1
|
Barrows IR, Ramezani A, Raj DS. Inflammation, Immunity, and Oxidative Stress in Hypertension-Partners in Crime? Adv Chronic Kidney Dis 2019; 26:122-130. [PMID: 31023446 DOI: 10.1053/j.ackd.2019.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
Abstract
Hypertension is considered as the most common risk factor for cardiovascular disease. Inflammatory processes link hypertension and cardiovascular disease, and participate in their pathophysiology. In recent years, there has been an increase in research focused on unraveling the role of inflammation and immune activation in development and maintenance of hypertension. Although inflammation is known to be associated with hypertension, whether inflammation is a cause or effect of hypertension remains to be elucidated. This review describes the recent studies that link inflammation and hypertension and demonstrate the involvement of oxidative stress and endothelial dysfunction-two of the key processes in the development of hypertension. Etiology of hypertension, including novel immune cell subtypes, cytokines, toll-like receptors, inflammasomes, and gut microbiome, found to be associated with inflammation and hypertension are summarized and discussed. Most recent findings in this field are presented with special emphasis on potential of anti-inflammatory drugs and statins for treatment of hypertension.
Collapse
|
2
|
Bomfim GF, Rodrigues FL, Carneiro FS. Are the innate and adaptive immune systems setting hypertension on fire? Pharmacol Res 2017; 117:377-393. [PMID: 28093357 DOI: 10.1016/j.phrs.2017.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/06/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023]
Abstract
Hypertension is the most common chronic cardiovascular disease and is associated with several pathological states, being an important cause of morbidity and mortality around the world. Low-grade inflammation plays a key role in hypertension and the innate and adaptive immune systems seem to contribute to hypertension development and maintenance. Hypertension is associated with vascular inflammation, increased vascular cytokines levels and infiltration of immune cells in the vasculature, kidneys and heart. However, the mechanisms that trigger inflammation and immune system activation in hypertension are completely unknown. Cells from the innate immune system express pattern recognition receptors (PRR), which detect conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) that induce innate effector mechanisms to produce endogenous signals, such as inflammatory cytokines and chemokines, to alert the host about danger. Additionally, antigen-presenting cells (APC) act as sentinels that are activated by PAMPs and DAMPs to sense the presence of the antigen/neoantigen, which ensues the adaptive immune system activation. In this context, different lymphocyte types are activated and contribute to inflammation and end-organ damage in hypertension. This review will focus on experimental and clinical evidence demonstrating the contribution of the innate and adaptive immune systems to the development of hypertension.
Collapse
Affiliation(s)
- Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Fernanda Luciano Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
3
|
Kanduc D, Shoenfeld Y. From HBV to HPV: Designing vaccines for extensive and intensive vaccination campaigns worldwide. Autoimmun Rev 2016; 15:1054-1061. [DOI: 10.1016/j.autrev.2016.07.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022]
|
4
|
Elijovich F, Weinberger MH, Anderson CAM, Appel LJ, Bursztyn M, Cook NR, Dart RA, Newton-Cheh CH, Sacks FM, Laffer CL. Salt Sensitivity of Blood Pressure: A Scientific Statement From the American Heart Association. Hypertension 2016; 68:e7-e46. [PMID: 27443572 DOI: 10.1161/hyp.0000000000000047] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Herrera VL, Decano JL, Tan GA, Moran AM, Pasion KA, Matsubara Y, Ruiz-Opazo N. DEspR roles in tumor vasculo-angiogenesis, invasiveness, CSC-survival and anoikis resistance: a 'common receptor coordinator' paradigm. PLoS One 2014; 9:e85821. [PMID: 24465725 PMCID: PMC3897535 DOI: 10.1371/journal.pone.0085821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 12/02/2013] [Indexed: 01/31/2023] Open
Abstract
A priori, a common receptor induced in tumor microvessels, cancer cells and cancer stem-like cells (CSCs) that is involved in tumor angiogenesis, invasiveness, and CSC anoikis resistance and survival, could underlie contemporaneous coordination of these events rather than assume stochasticity. Here we show that functional analysis of the dual endothelin1/VEGFsignal peptide receptor, DEspR, (formerly named Dear, Chr.4q31.2) supports the putative common receptor paradigm in pancreatic ductal adenocarcinoma (PDAC) and glioblastoma (GBM) selected for their invasiveness, CD133+CSCs, and polar angiogenic features. Unlike normal tissue, DEspR is detected in PDAC and GBM microvessels, tumor cells, and CSCs isolated from PDAC-Panc1 and GBM-U87 cells. DEspR-inhibition decreased angiogenesis, invasiveness, CSC-survival and anoikis resistance in vitro, and decreased Panc1-CSC and U87-CSC xenograft tumor growth, vasculo-angiogenesis and invasiveness in nude(nu/nu) rats, suggesting that DEspR activation would coordinate these tumor progression events. As an accessible, cell-surface 'common receptor coordinator', DEspR-inhibition defines a novel targeted-therapy paradigm for pancreatic cancer and glioblastoma.
