E, Proietti L, Perna A, Tamburrelli FC, Mancini A. Oxidative stress and anabolic hormones in back pain: Current concept and preliminary analysis in male cohort. Orthop Rev (Pavia) 2020; 12:8686. [PMID: 32913614 PMCID: PMC7459380 DOI: 10.4081/or.2020.8686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/22/2023] Open
Abstract
Back Pain (BP) is a common medical problem; anabolic hormones, through the modulation of oxidative stress (OS), could influence fracture risk. We evaluated the prevalence of anabolic hormonal deficiencies and their relationship with OS in males with BP, associated or not to nontraumatic fractures. 49 males with BP, from 36 to 80 years, were divided in two groups according to radiological evidence of nontraumatic fractures; group A (n=25): non-fractured; group B (n=24): fractured. A different prevalence of hormonal deficits was observed: 24% of hypotestosteronemia in A, 0% in B; 16% of GHD in A, 29% in B; Total Antioxidant Capacity (TAC) showed a trend toward higher levels in B. In A, despite lower TAC, a significant inverse correlation was present between TAC and IGF-1. A greater prevalence of GHD in patients with vertebral fractures was seen and, in a subgroup, OS could mediate the deleterious effects of hyposecretory GH state.
Collapse
Affiliation(s)
- Edoardo Vergani
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome
| | - Carmine Bruno
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome
| | - Andrea Silvestrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome.,Dipartimento di Scienze Biotecnologiche di base, cliniche intensivologiche e peri-operatorie, Università Cattolica del Sacro Cuore, Rome
| | - Elisabetta Meucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome.,Dipartimento di Scienze Biotecnologiche di base, cliniche intensivologiche e peri-operatorie, Università Cattolica del Sacro Cuore, Rome
| | - Luca Proietti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome.,Dipartimento di Scienze geriatriche e ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Perna
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome.,Dipartimento di Scienze geriatriche e ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Ciro Tamburrelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome.,Dipartimento di Scienze geriatriche e ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome
| |
Collapse
|
14
|
Mancini A, Fuvuzzi AMR, Bruno C, Nicolazzi MA, Vergani E, Ciferri N, Silvestrini A, Meucci E, Nicolotti N, D'Assante R, Cittadini A. Anabolic Hormone Deficiencies in Heart Failure with Reduced or Preserved Ejection Fraction and Correlation with Plasma Total Antioxidant Capacity. Int J Endocrinol 2020; 2020:5798146. [PMID: 32411227 PMCID: PMC7199626 DOI: 10.1155/2020/5798146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND While anabolic hormone deficit is a common finding in heart failure with reduced ejection fraction (HFrEF), few data are available in heart failure with preserved ejection fraction (HFpEF). METHODS Blood samples were collected for metabolic (total cholesterol, HDL cholesterol, LDL cholesterol, creatinine, and glucose) and hormonal (IGF-1, DHEA-S, TSH, fT3, fT4, and T) determination, comparing 30 patients with HFpEF and 20 patients with HFrEF. Total antioxidant capacity was evaluated by using the spectrophotometric method using the latency time in the appearance of the radical species of a chromogen (LAG, sec) as a parameter proportional to antioxidant content of the sample. Echocardiographic parameters were also assessed in the two groups. RESULTS A high prevalence of testosterone (32% in HFrEF and 72% in HFpEF, p < 0.05) and DHEA-S deficiencies was observed in HFpEF patients. Echocardiographic parameters did not correlate with hormone values. A significant direct correlation between T (r 2 = 0.25, p < 0.05) and DHEA-S (r 2 = 0.19, p < 0.05) with LAG was observed only in HFpEF. CONCLUSION Anabolic hormone deficiency is clearly shown in HFpEF, as already known in HFrEF. Although longitudinal studies are required to confirm the prognostic value of this observation, our data suggest different mechanisms in modulating antioxidants in the two conditions, with possible therapeutic implications.
