1
|
Zhang Y, Chiu YL, Chen CJ, Ho YY, Shinzato C, Shikina S, Chang CF. Discovery of a receptor guanylate cyclase expressed in the sperm flagella of stony corals. Sci Rep 2019; 9:14652. [PMID: 31601940 PMCID: PMC6787079 DOI: 10.1038/s41598-019-51224-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022] Open
Abstract
The receptor guanylate cyclases (rGCs) in animals serve as sensitive chemoreceptors to detect both chemical and environmental cues. In reproduction, rGCs were shown to be expressed on sperm and serve as receptors for egg-derived sperm-activating and sperm-attracting factors in some echinoderms and mammals. However, sperm-associated rGCs have only been identified in some deuterostomes thus far, and it remains unclear how widely rGCs are utilized in metazoan reproduction. To address this issue, this study investigated the existence and expression of rGCs, particularly asking if rGCs are involved in the reproduction of a basal metazoan, phylum Cnidaria, using the stony coral Euphyllia ancora. Six paralogous rGCs were identified from a transcriptome database of E. ancora, and one of the rGCs, GC-A, was shown to be specifically expressed in the testis. Immunohistochemical analyses demonstrated that E. ancora GC-A protein was expressed in the spermatocytes and spermatids and eventually congregated on the sperm flagella during spermatogenesis. These findings suggest that GC-A may be involved in the regulation of sperm activity and/or functions (e.g., fertilization) in corals. This study is the first to perform molecular characterization of rGCs in cnidarians and provides evidence for the possible involvement of rGCs in the reproduction of basal metazoans.
Collapse
Affiliation(s)
- Yan Zhang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yi-Ling Chiu
- Doctoral Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Doctoral Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chieh-Jhen Chen
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yu-Ying Ho
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Shinya Shikina
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan. .,Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan. .,Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
2
|
Mu K, Yu S, Kitts DD. The Role of Nitric Oxide in Regulating Intestinal Redox Status and Intestinal Epithelial Cell Functionality. Int J Mol Sci 2019; 20:E1755. [PMID: 30970667 PMCID: PMC6479862 DOI: 10.3390/ijms20071755] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Important functions of intestinal epithelial cells (IECs) include enabling nutrient absorption to occur passively and acting as a defense barrier against potential xenobiotic components and pathogens. A compromise to IEC function can result in the translocation of bacteria, toxins, and allergens that lead to the onset of disease. Thus, the maintenance and optimal function of IECs are critically important to ensure health. Endogenous biosynthesis of nitric oxide (NO) regulates IEC functionality both directly, through free radical activity, and indirectly through cell signaling mechanisms that impact tight junction protein expression. In this paper, we review the current knowledge on factors that regulate inducible nitric oxide synthase (iNOS) and the subsequent roles that NO has on maintaining IECs' intestinal epithelial barrier structure, functions, and associated mechanisms of action. We also summarize important findings on the effects of bioactive dietary food components that interact with NO production and affect downstream intestinal epithelium integrity.
Collapse
Affiliation(s)
- Kaiwen Mu
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Shengwu Yu
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - David D Kitts
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
3
|
Abstract
In the early 1980s both our group (Hansbrough & Garbers, 1981; Garbers et al., 1982) and that of Norio Suzuki (Suzuki et al., 1981) identified the active material in sea urchin egg conditioned media that could stimulate sperm motility and metabolism. In the sea urchins Hemicentrotus pulcherrimus or Strongylocentrotus purpuratus, the active material was a small peptide that we named speract, and the Suzuki group named this and subsequent peptides SAPs, for sperm activating peptides. Subsequently, both groups identified other peptides (see Suzuki & Yoshino, 1992 for review), one of the most interesting being one named resact, the active material in Arbacia punctulata egg conditioned media. This peptide turned out to be the first animal sperm chemoattractant identified (Ward et al., 1985a). A peptide also turned out to be the active principle that explained previous observations of Ward and Vacquier (Ward et al., 1985b; Suzuki et al., 1984) that egg conditioned media could cause the rapid dephosphorylation of a major membrane protein of spermatozoa. The apparent receptor for resact was later identified as a guanylyl cyclase, establishing a new paradigm for low-molecular-weight second messenger signalling, and the major phosphoprotein regulated by resact was also the receptor itself.