Collapse
Affiliation(s)
- Victoria L. Herrera
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Julius L. Decano
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Glaiza A. Tan
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ann M. Moran
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Khristine A. Pasion
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yuichi Matsubara
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nelson Ruiz-Opazo
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Glorioso N, Herrera VL, Didishvili T, Ortu MF, Zaninello R, Fresu G, Argiolas G, Troffa C, Ruiz-Opazo N. Sex-specific effects of NLRP6/AVR and ADM loci on susceptibility to essential hypertension in a Sardinian population. PLoS One 2013; 8:e77562. [PMID: 24147025 PMCID: PMC3795764 DOI: 10.1371/journal.pone.0077562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/03/2013] [Indexed: 01/11/2023] Open
Abstract
Coronary artery disease, heart failure, fatal arrhythmias, stroke, and renal disease are the most common causes of mortality for humans, and essential hypertension remains a major risk factor. Elucidation of susceptibility loci for essential hypertension has been difficult because of its complex, multifactorial nature involving genetic, environmental, and sex- and age-dependent nature. We investigated whether the 11p15.5 region syntenic to rat chromosome 1 region containing multiple blood pressure quantitative trait loci (QTL) detected in Dahl rat intercrosses harbors polymorphisms that contribute to susceptibility/resistance to essential hypertension in a Sardinian population. Initial testing performed using microsatellite markers spanning 18 Mb of 11p15.5 detected a strong association between D11S1318 (at 2.1 Mb, P = 0.004) and D11S1346 (at 10.6 Mb, P = 0.00000004), suggesting that loci in close proximity to these markers may contribute to susceptibility in our Sardinian cohort. NLR family, pyrin domain containing 6/angiotensin-vasopressin receptor (NLRP6/AVR), and adrenomedullin (ADM) are in close proximity to D11S1318 and D11S1346, respectively; thus we tested single nucleotide polymorphisms (SNPs) within NLRP6/AVR and ADM for their association with hypertension in our Sardinian cohort. Upon sex stratification, we detected one NLRP6/AVR SNP associated with decreased susceptibility to hypertension in males (rs7948797G, P = 0.029; OR = 0.73 [0.57–0.94]). For ADM, sex-specific analysis showed a significant association between rs4444073C, with increased susceptibility to essential hypertension only in the male population (P = 0.006; OR = 1.44 [1.13–1.84]). Our results revealed an association between NLRP6/AVR and ADM loci with male essential hypertension, suggesting the existence of sex-specific NLRP6/AVR and ADM variants affecting male susceptibility to essential hypertension.