Collapse
Affiliation(s)
- Antonio Mancini
- Operative Unit of Endocrinology, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angela Maria Rita Fuvuzzi
- Operative Unit of Internal Medicine and Vascular Diseases, Division of Internal Medicine and Cardiovascular Diseases, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carmine Bruno
- Operative Unit of Endocrinology, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Anna Nicolazzi
- Operative Unit of Internal Medicine and Vascular Diseases, Division of Internal Medicine and Cardiovascular Diseases, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Edoardo Vergani
- Operative Unit of Endocrinology, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nunzia Ciferri
- Operative Unit of Endocrinology, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Silvestrini
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elisabetta Meucci
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola Nicolotti
- Medical Management, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberta D'Assante
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| |
Collapse
|
15
|
Bruno C, Silvestrini A, Calarco R, Favuzzi AMR, Vergani E, Nicolazzi MA, d'Abate C, Meucci E, Mordente A, Landolfi R, Mancini A. Anabolic Hormones Deficiencies in Heart Failure With Preserved Ejection Fraction: Prevalence and Impact on Antioxidants Levels and Myocardial Dysfunction. Front Endocrinol (Lausanne) 2020; 11:281. [PMID: 32477267 PMCID: PMC7235369 DOI: 10.3389/fendo.2020.00281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose: In heart failure with reduced ejection fraction, catabolic mechanisms have a strong negative impact on mortality and morbidity. The relationship between anabolic hormonal deficiency and heart failure with preserved ejection fraction (HFpEF) has still been poorly investigated. On the other hand, oxidative stress is recognized as a player in the pathogenesis of HFpEF. Therefore, we performed a cohort study in HFpEF aimed to (1) define the multi-hormonal deficiency prevalence in HFpEF patients; (2) investigate the relationships between hormonal deficiencies and echocardiographic indexes; (3) explore the modulatory activity of anabolic hormones on antioxidant systems. Methods: 84 patients with diagnosis of HFpEF were enrolled in the study. Plasma levels of N-terminal pro-brain natriuretic peptide, fasting glucose, insulin, lipid pattern, insulin-like growth factor-1, dehydroepiandrosterone-sulfate (DHEA-S), total testosterone (T, only in male subjects) were evaluated. Hormonal deficiencies were defined according to T.O.S.C.A. multi-centric study, as previously published. An echocardiographic evaluation was performed. Plasma total antioxidant capacity (TAC) was measured using the system metmyoglobin -H2O2 and the chromogen ABTS, whose radical form is spectroscopically revealed; latency time (LAG) in the appearance of ABTS• is proportional to antioxidants in sample. Results: Multiple deficiencies were discovered. DHEA-S deficiency in 87% of patients, IGF-1 in 67% of patients, T in 42%. Patients with DHEA-S deficiency showed lower levels of TAC expressed by LAG (mean ± SEM 91.25 ± 9.34 vs. 75.22 ± 4.38 s; p < 0.05). No differences between TAC in patients with or without IGF-1 deficiency were found. A trend toward high level of TAC in patients without hormonal deficiencies compared with patients with one or multiple deficiencies was found. Regarding echocardiographic parameters, Left Atrial and Left Atrial Volume Index were significantly higher in patients with low IGF-1 values (mean ± SD 90.84 ± 3.86 vs. 72.83 ± 3.78 mL; 51.03 ± 2.33 vs. 40.56 ± 2.46 mL/m2, respectively; p < 0.05). Conclusions: Our study showed high prevalence of anabolic deficiencies in HFpEF. DHEA-S seems to influence antioxidant levels; IGF-1 deficiency was associated with alteration in parameters of myocardial structure and dysfunction. These data suggest a role of anabolic hormones in the complex pathophysiological mechanisms of HFpEF and could represent the basis for longitudinal studies and investigations on possible benefits of replacement therapy.
Collapse
Affiliation(s)
- Carmine Bruno
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Andrea Silvestrini
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- *Correspondence: Andrea Silvestrini
| | - Rodolfo Calarco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Angela M. R. Favuzzi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Edoardo Vergani
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Maria Anna Nicolazzi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Claudia d'Abate
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Elisabetta Meucci
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alvaro Mordente
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Raffaele Landolfi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario a Gemelli IRCCS, Rome, Italy
- Antonio Mancini
| |
Collapse
|
16
|
Abstract
In aerobes, oxygen is essential for maintenance of life. However, incomplete reduction of oxygen leads to generation of reactive oxygen species. These oxidants oxidise biological macromolecules present in their vicinity and thereby impair cellular functions causing oxidative stress (OS). Aerobes have evolved both enzymatic and nonenzymatic antioxidant defences to protect themselves from OS. Although hormones as means of biological coordination involve in regulation of physiological activities of tissues by regulating metabolism, any change in their normal titre leads to pathophysiological states. While, hormones such as melatonin, insulin, oestrogen, progesterone display antioxidant features, thyroid hormone, corticosteroids and catecholamines elicit free radical generation and OS, and the role of testosterone in inducing OS is debateable. This review is an attempt to understand the impact of free radical generation and cross talk between the hormones modulating antioxidant defence system under various pathophysiological conditions.
