1
|
O Murchu E, Comber L, Jordan K, Hawkshaw S, Marshall L, O'Neill M, Ryan M, Teljeur C, Carnahan A, Pérez JJ, Robertson AH, Johansen K, Jonge JD, Krause T, Nicolay N, Nohynek H, Pavlopoulou I, Pebody R, Penttinen P, Soler-Soneira M, Wichmann O, Harrington P. Systematic review of the efficacy, effectiveness and safety of MF59 ® adjuvanted seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥18 years of age. Rev Med Virol 2022; 33:e2329. [PMID: 35142401 DOI: 10.1002/rmv.2329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 01/18/2023]
Abstract
The most effective means of preventing seasonal influenza is through vaccination. In this systematic review, we investigated the efficacy, effectiveness and safety of MF59® adjuvanted trivalent and quadrivalent influenza vaccines to prevent laboratory-confirmed influenza. A systematic literature search was conducted in electronic databases and grey literature sources up to 7 February 2020. Randomised controlled trials and non-randomised studies of interventions (NRSIs) were eligible for inclusion. The search returned 28,846 records, of which 48 studies on MF59® adjuvanted vaccines met our inclusion criteria. No efficacy trials were identified. In terms of vaccine effectiveness (VE), MF59® adjuvanted trivalent influenza vaccines were effective in preventing laboratory-confirmed influenza in older adults (aged ≥65 years) compared with no vaccination (VE = 45%, 95% confidence interval (CI) 23%-61%, 5 NRSIs across 3 influenza seasons). By subtype, significant effect was found for influenza A(H1N1) (VE = 61%, 95% CI 44%-73%) and B (VE = 29%, 95% CI 5%-46%), but not for A(H3N2). In terms of relative VE, there was no significant difference comparing MF59® adjuvanted trivalent vaccines with either non-adjuvanted trivalent or quadrivalent vaccines. Compared with traditional trivalent influenza vaccines, MF59® adjuvanted trivalent influenza vaccines were associated with a greater number of local adverse events (RR = 1.90, 95% CI 1.50-2.39) and systemic reactions (RR = 1.18, 95% CI 1.02-1.38). In conclusion, MF59® adjuvanted trivalent influenza vaccines were found to be more effective than 'no vaccination'. Based on limited data, there was no significant difference comparing the effectiveness of MF59® adjuvanted vaccines with their non-adjuvanted counterparts.
Collapse
Affiliation(s)
- Eamon O Murchu
- Health Information and Quality Authority (HIQA), Dublin, Ireland.,Department of Health Policy & Management, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Laura Comber
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Karen Jordan
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Sarah Hawkshaw
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Liam Marshall
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Michelle O'Neill
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Máirín Ryan
- Health Information and Quality Authority (HIQA), Dublin, Ireland.,Department of Pharmacology & Therapeutics, Trinity College Dublin, Trinity Health Sciences, Dublin, Ireland
| | - Conor Teljeur
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | | | - Jaime Jesús Pérez
- General Directorate of Public Health and Addictions, IMIB-Arrixaca. Murcia University, Region of Murcia, Spain
| | - Anna Hayman Robertson
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kari Johansen
- European Centre for Disease Prevention and Control, Solna, Sweden
| | - Jorgen de Jonge
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Nathalie Nicolay
- European Centre for Disease Prevention and Control, Solna, Sweden
| | - Hanna Nohynek
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ioanna Pavlopoulou
- Pediatric Research Laboratory, School of Health Sciences, Faculty of Nursing National and Kapodistrian University of Athens, Athens, Greece.,National Advisory Committee on Immunisation, Hellenic Ministry of Health, Athens, Greece
| | - Richard Pebody