Collapse
Affiliation(s)
- Nicola Glorioso
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Victoria L. Herrera
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Tamara Didishvili
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Maria F. Ortu
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Roberta Zaninello
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Giovanni Fresu
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Guiseppe Argiolas
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Chiara Troffa
- Hypertension and Related Diseases Center, AUO-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Nelson Ruiz-Opazo
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Herrera VLM, Bagamasbad P, Decano JL, Ruiz-Opazo N. AVR/NAVR deficiency lowers blood pressure and differentially affects urinary concentrating ability, cognition, and anxiety-like behavior in male and female mice. Physiol Genomics 2010; 43:32-42. [PMID: 20923861 DOI: 10.1152/physiolgenomics.00154.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arginine vasopressin (AVP) and angiotensin II (ANG II) are distinct peptide hormones involved in multiple organs modulating renal, cardiovascular, and brain functions. They achieve these functions via specific G protein-coupled receptors, respectively. The AVR/NAVR locus encodes two overlapping V2-type vasopressin isoreceptors: angiotensin-vasopressin receptor (AVR) responding to ANG II and AVP equivalently, and nonangiotensin vasopressin receptor (NAVR), which binds vasopressin exclusively. AVR and NAVR are expressed from a single gene by alternative promoter usage that is synergistically upregulated by testosterone and estrogen. This study tested the hypothesis that AVR/NAVR modulates urinary concentrating ability, blood pressure, and cognitive performance in vivo in a sex-specific manner. We developed a C57BL/6 inbred AVR/NAVR(-/-) knockout mouse that showed lower blood pressure in both male and female subjects and a urinary-concentrating defect restricted to male mice. We also detected sex-specific effects on cognitive and anxiety-like behaviors. AVR/NAVR(-/-) male mice exhibited impaired visuospatial and associative learning, while female mice showed improved performance in both type of cognition. AVR/NAVR deficiency produced an anxiolytic-like effect in female mice, while males were unaffected. Analysis of AVR- and NAVR-mediated phosphorylation/dephosphorylation of signaling proteins revealed activation/deactivation of known modulators of cognitive function. Our studies identify AVR/NAVR as key receptors involved in blood pressure regulation and sex-specific modulation of renal water homeostasis, cognitive function, and anxiety-like behavior. As such, the AVR/NAVR receptor system provides a molecular mechanism for sexually diergic traits and a putative common pathway for the emerging association of hypertension and cognitive decline and dementia.
Collapse
Affiliation(s)
- Victoria L M Herrera
- Section of Molecular Medicine, Department of Medicine, and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
8
|
Choleris E, Clipperton-Allen AE, Phan A, Kavaliers M. Neuroendocrinology of social information processing in rats and mice. Front Neuroendocrinol 2009; 30:442-459. [PMID: 19442683 DOI: 10.1016/j.yfrne.2009.05.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
Abstract
We reviewed oxytocin (OT), arginine-vasopressin (AVP) and gonadal hormone involvement in various modes of social information processing in mice and rats. Gonadal hormones regulate OT and AVP mediation of social recognition and social learning. Estrogens foster OT-mediated social recognition and the recognition and avoidance of parasitized conspecifics via estrogen receptor (ER) alpha (ERalpha) and ERbeta. Testosterone and its metabolites, including estrogens, regulate social recognition in males predominantly via the AVP V1a receptor. Both OT and AVP are involved in the social transmission of food preferences and ERalpha has inhibitory, while ERbeta has enhancing, roles. OT also enhances mate copying by females. ERalpha mediates the sexual, and ERbeta the recognition, aspects of the risk-taking enhancing effects of females on males. Thus, androgens and estrogens control social information processing by regulating OT and AVP. This control is finely tuned for different forms of social information processing.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | - Anna Phan
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, Ontario, Canada N6A 5C2
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW To integrate recent studies showing that abnormal Na transport in the central nervous system plays a pivotal role in genetic models of salt-sensitive hypertension. RECENT FINDINGS Na transport-regulating mechanisms classically considered to reflect renal control of the blood pressure, i.e. aldosterone-mineralocorticoid receptors-epithelial sodium channels-Na/K-ATPase, have now been demonstrated to be present in the central nervous system contributing to regulation of cerebrospinal fluid [Na] by the choroid plexus and to neuronal responsiveness to cerebrospinal fluid/brain [Na]. Dysfunction of either or both can activate central nervous system pathways involving 'ouabain' and angiotensin type 1 receptor stimulation. The latter causes sympathetic hyperactivity and adrenal release of marinobufagenin - a digitalis-like inhibitor of the alpha1 Na/K-ATPase isoform - both contributing to hypertension on high salt intake. Conversely, specific central nervous system blockade of mineralocorticoid receptors or epithelial sodium channels prevents the development of hypertension on high salt intake, irrespective of the presence of a 'salt-sensitive kidney'. Variants in the coding regions of some of the genes involved in Na transport have been identified, but sodium sensitivity may be mainly determined by abnormal regulation of expression, pointing to primary abnormalities in regulation of transcription. SUMMARY Looking beyond the kidney is providing new insights into mechanisms contributing to salt-sensitive hypertension, which will help to dissect the genetic factors involved and to discover novel strategies to prevent and treat salt-sensitive hypertension.