Collapse
Affiliation(s)
- Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, India
| | | |
Collapse
|
17
|
Sokolenko VL, Sokolenko SV. Interdependence of oxidative/antioxidant system indicators and thyroid status under conditions of prolonged exposure to small doses of radiation. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We have studied the interdependence of the intensity of oxidative processes/antioxidant level and the thyroid status parameters in a group of students aged 18–24 who lived for a long time in the territory of enhanced radioecological control (density of soil contamination by isotopes (137Cs 3.7 ∙ 104 – 18.5 ∙ 104 Bq/m2). We examined 50 people from relatively environmentally friendly areas (control group) and 50 people from IV radiation zone (experimental group). In the experimental group, there were no individuals with clinical manifestations of thyroid pathology. However, subgroups with signs of hyperthyroidism and hypothyroidism were identified. We evaluated the level of cortisol, thyrotrophic hormone (TSH), triiodothyronine (T3), thyroxine (T4), malonic dialdehyde (MDA), ceruloplasmin (CP), transferrin (Tf), sulfhydryl groups (SH); we calculated the oxidative stress index (OSI). The research was conducted one month before the examination time and also during the exams as a factor in increased emotional stress. A lowered CP level was found in the subgroup with signs of hypothyroidism; SH groups – in all subgroups, separated by thyroid status. The oxidative stress index was higher in all students examined of the experimental group, compared with the control. The growth of MDA level is marked in the experimental group – it is the most strongly pronounced in conditions of additional emotional load in people with signs of hyperthyroidism and hypothyroidism. CP level significantly decreased in the subgroup of hyperthyroidism on the background of T3 decrease. OSI increased in all students examined from the experimental group. In the subgroup of hypothyroidism it became significantly higher than in the subgroup of euthyroidism. A positive correlation between the levels of CP and T3 was found. The highest values of the correlation coefficients were noted for subgroups with signs of hyperthyroidism and hypothyroidism, with the coefficient significance increasing under conditions of emotional stress. The index of oxidative stress in the experimental group positively correlated with the level of TSH – in terms of emotional stress, the statistical significance of the coefficients disappeared. In the subgroups divided by thyroid status, variability of interactions between OSI and T3 was observed but it was not statistically significant. It was found that the participation of thyroid status in supporting redox homeostasis in people aged 18–24 who suffered from chronic small-doze radiation exposure was realized mainly by the influence on the antioxidant system. The ability of thyroid hormones to maintain a proper antioxidant state was suppressed in this group. The unbalanced relationship between thyroid hormones and oxidative stress indicators is strongly manifested under conditions of additional emotional stress.
Collapse
|
18
|
Basile U, Bruno C, Napodano C, Vergani E, Pocino K, Brunetti A, Gulli F, Santini SA, Mancini A. Plasmatic free light chains as inflammatory marker in insulin resistance: comparison of metabolic syndrome with adult growth hormone deficiency. Biofactors 2018; 44:480-484. [PMID: 30175865 DOI: 10.1002/biof.1444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/25/2018] [Indexed: 11/10/2022]
Abstract
Biological functions of immunoglobulin-free light chains (FLCs), other than in chronic inflammatory diseases, are still poorly defined; the field of insulin resistance (IR) has not been investigated, despite the strict relationships with oxidative stress (OS) and inflammation. Therefore, we evaluated FLCs levels and their relationships with metabolic parameters in adult growth hormone deficiency (GHD) and metabolic syndrome (MetS), both characterized by IR. One hundred subjects were enrolled: group A, patients with GHD [n =31, 24-69 years, mean ± SEM body mass index (BMI) 26.8 ± 1.5 kg/m2 ]; group B, patients with MetS (n = 29, 21-70 years, BMI 31.9 ± 1.3); group C, controls (N = 40, 21-62 years, BMI 21.6 ± 1.1). Groups were matched by age range and, for patients, by BMI. Morning blood sample was collected for metabolic parameters and FLCs, assessed by turbidimetric assay. GHD patients show levels of FLCs significantly higher than MetS and controls (mean ± SEM κ 37.21 ± 6.97, 15.27 ± 0.86, 12.34 ± 0.85 mg/l; λ 19.44 ± 2.61, 11.78 ± 0.72 and 11.67 ± 0.77 mg/l; κ/λ ratio 1.77 ± 0.13, 1.38 ± 0.09; and 1.10 ± 0.06, respectively); only κ were higher in MetS versus controls. Therefore, the ratio showed progressive declining values in GHD versus MetS versus controls. Our data show increased FLCs levels in GHD and MetS, with the highest values in the former. Both conditions show OS, but with different molecular patterns. FLCs may contribute to chronic inflammation, leading to OS, and cardiovascular complications of GHD. Prognostic and therapeutic implications require further investigation. © 2018 BioFactors, 44(5):480-484, 2018.