- Institute of Epidemiology & Health, University College London, London, UK
| | - Pasi Penttinen
- European Centre for Disease Prevention and Control, Solna, Sweden
| | - Marta Soler-Soneira
- Vigilancia de Enfermedades Prevenibles por Vacunación, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Ole Wichmann
- Immunization Unit, Robert Koch-Institute, Berlin, Germany
| | | |
Collapse
|
2
|
Ng TWY, Cowling BJ, Gao HZ, Thompson MG. Comparative Immunogenicity of Enhanced Seasonal Influenza Vaccines in Older Adults: A Systematic Review and Meta-analysis. J Infect Dis 2019; 219:1525-1535. [PMID: 30551178 PMCID: PMC6775043 DOI: 10.1093/infdis/jiy720] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/12/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A number of enhanced influenza vaccines have been developed for use in older adults, including high-dose, MF59-adjuvanted, and intradermal vaccines. METHODS We conducted a systematic review examining the improvements in antibody responses measured by the hemagglutination inhibition assay associated with these enhanced vaccines, compared with each other and with the standard-dose (SD) vaccine using random effects models. RESULTS Thirty-nine trials were included. Compared with adults aged ≥60 years receiving SD vaccines, those receiving enhanced vaccines had significantly higher postvaccination titers (for all vaccine strains) and higher proportions with elevated titers ≥40 (for most vaccine strains). High-dose vaccine elicited 82% higher postvaccination titer to A(H3N2) compared with SD vaccine; this was significantly higher than the 52% estimated for MF59-adjuvanted versus SD vaccines (P = .04), which was higher than the 32% estimated for intradermal versus SD vaccines (P < .01). CONCLUSIONS Overall, by summarizing current evidence, we found that enhanced vaccines had greater antibody responses than the SD vaccine. Indications of differences among enhanced vaccines highlight the fact that further research is needed to compare new vaccine options, especially during seasons with mismatched circulating strains and for immune outcomes other than hemagglutination inhibition titers as well as vaccine efficacy.
Collapse
Affiliation(s)
- Tiffany W Y Ng
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Hui Zhi Gao
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Mark G Thompson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
3
|
Camilloni B, Basileo M, Valente S, Nunzi E, Iorio AM. Immunogenicity of intramuscular MF59-adjuvanted and intradermal administered influenza enhanced vaccines in subjects aged over 60: A literature review. Hum Vaccin Immunother 2015; 11:553-63. [PMID: 25714138 PMCID: PMC4514405 DOI: 10.1080/21645515.2015.1011562] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/06/2014] [Accepted: 11/20/2014] [Indexed: 12/23/2022] Open
Abstract
Because of the age-related immune system decline, 2 potentiated influenza vaccines were specifically licensed for the elderly: Fluad(®), an MF59-adjuvanted vaccine administered intramuscularly (IM-MF59), and Intanza 15 mcg(®), a non adjuvanted vaccine administered intradermally (ID). The objective of this paper was to conduct a systematic review of studies that evaluated antibody responses in the elderly following immunization with IM-MF59 or ID vaccines. The two potentiated vaccines induced immune responses satisfying, in most instances, the European Medicine Agency immunogenicity criteria, both against vaccine antigens and heterovariant drifted strains. Considering pooled data reported in the articles analyzed and papers directly comparing the 2 vaccines, the antibody responses elicited by IM-MF59 and ID were found to be generally comparable. The use of IM-MF59 and ID vaccines can be proposed as an appropriate strategy for elderly seasonal influenza vaccination although further studies are required for a more complete characterization of the 2 vaccines.