Collapse
|
4
|
Duda T, Yadav P, Sharma RK. Allosteric modification, the primary ATP activation mechanism of atrial natriuretic factor receptor guanylate cyclase. Biochemistry 2011; 50:1213-25. [PMID: 21222471 DOI: 10.1021/bi1018978] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ANF-RGC is the prototype receptor membrane guanylate cyclase being both the receptor and the signal transducer of the most hypotensive hormones, ANF and BNP. It is a single transmembrane-spanning protein. After binding these hormones at the extracellular domain it at its intracellular domain signals activation of the C-terminal catalytic module and accelerates the production of its second messenger, cyclic GMP, which controls blood pressure, cardiac vasculature, and fluid secretion. ATP is obligatory for the posttransmembrane dynamic events leading to ANF-RGC activation. It functions through the ATP-regulated module, ARM (KHD) domain, of ANF-RGC. In the current over a decade held model "phosphorylation of the KHD is absolutely required for hormone-dependent activation of NPR-A" [Potter, L. R., and Hunter, T. (1998) Mol. Cell. Biol. 18, 2164-2172]. The presented study challenges this concept. It demonstrates that, instead, ATP allosteric modification of ARM is the primary signaling step of ANF-GC activation. In this two-step new dynamic model, ATP in the first step binds ARM. This triggers in it a chain of transduction events, which cause its allosteric modification. The modification partially activates (about 50%) ANF-RGC and, concomitantly, also prepares the ARM for the second successive step. In this second step, ARM is phosphorylated and ANF-RGC achieves additional (∼50%) full catalytic activation. The study defines a new paradigm of the ANF-RGC signaling mechanism.
Collapse
Affiliation(s)
- Teresa Duda
- Research Division of Biochemistry, The Unit of Regulatory and Molecular Biology, Salus University, 8360 Old York Road, Elkins Park, Pennsylvania 19027, United States.
| | | | | |
Collapse
|
5
|
Duda T, Yadav P, Sharma RK. ATP allosteric activation of atrial natriuretic factor receptor guanylate cyclase. FEBS J 2010; 277:2550-3. [PMID: 20553491 DOI: 10.1111/j.1742-4658.2010.07670.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atrial natriuretic factor receptor guanylate cyclase (ANF-RGC) is the receptor and the signal transducer of two natriuretic peptide hormones: atrial natriuretic factor and brain natriuretic peptide. It is a single transmembrane-spanning protein. It binds these hormones at its extracellular domain and activates its intracellular catalytic domain. This results in the accelerated production of cyclic GMP, a second messenger in controlling blood pressure, cardiac vasculature and fluid secretion. ATP is obligatory for the transduction of this hormonal signal. Two models of ATP action have been proposed. In Model 1, it is a direct allosteric transducer. It binds to the defined regulatory domain (ATP-regulated module) juxtaposed to the C-terminal side of the transmembrane domain of ANF-RGC, induces a cascade of temporal and spatial changes and activates the catalytic module residing at the C-terminus of the cyclase. In Model 2, before ATP can exhibit its allosteric effect, ANF-RGC must first be phosphorylated by an as yet unidentified protein kinase. This initial step is obligatory in atrial natriuretic factor signaling of ANF-RGC. Until now, none of these models has been directly validated because it has not been possible to segregate the allosteric and the phosphorylation effects of ATP in ANF-RGC activation. The present study accomplishes this aim through a novel probe, staurosporine. This unequivocally validates Model 1 and settles the over two-decade long debate on the role of ATP in ANF-RGC signaling. In addition, the present study demonstrates that the mechanisms of allosteric modification of ANF-RGC by staurosporine and adenylyl-imidodiphosphate, a nonhydrolyzable analog of ATP, are almost (or totally) identical.