Collapse
Affiliation(s)
- Umberto Basile
- Department of Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carmine Bruno
- Operative Unit of Endocrinology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cecilia Napodano
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Edoardo Vergani
- Operative Unit of Endocrinology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Krizia Pocino
- Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Brunetti
- Operative Unit of Endocrinology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Stefano Angelo Santini
- Institute of Biochemistry and Clinical Biochemistry, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Mancini
- Operative Unit of Endocrinology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
19
|
Mancini A, Di Segni C, Bruno C, Olivieri G, Guidi F, Silvestrini A, Meucci E, Orlando P, Silvestri S, Tiano L, Pontecorvi A. Oxidative stress in adult growth hormone deficiency: different plasma antioxidant patterns in comparison with metabolic syndrome. Endocrine 2018; 59:130-136. [PMID: 29143180 DOI: 10.1007/s12020-017-1468-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/02/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS Growth hormone deficiency (GHD) is a condition associated with increased cardiovascular risk and insulin-resistance. Oxidative stress (OS) could be a mechanism underlying both these phenomena. In order to investigate plasma antioxidant defenses in such condition, we evaluated adults with GHD, compared with controls and metabolic syndrome patients (MetS), studying plasma total antioxidant capacity (TAC) and coenzyme Q10 (CoQ10, lipophilic antioxidant) levels, both in its oxidized and reduced forms, correlating this data with metabolic and hormonal pattern. MATERIALS AND METHODS In this case-control study, 51 GHD, 36 controls, and 35 MetS were enrolled. An evaluation of hormonal and metabolic parameters was performed. TAC was measured using the system metmyoglobin -H202 and the chromogen ABTS, whose radical form is spectroscopically revealed; latency time (LAG) in the appearance of ABTS● is proportional to antioxidant in sample. CoQ10 was assayed by electrochemical method. RESULTS Despite HOMA index was higher in both GHD and MetS (2.2 ± 0.3 and 3.1 ± 0.3 vs. 1.2 ± 0.2 in controls), only in MetS we observed lower LAG levels (64.5 ± 3.1 s vs. 82.8 ± 5.8 in GHD and 80.6 ± 6.6 in controls), suggesting an increased consumption of antioxidants. LAG significantly correlated with uric acid only in MetS (r 2 = 0.65, p < 0.001), suggesting a different pattern of antioxidants. CoQ10 exhibited a trend toward lower levels in GHD, although not significant. CONCLUSIONS Our data indicate that GHD, although sharing with MetS various metabolic features, including increased HOMA levels, showed a different pattern of plasma antioxidants, suggesting inadequate reactivity toward radical production rather than an antioxidants consumption as in MetS.
Collapse
Affiliation(s)
- Antonio Mancini
- Operative Unit of Endocrinology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, Rome, 00168, Italy.
| | - Chantal Di Segni
- Operative Unit of Endocrinology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, Rome, 00168, Italy
| | - Carmine Bruno
- Operative Unit of Endocrinology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, Rome, 00168, Italy
| | - Giulio Olivieri
- Operative Unit of Endocrinology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, Rome, 00168, Italy
| | - Francesco Guidi
- Department of Obstetrics and Gynecology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, Rome, 00168, Italy
| | - Andrea Silvestrini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, Largo F. Vito 1, Rome, 00168, Italy.