Collapse
Affiliation(s)
- Barbara Camilloni
- Department of Experimental Medicine; University of Perugia; Perugia, Italy
| | - Michela Basileo
- Department of Experimental Medicine; University of Perugia; Perugia, Italy
| | | | - Emilia Nunzi
- Department of Experimental Medicine; University of Perugia; Perugia, Italy
| | - Anna Maria Iorio
- Department of Experimental Medicine; University of Perugia; Perugia, Italy
| |
Collapse
|
4
|
Gordon AL, Logan PA, Jones RG, Forrester-Paton C, Mamo JP, Gladman JRF. A systematic mapping review of randomized controlled trials (RCTs) in care homes. BMC Geriatr 2012; 12:31. [PMID: 22731652 PMCID: PMC3503550 DOI: 10.1186/1471-2318-12-31] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 06/25/2012] [Indexed: 01/02/2023] Open
Abstract
Background A thorough understanding of the literature generated from research in care homes is required to support evidence-based commissioning and delivery of healthcare. So far this research has not been compiled or described. We set out to describe the extent of the evidence base derived from randomized controlled trials conducted in care homes. Methods A systematic mapping review was conducted of the randomized controlled trials (RCTs) conducted in care homes. Medline was searched for “Nursing Home”, “Residential Facilities” and “Homes for the Aged”; CINAHL for “nursing homes”, “residential facilities” and “skilled nursing facilities”; AMED for “Nursing homes”, “Long term care”, “Residential facilities” and “Randomized controlled trial”; and BNI for “Nursing Homes”, “Residential Care” and “Long-term care”. Articles were classified against a keywording strategy describing: year and country of publication; randomization, stratification and blinding methodology; target of intervention; intervention and control treatments; number of subjects and/or clusters; outcome measures; and results. Results 3226 abstracts were identified and 291 articles reviewed in full. Most were recent (median age 6 years) and from the United States. A wide range of targets and interventions were identified. Studies were mostly functional (44 behaviour, 20 prescribing and 20 malnutrition studies) rather than disease-based. Over a quarter focussed on mental health. Conclusions This study is the first to collate data from all RCTs conducted in care homes and represents an important resource for those providing and commissioning healthcare for this sector. The evidence-base is rapidly developing. Several areas - influenza, falls, mobility, fractures, osteoporosis – are appropriate for systematic review. For other topics, researchers need to focus on outcome measures that can be compared and collated.
Collapse
Affiliation(s)
- Adam L Gordon
- Division of Rehabilitation and Ageing, University of Nottingham, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
5
|
Seidman JC, Richard SA, Viboud C, Miller MA. Quantitative review of antibody response to inactivated seasonal influenza vaccines. Influenza Other Respir Viruses 2012; 6:52-62. [PMID: 21668661 PMCID: PMC3175249 DOI: 10.1111/j.1750-2659.2011.00268.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Seasonal influenza epidemics are associated with significant morbidity and mortality each year, particularly amongst young children and the elderly. Seasonal influenza vaccines have been available for decades, yet influenza remains a major public health threat in the US, sparking interest in studies evaluating the effectiveness of vaccination. OBJECTIVES We sought to identify determinants of serological responses to inactivated seasonal influenza vaccines including number of doses, adjuvant, and subject characteristics. METHODS We reviewed 60 articles published between 1987 and 2006. We used weighted multiple logistic regression and random-effects models to evaluate how seroconversion and seroprotection rates varied with host and vaccine factors. RESULTS Both children and seniors tended to have poorer immune responses compared to adults whereas use of adjuvant and a second vaccine dose tended to improve immune response. Pre-vaccination serological status had a large impact on the immune response to vaccination. We found substantial heterogeneity among studies, even with similar population settings and vaccination regimen. CONCLUSIONS Future studies should stratify their results by pre-vaccination serological status in an effort to produce more precise summary estimates of vaccine response.