Collapse
Affiliation(s)
- Bing S Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ontario, Canada
| | | | | |
Collapse
|
10
|
Torp M, Brønd L, Hadrup N, Nielsen JB, Praetorius J, Nielsen S, Christensen S, Jonassen TEN. Losartan decreases vasopressin-mediated cAMP accumulation in the thick ascending limb of the loop of Henle in rats with congestive heart failure. Acta Physiol (Oxf) 2007; 190:339-50. [PMID: 17635349 DOI: 10.1111/j.1748-1716.2007.01722.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Vasopressin (AVP) stimulates sodium reabsorption and Na,K,2Cl-cotransporter (NKCC2) protein level in the thick ascending limb (TAL) of Henle's loop in rats. Rats with congestive heart failure (CHF) have increased protein level of NKCC2, which can be normalized by angiotensin II receptor type-1 (AT(1)) blockade with losartan. AIM In this study, we investigated whether CHF rats displayed changes in AVP stimulated cAMP formation in the TAL and examined the role of AT(1) receptor blockade on this system. METHOD CHF was induced by ligation of the left anterior descending coronary artery (LAD). SHAM-operated rats were used as controls. Half of the rats were treated with losartan (10 mg kg day(-1) i.p.). RESULTS CHF rats were characterized by increased left ventricular end diastolic pressure. Measurement of cAMP in isolated outer medullary TAL showed that both basal and AVP (10(-6) m) stimulated cAMP levels were significantly increased in CHF rats (25.52 +/- 4.49 pmol cAMP microg(-1) protein, P < 0.05) compared to Sham rats (8.13 +/- 1.14 pmol cAMP microg(-1) protein), P < 0.05). Losartan significantly reduced the basal level of cAMP in CHF rats (CHF: 12.56 +/- 1.93 fmol microg(-1) protein vs. Los-CHF: 7.49 +/- 1.08, P < 0.05), but not in Sham rats (SHAM: 4.66 +/- 0.59 vs. Los-SHAM: 4.75 +/- 0.71). AVP-mediated cAMP accumulation was absent in both groups treated with losartan (Los-SHAM: 4.75 +/- 0.71 and Los-CHF: 7.49 +/- 1.08). CONCLUSION The results indicate that the increased NKCC2 protein level in the mTAL from CHF rats is associated with increased cAMP accumulation in this segment. Furthermore, the finding that AT(1) receptor blockade prevents AVP-mediated cAMP accumulation in both SHAM and CHF rats suggests an interaction between angiotensin II and AVP in regulation of mTAL Na reabsorption.