| | - Elisabetta Meucci
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, Largo F. Vito 1, Rome, 00168, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, 60131, Italy
| | - Alfredo Pontecorvi
- Operative Unit of Endocrinology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, Rome, 00168, Italy
| |
Collapse
|
20
|
Balercia G, Mancini A, Tirabassi G, Pontecorvi A. Coenzyme Q10 in Male Infertility. ANTIOXIDANTS IN ANDROLOGY 2017. [DOI: 10.1007/978-3-319-41749-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Effects of Dendropanax morbifera Léveille extract on hypothyroidism-induced oxidative stress in the rat hippocampus. Food Sci Biotechnol 2016; 25:1761-1766. [PMID: 30263472 DOI: 10.1007/s10068-016-0268-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/19/2016] [Accepted: 08/26/2016] [Indexed: 01/20/2023] Open
Abstract
In this experiment, we verified the effects of Dendropanax morbifera Léveille stem extract (DMS) on hypothyroidism-induced oxidative stress in the hippocampus of rats. Hypothyroidism was induced in rats by treating them with 0.03% 2-mercapto-1-methyl-imidazole dissolved in drinking water for 5 weeks. DMS (100 mg/kg) was also orally administered to the rats during the same period and the animals were sacrificed at 12 weeks of age. DMS administration tended to ameliorate these hypothyroidism-induced changes in serum triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone levels. DMS administration significantly reduced the hypothyroidism-induced increases in reactive oxygen species production as well as in lipid peroxidation in the hippocampus. In addition, DMS administration increased hippocampal Cu, Zn-superoxide dismutase (SOD1), catalase (CAT), and glutathione peroxidase (GPx) levels. These results suggest that DMS potentially ameliorates hypothyroidism-induced neuroendocrine phenotypes and oxidative stress in the hippocampus via the induction of antioxidant enzymes.
Collapse
|
22
|
Associations between oxidative stress biomarkers in different body fluids and reproductive parameters in male partners of subfertile couples. Rev Int Androl 2016. [DOI: 10.1016/j.androl.2016.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Thyroid Hormones, Oxidative Stress, and Inflammation. Mediators Inflamm 2016; 2016:6757154. [PMID: 27051079 PMCID: PMC4802023 DOI: 10.1155/2016/6757154] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases.
Collapse
|
24
|
Effect of Ubiquinol on Serum Reproductive Hormones of Amenorrhic Patients. Indian J Clin Biochem 2015; 31:342-8. [PMID: 27382208 DOI: 10.1007/s12291-015-0542-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/08/2015] [Indexed: 01/16/2023]
Abstract
In neuroendocrine system the increase in oxidative status is produced by a glucocorticoid-dependent and transcriptional increase in pro-oxidative drive, with concurrent inhibition of the antioxidant defense system, ultimately leading to increased neuronal cell death. Functional hypothalamic disturbances and neuroendocirne aberrations have both short and long term consequences for reproductive health. Understandably, an impaired or diminished hypothalamic-pituitary-ovarian axis leads to anovulation and hypoestrogenism. Anovulation is directly linked to the neurohormonal and hormonal background of Functional Hypothalamic Amenorrhea. Impairment of pulsatile Gonadotropin Releasing Hormone secretion causes the impairment of pulsatile Lutenizing Hormone (LH) and Follicle Stimulating Hormone (FSH) secretion. The importance of oxidative stress in various pituitary disorders suggesting a possible clinical usefulness of antioxidant molecules like the lipophilic antioxidant Ubiquinol. Coenzyme Q10 or Ubiquinol is an essential part of the cell energy-producing system of mitochondria. However, it is also a powerful lipophilic antioxidant, protecting lipoproteins and cell membranes from autooxidation. Due to these unique actions Ubiquinol is used in clinical practice as an antioxidants for neurodegenerative diseases. So to identify the role of Ubiquinol on reproductive hormones FSH and LH, we have included 50 infertile patients of age group of 20-40, which are mostly amenorrhic. Out of 50 only 30 patients were in continuous follow up after supplementing them with 150 mg of Ubiquinol every day for 4 months. The hormonal levels were estimated by Enzyme Linked Immuno Sorbent Assay technique at follicular phase. The result suggests that FSH concentration is increased up to three times (from 3.10 ± 2.70 to 10.09 ± 6.93) but remains within the normal limit (P < 0.05). LH values were found doubled (P < 0.05) than its normal range (from 14.83 ± 10.48 to 27.85 ± 22.30). The Prolactin values were decreased while Progesterone values were high but not in the significant range (P > 0.05). The supplementation of 150 mg of Ubiquinol may reduce the oxidative stress in neuroendocrine system which further improves the function of diminished HPA axis. Hence increased level of FSH and LH may be due to reduced oxidative stress by Ubiquinol.