Collapse
Affiliation(s)
- Jessica C Seidman
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
6
|
Recommendations on the use of MF59-Adjuvanted Trivalent Influenza Vaccine (Fluad ®): Supplemental Statement of Seasonal Influenza Vaccine for 2011-2012 An Advisory Committee Statement (ACS) National Advisory Committee on Immunization (NACI) †. ACTA ACUST UNITED AC 2011; 37:1-68. [PMID: 31701945 DOI: 10.14745/ccdr.v37i00a06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Induction of virus-specific cytotoxic T lymphocytes as a basis for the development of broadly protective influenza vaccines. J Biomed Biotechnol 2011; 2011:939860. [PMID: 22007149 PMCID: PMC3189652 DOI: 10.1155/2011/939860] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/01/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
There is considerable interest in the development of broadly protective influenza vaccines because of the continuous emergence of antigenic drift variants of seasonal influenza viruses and the threat posed by the emergence of antigenically distinct pandemic influenza viruses. It has been recognized more than three decades ago that influenza A virus-specific cytotoxic T lymphocytes recognize epitopes located in the relatively conserved proteins like the nucleoprotein and that they cross-react with various subtypes of influenza A viruses. This implies that these CD8+ T lymphocytes may contribute to protective heterosubtypic immunity induced by antecedent influenza A virus infections. In the present paper, we review the evidence for the role of virus-specific CD8+ T lymphocytes in protective immunity against influenza virus infections and discuss vaccination strategies that aim at the induction of cross-reactive virus-specific T-cell responses.
Collapse
|
8
|
Beyer WEP, Nauta JJP, Palache AM, Giezeman KM, Osterhaus ADME. Immunogenicity and safety of inactivated influenza vaccines in primed populations: a systematic literature review and meta-analysis. Vaccine 2011; 29:5785-92. [PMID: 21624411 DOI: 10.1016/j.vaccine.2011.05.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 05/09/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Several inactivated influenza vaccine formulations for systemic administration in man are currently available for annual (seasonal) immunization: split virus and subunit (either plain-aqueous, or virosomal, or adjuvanted by MF59). From a literature search covering the period 1978-2009, 33 articles could be identified, which described randomized clinical trials comparing at least two of the four vaccine formulations with respect to serum hemagglutination inhibition (HI) antibody response, local and systemic vaccine reactions and serious adverse events after vaccination, and employing seasonal vaccine components and doses. In total, 9121 vaccinees of all ages, either healthy or with underlying diseases, were involved. Most vaccinees were primed or had been vaccinated in previous years. For immunogenicity, homologous post-vaccination geometric mean HI titers (GMTs) were analyzed by a random effects model for continuous data. Unreported standard deviations (SD) were addressed by imputing assumed SD-values. Age and health state of the vaccinees appeared to have little influence on the outcome. The immunogenicity of split, aqueous and virosomal subunit formulations were similar, with geometric mean ratio values (GMR, quotient of paired GMT-values) varying around one (0.93-1.24). The MF59-adjuvanted subunit vaccine induced, on average, larger antibody titers than the non-adjuvanted vaccine formulations, but the absolute increase was small (GMR-values varying between 1.25 and 1.40). Vaccine reactions were analyzed using a random effects model for binary data. Local and systemic reactogenicity was similar among non-adjuvanted formulations. The adjuvanted subunit formulation was more frequently associated with local reactions than the non-adjuvanted formulations (rate ratio: 2.12, significant). Systemic reactions were similar among all vaccine formulations. The original articles emphasized the mild and transient character of the vaccine reactions and the absence of serious vaccine-related adverse events. This adequate amount of evidence led to the conclusion that all the currently available inactivated influenza vaccine formulations are safe, well tolerated and similarly effective to control seasonal influenza outbreaks across primed populations and age ranges.