Collapse
Affiliation(s)
- M Torp
- Department of Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Omi T, Kumada M, Kamesaki T, Okuda H, Munkhtulga L, Yanagisawa Y, Utsumi N, Gotoh T, Hata A, Soma M, Umemura S, Ogihara T, Takahashi N, Tabara Y, Shimada K, Mano H, Kajii E, Miki T, Iwamoto S. An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension. Eur J Hum Genet 2006; 14:1295-305. [PMID: 16868559 DOI: 10.1038/sj.ejhg.5201698] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cold-induced autoinflammatory syndrome 1 (CIAS1) gene is a member of the NALP subfamily of the CATERPILLER protein family that is expressed predominantly in peripheral blood leukocytes, which is to regulate apoptosis or inflammation through the activation of NF-kappaB and caspase. Recent genetic analyses suggested an association between inflammation and oxidative stress-related genes in the development of hypertension. This is the first genetic study indicating an association between the CIAS1 gene and susceptibility to essential hypertension (EH). The frequency of subject with the homozygote of 12 repeat allele was significantly higher in patients with hypertension compared with control subjects (987 cases, 924 controls) (P=0.030; odds ratio=1.24) at a novel VNTR polymorphism of CIAS1 intron 4 loci. We also found that the mean of systolic blood pressure of homozygotes of 12 repeat allele was 6.4 mmHg higher than those of homozygotes of non-12 repeat allele in male random population (P=0.009). The frequency of six SNPs spanning of the CIAS1 gene was not significantly between patients and controls. The real-time PCR analysis showed that among healthy young adults, 12-12 subjects expressed CIAS1 mRNA in peripheral leukocytes significantly more abundantly than homozygote of non-12 repeat alleles subjects (P<0.05). Reporter gene assay of the CIAS1-VNTR in HL60 stimulated by lipopolysaccharides showed that the intronic sequence involving 12 repeat increased the expression of luciferase compared with 9, 7, and 6 repeats. Thus, we propose here the CIAS1 is associated with EH through the dominant expression of transcripts, which may depend on the CIAS1-VNTR genotype.
Collapse
Affiliation(s)
- Toshinori Omi
- Division of Human Genetics, Center for Community Medicine, Jichi Medical School, Minamikawachi-machi, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Huang CN, Liu KL, Cheng CH, Lin YS, Lin MJ, Lin TH. PGE2 enhances cytokine-elicited nitric oxide production in mouse cortical collecting duct cells. Nitric Oxide 2005; 12:150-8. [PMID: 15797843 DOI: 10.1016/j.niox.2005.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 11/24/2004] [Accepted: 01/25/2005] [Indexed: 11/25/2022]
Abstract
It has been documented that arginine vasopressin (AVP) and prostaglandin E(2) (PGE(2)) regulate water reabsorption in renal tubular cells. The present study was attempted to delineate the downstream signaling of AVP and PGE(2) in a cortical collecting duct cell line (M-1 cell). Using RT-PCR, we detected mRNA for V2 and VACM-1 but not for V1a and AII/AVP receptors of AVP. Furthermore, neither AVP nor V2 receptor agonist and antagonist alter cellular cAMP. These together with unchanged cellular Ca(2+) by AVP suggested that AVP pathway was not operating in M-1 cells. All four classical PGE(2) receptors with EP3 and EP4 as the most prominent were detected in M-1 cells. PGE(2), 11-deoxy-PGE(1) (EP2 and EP4 agonist), and 17-phenyl-trinor-PGE(2) (EP1 agonist) increased cellular concentration of cAMP. There was no effect of PGE(2) or EP1 agonist on cellular Ca(2+). These findings provide evidence of the involvement of PGE(2) cascade in M-1 cells. M-1 cells were capable of synthesizing nitric oxide (NO). Although individual cytokines did not affect NO production, a mixture of tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma elevated NO concentration to 4.5-fold of the control. Addition of PGE(2) and db-cAMP to the cytokine mixture further increased NO production to 7.0- and 9.8-fold, respectively, of that seen in non-treated cells. PGE(2) or db-cAMP alone, however, had no effect on NO production. The results of the study led us to speculate that enhanced production of cAMP via PGE(2) signaling pathway in M-1 cells could either stimulate or attenuate water reabsorption in renal tubule. While an increase in cAMP alone may enhance water reabsorption, a concomitant increase in cAMP and cytokines may inhibit water reabsorption in renal tubule.