Collapse
|
25
|
Lee EY, Kim SH, Cho KH. Reconstituted High-Density Lipoprotein Containing Human Growth Hormone-1 Shows Potent Tissue Regeneration Activity with Enhancement of Anti-Oxidant and Anti-Atherosclerotic Activities. Rejuvenation Res 2015; 18:245-56. [PMID: 25626070 DOI: 10.1089/rej.2014.1644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Human growth hormone-1 (GH-1), somatotropin, is a peptide hormone that stimulates cell division in tissues such as bone and cartilage. METHODS To compare physiological activities in lipid-free and lipid-bound states, we expressed and incorporated GH-1 in reconstituted high-density lipoprotein (rHDL). RESULTS GH-1 was expressed and purified using the pET30(a) vector and an Escherichia coli expression system. Purified GH-1 (at least 98% purity, 23 kD) was characterized and synthesized with apolipoproteinA-I (apoA-I), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and cholesterol. Secondary structure analysis of GH-1 revealed 54% α-helical content in a lipid-free state and 65% α-helical content in a lipid-bound state along with blue-shifted tryptophan movement (around 2 nm). GH-1 caused less uptake of oxidized low-density lipoprotein (oxLDL) into macrophages and inhibited senescence of dermal cells in a dose-dependent manner. GH-1 in a lipid-bound state exerted stronger inhibitory activity than in a lipid-free state, indicating improved anti-atherosclerotic activity due to the lipid formulation. In a fin regeneration experiment using zebrafish (17 weeks old, n=9), GH-1 showed its highest regeneration speed without any side effects. GH-1-rHDL containing apoA-I showed 2.3-fold and 1.6-fold higher regeneration speeds than lipid-free GH-1 (in native state) and lipid-bound GH-1, respectively. CONCLUSION Incorporation of GH-1 and apoA-I in HDL enhanced tissue regeneration activity of amputated tail fin, indicating a synergetic effect between GH-1 and apoA-I in a lipid-bound state.
Collapse
Affiliation(s)
- Eun-Young Lee
- 1 School of Biotechnology, Yeungnam University , Gyeongsan, Republic of Korea.,2 Research Institute of Protein Sensor, Yeungnam University , Gyeongsan, Republic of Korea.,3 BK21plus Program Serum Biomedical Research and Education Team, Yeungnam University , Gyeongsan, Republic of Korea
| | - So-Hee Kim
- 1 School of Biotechnology, Yeungnam University , Gyeongsan, Republic of Korea.,2 Research Institute of Protein Sensor, Yeungnam University , Gyeongsan, Republic of Korea.,3 BK21plus Program Serum Biomedical Research and Education Team, Yeungnam University , Gyeongsan, Republic of Korea
| | - Kyung-Hyun Cho
- 1 School of Biotechnology, Yeungnam University , Gyeongsan, Republic of Korea.,2 Research Institute of Protein Sensor, Yeungnam University , Gyeongsan, Republic of Korea.,3 BK21plus Program Serum Biomedical Research and Education Team, Yeungnam University , Gyeongsan, Republic of Korea
| |
Collapse
|
26
|
Gasparotto J, Senger MR, Kunzler A, Degrossoli A, de Simone SG, Bortolin RC, Somensi N, Girardi CS, de Souza CDSF, Calabrese KDS, Dal-Pizzol F, Moreira JCF, Silva FP, Gelain DP. Increased tau phosphorylation and receptor for advanced glycation endproducts (RAGE) in the brain of mice infected with Leishmania amazonensis. Brain Behav Immun 2015; 43:37-45. [PMID: 25014011 DOI: 10.1016/j.bbi.2014.06.204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/20/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is a parasitosis caused by several species of the genus Leishmania, an obligate intramacrophagic parasite. Although neurologic symptoms have been observed in human cases of leishmaniasis, the manifestation of neurodegenerative processes is poorly studied. The aim of the present work was to investigate if peripheral infection of BALB/c mice with Leishmania amazonensis affects tau phosphorylation and RAGE protein content in the brain, which represent biochemical markers of neurodegenerative processes observed in diseases with a pro-inflammatory component, including Alzheimer's disease and Down syndrome. Four months after a single right hind footpad subcutaneous injection of L. amazonensis, the brain cortex of BALB/c mice was isolated. Western blot analysis indicated an increase in tau phosphorylation (Ser(396)) and RAGE immunocontent in infected animals. Brain tissue TNF-α, IL-1β, and IL-6 levels were not different from control animals; however, increased protein carbonylation, decreased IFN-γ levels and impairment in antioxidant defenses were detected. Systemic antioxidant treatment (NAC 20mg/kg, i.p.) inhibited tau phosphorylation and recovered IFN-γ levels. These data, altogether, indicate an association between impaired redox state, tau phosphorylation and RAGE up-regulation in the brain cortex of animals infected with L. amazonensis. In this context, it is possible that neurologic symptoms associated to chronic leishmaniasis are associated to disruptions in the homeostasis of CNS proteins, such as tau and RAGE, as consequence of oxidative stress. This is the first demonstration of alterations in biochemical parameters of neurodegeneration in an experimental model of Leishmania infection.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mario Roberto Senger
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Alice Kunzler
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Degrossoli