Collapse
Affiliation(s)
- W E P Beyer
- National Influenza Centre and Department of Virology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Parodi V, de Florentiis D, Martini M, Ansaldi F. Inactivated influenza vaccines: recent progress and implications for the elderly. Drugs Aging 2011; 28:93-106. [PMID: 21275435 DOI: 10.2165/11586770-000000000-00000] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The current public health strategy for the containment of influenza is annual vaccination, which is recommended for the elderly and for those in risk factor categories that present the highest morbidity and mortality. However, because the immune response in the elderly is known to be less vigorous than in younger adults, research in the last decade has focused on improving the immune response to vaccination and increasing the protection of aged populations. The decreased efficacy of vaccines in the elderly is due to several factors, such as a decrease in the number of Langerhans cells, the limited capacity of dendritic cells to present antigen, defects in the expression of Toll-like receptors and the reduced expression of MHC class I and II molecules. Also, production of mature naive T cells by the thymus decreases with age. Among several approaches proposed to address the need for more immunogenic vaccines compared with conventional agents, the most well proven is the use of adjuvants. The first licensed adjuvant, aluminium-based mineral salts (alum), introduced in the 1920s, remains the standard worldwide adjuvant for human use and it has been widely used for almost a century. However, the addition of alum adjuvant to a split or subunit influenza vaccine has induced only marginal improvements. Other adjuvants have been developed and approved for human use since 1997; in particular, MF59, an oil-in-water adjuvant emulsion of squalene, which is able to increase immunogenicity of seasonal, pre-pandemic and pandemic subunit vaccines while maintaining acceptable safety and tolerability profiles. More recently, another oil-in-water emulsion, AS03, has been approved as a component of pre-pandemic H5N1 and pandemic H1N1 2009 vaccines. Besides adjuvants, several other strategies have been assessed to enhance antibody response in the elderly and other less responsive subjects, such as high-dose antigen vaccines, carrier systems (liposomes/virosomes) and the intradermal route of immunization. In particular, the potential of intradermal vaccination is well documented and the recent availability of an appropriate injection system, which combines simplicity, safety and ease of use, has allowed evaluation of the tolerability, safety and immunogenicity of the intradermal influenza vaccine in large numbers of subjects. Data that emerged from large clinical trials showed an improved immunogenicity compared with that of standard vaccine. Observational studies or comparisons between adjuvanted, intradermal or high-dose versus conventional vaccines are needed to evaluate whether the greater immunogenicity observed in a number of recent studies is correlated with greater protection against influenza and influenza-related complications and death.
Collapse
|
10
|
|
11
|
Vacunación antigripal convencional frente a la vacuna de subunidades adyuvada con MF59. Aten Primaria 2009; 41:695-7. [DOI: 10.1016/j.aprim.2009.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/05/2009] [Accepted: 06/16/2009] [Indexed: 11/23/2022] Open
|
12
|
Landi F, Onder G, Cesari M, Russo A, Barillaro C, Bernabei R, Gambassi G, Manigrasso L, Pagano F, Gobbi C. In a prospective observational study, influenza vaccination prevented hospitalization among older home care patients. J Clin Epidemiol 2006; 59:1072-7. [PMID: 16980147 DOI: 10.1016/j.jclinepi.2006.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Revised: 02/09/2006] [Accepted: 02/23/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study is (1) to describe the prevalence of vaccination against influenza in older home care patients and (2) to investigate the protective effect of influenza vaccination for hospitalization events. STUDY DESIGN AND SETTING This is an observational study conducted in four large cohorts of elderly patients in home care during the 1998-1999, 1999-2000, 2000-2001, and 2001-2002 influenza seasons. We analyzed data from the Italian Silver Network Home Care project. A total of 2,201 patients were enrolled in the present study. The main outcome measures were prevalence of vaccination against influenza and the rate of hospitalization according to vaccination status and influenza season. RESULTS The rate of influenza vaccination was around 48% of the studied sample. During the follow-up including the peak of influenza and the total influenza season, 412 subjects (40%) were hospitalized among vaccinated compared to 610 subjects (59%) among not vaccinated (P<0.001). After adjusting for age, gender, location of home care program, and all the variables significantly different between vaccinated and not-vaccinated subjects, vaccinated subjects were less likely to be hospitalized compared to not-vaccinated subjects (OR, 0.73; 95% CI 0.60-0.90). CONCLUSIONS Vaccination against influenza has an important prognostic implication for frail geriatric patients living in the community.