Collapse
Affiliation(s)
- Teresa Duda
- Research Divisions of Biochemistry and Molecular Biology, Salus University, Elkins Park, PA 19027, USA.
| | | | | |
Collapse
|
6
|
Kotlo KU, Rasenick MM, Danziger RS. Evidence for cross-talk between atrial natriuretic peptide and nitric oxide receptors. Mol Cell Biochem 2009; 338:183-9. [PMID: 20024606 DOI: 10.1007/s11010-009-0352-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/03/2009] [Indexed: 01/11/2023]
Abstract
Guanylyl cyclases (GCs), a ubiquitous family of enzymes that metabolize GTP to cyclic GMP (cGMP), are traditionally divided into membrane-bound forms (GC-A-G) that are activated by peptides and cytosolic forms that are activated by nitric oxide (NO) and carbon monoxide. However, recent data has shown that NO activated GC's (NOGC) also may be associated with membranes. In the present study, interactions of guanylyl cyclase A (GC-A), a caveolae-associated, membrane-bound, homodimer activated by atrial natriuretic peptide (ANP), with NOGC, a heme-containing heterodimer (alpha/beta) beta1 isoform of the beta subunit of NOGC (NOGCbeta1) was specifically focused. NOGCbeta1 co-localized with GC-A and caveolin on the membrane in human kidney (HK-2) cells. Interaction of GC-A with NOGCbeta1 was found using immunoprecipitations. In a second set of experiments, the possibility that NOGCbeta1 regulates signaling by GC-A in HK-2 cells was explored. ANP-stimulated membrane guanylyl cyclase activity (0.05 +/- 0.006 pmol/mg protein/5 min; P < 0.01) and intra cellular GMP (18.1 +/- 3.4 vs. 1.2 +/- 0.5 pmol/mg protein; P < 0.01) were reduced in cells in which NOGCbeta1 abundance was reduced using specific siRNA to NOGCbeta1. On the other hand, ANP-stimulated cGMP formation was increased in cells transiently transfected with NOGCbeta1 (530.2 +/- 141.4 vs. 26.1 +/- 13.6 pmol/mg protein; P < 0.01). siRNA to NOGCbeta1 attenuated inhibition of basolateral Na/K ATPase activity by ANP (192 +/- 22 vs. 92 +/- 9 nmol phosphate/mg protein/min; P < 0.05). In summary, the results show that NOGCbeta1 and GC-A interact and that NOGCbeta1 regulates ANP signaling in HK-2 cells. The results raise the novel possibility of cross-talk between NOGC and GC-A signaling pathways in membrane caveolae.
Collapse
Affiliation(s)
- Kumar U Kotlo
- Department of Medicine, University of Illinois at Chicago, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
7
|
The evolution of guanylyl cyclases as multidomain proteins: conserved features of kinase-cyclase domain fusions. J Mol Evol 2009; 68:587-602. [PMID: 19495554 DOI: 10.1007/s00239-009-9242-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 04/21/2009] [Indexed: 12/30/2022]
Abstract
Guanylyl cyclases (GCs) are enzymes that generate cyclic GMP and regulate different physiologic and developmental processes in a number of organisms. GCs possess sequence similarity to class III adenylyl cyclases (ACs) and are present as either membrane-bound receptor GCs or cytosolic soluble GCs. We sought to determine the evolution of GCs using a large-scale bioinformatic analysis and found multiple lineage-specific expansions of GC genes in the genomes of many eukaryotes. Moreover, a few GC-like proteins were identified in prokaryotes, which come fused to a number of different domains, suggesting allosteric regulation of nucleotide cyclase activity. Eukaryotic receptor GCs are associated with a kinase homology domain (KHD), and phylogenetic analysis of these proteins suggest coevolution of the KHD and the associated cyclase domain as well as a conservation of the sequence and the size of the linker region between the KHD and the associated cyclase domain. Finally, we also report the existence of mimiviral proteins that contain putative active kinase domains associated with a cyclase domain, which could suggest early evolution of the fusion of these two important domains involved in signal transduction.