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Salvatore Giovanni de Simone
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Rafael Calixto Bortolin
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carolina Saibro Girardi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Celeste da Silva Freitas de Souza
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Kátia da Silva Calabrese
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Floriano Paes Silva
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Proteínas e Peptídeos, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Thyroid hormones and antioxidant systems: focus on oxidative stress in cardiovascular and pulmonary diseases. Int J Mol Sci 2013; 14:23893-909. [PMID: 24351864 PMCID: PMC3876084 DOI: 10.3390/ijms141223893] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 12/30/2022] Open
Abstract
In previous works we demonstrated an inverse correlation between plasma Coenzyme Q10 (CoQ10) and thyroid hormones; in fact, CoQ10 levels in hyperthyroid patients were found among the lowest detected in human diseases. On the contrary, CoQ10 is elevated in hypothyroid subjects, also in subclinical conditions, suggesting the usefulness of this index in assessing metabolic status in thyroid disorders. A Low-T3 syndrome is a condition observed in several chronic diseases: it is considered an adaptation mechanism, where there is a reduction in pro-hormone T4 conversion. Low T3-Syndrome is not usually considered to be corrected with replacement therapy. We review the role of thyroid hormones in regulation of antioxidant systems, also presenting data on total antioxidant capacity and Coenzyme Q10. Published studies suggest that oxidative stress could be involved in the clinical course of different heart diseases; our data could support the rationale of replacement therapy in low-T3 conditions.
Collapse
|
28
|
Wei N, Yu Y, Schmidt T, Stanford C, Hong L. Effects of glucocorticoid receptor antagonist, RU486, on the proliferative and differentiation capabilities of bone marrow mesenchymal stromal cells in ovariectomized rats. J Orthop Res 2013; 31:760-7. [PMID: 23280517 DOI: 10.1002/jor.22298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/29/2012] [Indexed: 02/04/2023]
Abstract
Glucocorticoids (GCs) potentially regulate the proliferation, differentiation, and premature senescence of bone marrow mesenchymal stem/stromal cells (MSCs). In the present study we investigated the effects mediated by endogenous GCs and the effects of an antagonist of the glucocorticoid receptor, RU486, on the proliferative and differentiation capabilities of MSCs using an ovariectomized (OVX) animal model. Following ovariectomy and a decrease in systemic estradiol levels, the serum concentration of corticosterone is significantly increased in OVX rats. Compared to sham-operated controls, the total superoxide dismutase (SOD) activity in serum of OVX rats and the proliferation of their MSCs are significantly reduced. Furthermore, the osteogenic differentiation capabilities of OVX rat MSCs are significantly decreased, while adipogenic capabilities tend to increase. Subcutaneous administration of RU486 effectively increases the population and proliferative capacity of the MSCs in OVX rats. RU486 treatment also improves osteogenic capabilities and down-regulates adipogenic capabilities of MSCs. These results strongly indicate that the elevated levels of endogenous GCs induced by estrogen depletion might accelerate the premature senescence of MSCs and reduce their proliferative and osteogenic differentiation capabilities, while the blockage of the effects of endogenous GCs may restore their capabilities. These responses could potentially be developed to protect the capabilities of MSCs from oxidative stress-induced premature senescence and extend their lifespan in patients with advancing age and estrogen depletion.
Collapse
Affiliation(s)
- Na Wei
- Dows Institute for Dental Research, College of Dentistry, University of Iowa, 405N, DSB, 801 Newton Ave, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
29
|
Sohet FM, Delzenne NM. Is there a place for coenzyme Q in the management of metabolic disorders associated with obesity? Nutr Rev 2012; 70:631-41. [PMID: 23110642 DOI: 10.1111/j.1753-4887.2012.00526.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coenzyme Q (CoQ), a lipophilic cofactor of the electron transport chain in the mitochondria, can be synthesized endogenously or provided by food. The aim of this review is to summarize the in vitro cell culture studies, the in vivo animal studies, and the human studies investigating the impact of CoQ supplementation on the occurrence of obesity and related disorders (diabetes, hypertension, lipemia, and atherosclerosis). The antioxidative properties of CoQ have been observed in different experimental models of atherosclerosis, obesity, and diabetes. The recent discovery of the anti-inflammatory effect of CoQ, mostly described in vitro, has generated increased interest in CoQ supplementation, but it needs to be confirmed in vivo in pathological situations. CoQ intervention studies in humans failed to show reproducible effects on body weight, fat mass, or glycemia, but CoQ supplementation does seem to have an antihypertensive effect. The molecular mechanism to explain this effect has only recently been discovered.