Collapse
Affiliation(s)
- Chien-Ning Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung Shan Medical University, Number 110, Section 1, Chien-Kuo North Road, Taichung 40203, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
13
|
Schipper L, Spee B, Rothuizen J, Woutersen-van Nijnanten F, Fink-Gremmels J. Characterisation of 11β-hydroxysteroid dehydrogenases in feline kidney and liver. Biochim Biophys Acta Mol Basis Dis 2004; 1688:68-77. [PMID: 14732482 DOI: 10.1016/j.bbadis.2003.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
11 Beta-hydroxysteroid dehydrogenases type 1 and 2 (11 beta-HSD1 and 11 beta-HSD2) are microsomal enzymes responsible for the interconversion of cortisol into the inactive form cortisone and vice versa. 11 beta-HSD1 is mainly present in the liver, and has predominantly reductase activity although its function has not yet been elucidated. 11 beta-HSD2, present in mineralocorticoid target tissues such as the kidney, converts cortisol into cortisone. Reduced activity due to inhibition or mutations of 11 beta-HSD2 leads to hypertension and hypokalemia resulting in the Apparent Mineralocorticoid Excess Syndrome (AMES). Like humans, cats are highly susceptible for hypertension. As large species differences exist with respect to the kinetic parameters (K(m) and V(max)) and amino acid sequences of both enzymes, we determined these characteristics in the cat. Both enzyme types were found in the kidneys. 11 beta-HSD1 in the feline kidney showed bidirectional activity with predominantly dehydrogenase activity (dehydrogenase: K(m) 1959+/-797 nM, V(max) 766+/-88 pmol/mg*min; reductase: K(m) 778+/-136 nM, V(max) 112+/-4 pmol/mg*min). 11 beta-HSD2 represents a unidirectional dehydrogenase with a higher substrate affinity (K(m) 184+/-24 nM, V(max) 74+/-3 pmol/mg*min). In the liver, only 11 beta-HSD1 is detected exerting reductase activity (K(m) 10462 nM, V(max) 840 pmol/mg*min). Sequence analysis of conserved parts of 11 beta-HSD1 and 11 beta-HSD2 revealed the highest homology of the feline enzymes with the correspondent enzymes found in man. This suggests that the cat may serve as a suitable model species for studies directed to the pathogenesis and treatment of human diseases like AMES and hypertension.
Collapse
Affiliation(s)
- L Schipper
- Department of Veterinary Pharmacy, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University Utrecht, P.O. Box 80.152, 3508 TD Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Albrecht M, Domingues FS, Schreiber S, Lengauer T. Identification of mammalian orthologs associates PYPAF5 with distinct functional roles. FEBS Lett 2003; 538:173-7. [PMID: 12633874 DOI: 10.1016/s0014-5793(03)00161-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PYRIN- and CARD-containing proteins belong to a recently identified protein family involved in the regulation of apoptosis and inflammatory processes. Variations in the gene products of the family members PYPAF1 and NOD2/CARD15 have been associated with several autoinflammatory diseases. We could identify the mouse orthologs of PYPAF1, PYPAF5, NOD1, NOD2 and the rat ortholog of PYPAF5. Intriguingly, we found that PYPAF5 has been reported previously not only as regulator of NF-kappaB and caspase-1, but also as angiotensin II and vasopressin receptor. In particular, based on a comprehensive sequence analysis, we propose a structural model for this hormone receptor that is different from the model suggested previously.
Collapse
Affiliation(s)
- Mario Albrecht
- Max-Planck-Institute for Informatics, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany.
| | | | | | | |
Collapse
|