Collapse
Affiliation(s)
- Francesco Landi
- Department of Gerontology-Geriatric and Physiatric, Catholic University of Sacred Heart, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Landi F, Onder G, Carpenter I, Garms-Homolova V, Bernabei R. Prevalence and predictors of influenza vaccination among frail, community-living elderly patients: an international observational study. Vaccine 2005; 23:3896-901. [PMID: 15917110 DOI: 10.1016/j.vaccine.2005.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/14/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
The annual winter outbreak of influenza is one of the major cause of morbidity and mortality among frail elderly people. The aim of the present study was to identify prevalence and predictors of influenza vaccination in a large European population of frail and old people living in community. This was an observational study conducted in 11 European countries. We enrolled 3878 people 65 years and older already receiving home care services within the urban areas. All participants were assessed with the Minimum Data Set-Home Care (MDS-HC) instrument containing over 300 items, including socio-demographic, physical and cognitive characteristics of patients as well as medical diagnoses and medications received. A single question about the influenza vaccination status was used. The rate of influenza vaccination was around 59% of the studied sample. Significant geographical variations were evident in the prevalence of vaccination ranging from 31% of Prague (Czech Republic) to 88% of Rotterdam (The Netherlands). Overall, persons living alone were less likely to receive influenza vaccine as compared with those living with an informal caregiver (OR, 0.78; 95% CI 0.67-0.90). Similarly, cognitive impairment and presence of economic problems were associated with a lower likelihood of being vaccinated (OR: 0.69, 95% CI 0.59-0.80 and OR, 0.58; 95% CI 0.45-0.74, respectively). On the other hand, old age and comorbidity were associated with an higher probability of being vaccinated. In conclusion, more than 40% of subjects in this sample of home care patients in Europe did not receive influenza vaccination. Recommendations for influenza vaccination have not been adequately implemented.
Collapse
Affiliation(s)
- Francesco Landi
- Department of Gerontology-Geriatric, Catholic University Sacred Heart, Rome, Italy.
| | | | | | | | | |
Collapse
|
14
|
Landi F, Onder G, Cesari M, Gravina EM, Lattanzio F, Russo A, Bernabei R. Effects of influenza vaccination on mortality among frail, community-living elderly patients: an observational study. Aging Clin Exp Res 2003; 15:254-8. [PMID: 14582688 DOI: 10.1007/bf03324506] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIMS The annual winter outbreak of influenza is one of the major causes of morbidity and mortality among frail elderly people. The aims of the present study were to describe the prevalence of vaccination against influenza in a population of older people living in the community, and to examine the relationship between influenza vaccination and mortality. METHODS This was an observational cohort study. We analyzed data from the Italian Silver Network Home Care project, which collected data on patients admitted to home care programs. A total of twelve Home Health Agencies participated in this project, evaluating the implementation of the Minimum Data Set for Home Care (MDS-HC) instrument. A total of 2082 patients were enrolled in the present study. The main outcome measures were prevalence of vaccination against influenza and 1-year survival according to vaccination status. RESULTS Nearly half the subjects in our Italian sample did not receive influenza vaccination. During a mean follow-up period of 10 months from initial MDS-HC assessment, 167 vaccinated subjects (15%) died compared with 192 non-vaccinated subjects (19%) (p = 0.01). After adjusting for age, gender, and all variables significantly different between vaccinated and non-vaccinated subjects at baseline (functional and cognitive impairment, number of diseases, number of medications, depression, pressure ulcers), vaccinated subjects were less likely to die than non-vaccinated ones (RR 0.73; 95% CI 0.56-0.94). CONCLUSIONS Vaccination against influenza has important prognostic implications for frail geriatric patients living in the community, independent of age, gender, and other clinical and functional variables. Despite extensive scientific evidence, recommendations for annual vaccination against influenza among subjects at higher risk have never been adequately implemented.
Collapse
Affiliation(s)
- Francesco Landi
- Department of Gerontology, Geriatric and Physiatric Medicine, Catholic University of the Sacred Heart, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
|