Collapse
Affiliation(s)
- Florence M Sohet
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
30
|
Durrani F, Phelps DS, Weisz J, Silveyra P, Hu S, Mikerov AN, Floros J. Gonadal hormones and oxidative stress interaction differentially affects survival of male and female mice after lung Klebsiella pneumoniae infection. Exp Lung Res 2012; 38:165-72. [PMID: 22394250 DOI: 10.3109/01902148.2011.654045] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Survival of mice after Klebsiella pneumoniae infection and phagocytosis by alveolar macrophages (AMs), in the presence or absence of ozone (O(3)) exposure prior to infection, is sex dependent. The objective of this work was to study the role of gonadal hormones, 5α-dihydrotestosterone (DHT) and 17β-estradiol (E(2)), on mouse survival after filtered air (FA) or O(3) exposure. Gonadectomized female (G×F) and male (G×M) mice implanted with control or hormone pellets (DHT in G×F, or E(2) in G×M), exposed to O(3) (2 ppm, 3h) or FA, and infected with K. pneumoniae were monitored for survival. Survival in G×F was identical after FA or O(3) exposure; in G×M O(3) exposure resulted in lower survival compared to FA. In O(3)-exposed females, gonadectomy resulted in increased survival compared to intact females or to G×M+E(2). A similar effect was observed in G×F+DHT. The combined negative effect of oxidative stress and hormone on survival was higher for E(2). Gonadectomy eliminated (females) or minimized (males) the previously observed sex differences in survival in response to oxidative stress, and hormone treatment restored them. These findings indicate that gonadal hormones and/or oxidative stress have a significant effect on mouse survival.
Collapse
Affiliation(s)
- Faryal Durrani
- Center for Host defense, Inflammation, and Lung Disease (CHILD), Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Mancini A, Festa R, Raimondo S, Pontecorvi A, Littarru GP. Hormonal influence on coenzyme Q(10) levels in blood plasma. Int J Mol Sci 2011; 12:9216-25. [PMID: 22272129 PMCID: PMC3257126 DOI: 10.3390/ijms12129216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 11/19/2011] [Accepted: 11/29/2011] [Indexed: 12/19/2022] Open
Abstract
Coenzyme Q10 (CoQ10), also known as ubiquinone for its presence in all body cells, is an essential part of the cell energy-producing system. However, it is also a powerful lipophilic antioxidant protecting lipoproteins and cell membranes. Due to these two actions, CoQ10 is commonly used in clinical practice in chronic heart failure, male infertility, and neurodegenerative disease. However, it is also taken as an anti-aging substance by healthy people aiming for long-term neuroprotection and by sportsmen to improve endurance. Many hormones are known to be involved in body energy regulation, in terms of production, consumption and dissipation, and their influence on CoQ10 body content or blood values may represent an important pathophysiological mechanism. We summarize the main findings of the literature about the link between hormonal systems and circulating CoQ10 levels. In particular the role of thyroid hormones, directly involved in the regulation of energy homeostasis, is discussed. There is also a link with gonadal and adrenal hormones, partially due to the common biosynthetic pathway with CoQ10, but also to the increased oxidative stress found in hypogonadism and hypoadrenalism.
Collapse
Affiliation(s)
- Antonio Mancini
- Department of Internal Medicine, Division of Endocrinology, Catholic University of the Sacred Heart, Largo Gemelli, 1-00168 Rome, Italy; E-Mails: (S.R.); (A.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-30154440; Fax: +39-0630157232
| | - Roberto Festa
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Via Tronto 10, A-60020, Ancona, Italy; E-Mail:
| | - Sebastiano Raimondo
- Department of Internal Medicine, Division of Endocrinology, Catholic University of the Sacred Heart, Largo Gemelli, 1-00168 Rome, Italy; E-Mails: (S.R.); (A.P.)
| | - Alfredo Pontecorvi
- Department of Internal Medicine, Division of Endocrinology, Catholic University of the Sacred Heart, Largo Gemelli, 1-00168 Rome, Italy; E-Mails: (S.R.); (A.P.)
| | - Gian Paolo Littarru
- Department of Biology, Biochemistry and Genetics, Polytechnic University of Marche, Via Ranieri, Montedago, 60128, Ancona, Italy; E-Mail:
| |
Collapse
|