Collapse
|
8
|
Ribeiro MR, McNamara JC. Cyclic guanosine monophosphate signaling cascade mediates pigment aggregation in freshwater shrimp chromatophores. THE BIOLOGICAL BULLETIN 2009; 216:138-148. [PMID: 19366925 DOI: 10.1086/bblv216n2p138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cell signaling cascades that mediate pigment movements in crustacean chromatophores are not yet well established, although Ca(2+) and cyclic nucleotide second messengers are involved. Here, we examine the participation of cyclic guanosine monophosphate (cGMP) in pigment aggregation triggered by red pigment concentrating hormone (RPCH) in the red ovarian chromatophores of freshwater shrimp. In Ca(2+)-containing (5.5 mmol l(-1)) saline, 10 micromol l(-1) dibutyryl cGMP alone produced complete pigment aggregation with the same time course ( approximately 20 min) and peak velocity ( approximately 17 microm/min) as 10(-8) mol l(-1) RPCH; however, in Ca(2+)-free saline (9 x 10(-11) mol l(-1) Ca(2+)), db-cGMP was without effect. The soluble guanylyl cyclase (GC-S) activators sodium nitroprusside (SNP, 0.5 micromol l(-1)) and 3-morpholinosydnonimine (SIN-1, 100 micromol l(-1)) induced moderate aggregation by themselves ( approximately 35%-40%) but did not affect RPCH-triggered aggregation. The GC-S inhibitors zinc protoporphyrin IX (ZnPP-XI, 30 micromol l(-1)) and 6-anilino-5,8-quinolinedione (LY83583, 10 micromol l(-1)) partially inhibited RPCH-triggered aggregation by approximately 35%. Escherichia coli heat-stable enterotoxin (STa, 1 micromol l(-1)), a membrane-receptor guanylyl cyclase stimulator, did not induce or affect RPCH-triggered aggregation. We propose that the binding of RPCH to an unknown membrane-receptor type activates a Ca(2+)-dependent signaling cascade coupled via cytosolic guanylyl cyclase and cGMP to protein kinase G-phosphorylated proteins that regulate aggregation-associated, cytoskeletal molecular motor activity. This is a further example of a cGMP signaling cascade mediating the effect of a crustacean X-organ neurosecretory peptide.
Collapse
Affiliation(s)
- Márcia Regina Ribeiro
- Departamento de Biologia, Universidade de São Paulo, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | | |
Collapse
|
9
|
Kishimoto I, Tokudome T, Horio T, Soeki T, Chusho H, Nakao K, Kangawa K. C-type natriuretic peptide is a Schwann cell-derived factor for development and function of sensory neurones. J Neuroendocrinol 2008; 20:1213-23. [PMID: 18752656 DOI: 10.1111/j.1365-2826.2008.01778.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic GMP (cGMP) is known to play important roles for neuronal development and neurite pathfinding. However, the regulatory mechanism that governs the synthesis of cGMP in the nervous system is not well defined. In the present study, we examined the role of C-type natriuretic peptide (CNP), which increases intracellular cGMP upon binding to its receptor, guanylyl cyclase (GC)-B, in the peripheral nervous system. Immunohistochemistry revealed that CNP is demonstrated in Schwann cells, whereas GC-B mRNA is highly expressed in dorsal root ganglion (DRG) neurones. In cultured DRG neurones, GC-B was demonstrated in dendrites of TrkA-positive cells, where it co-exists with cGMP-dependent protein kinase I (cGKI), the major intracellular mediator of cGMP actions. Addition of CNP in the culture medium increased the density of fine neurites, which was accompanied by the increase in phosphorylation of vasodilator-stimulated phosphoprotein, a cGKI substrate. Furthermore, in mice deficient for the CNP gene (CNP-KO), the numbers of TrkA-positive DRG neurones were diminished. Likewise, there were much less cGKI-positive neurones in DRG and cGKI-positive fibres in the dorsal spinal cord of CNP-KO than wild-type mice. Finally, the bone deformity-rescued CNP-KO mice displayed a decreased response to formalin-induced pain compared to wild-type. Taken together, these results suggest that CNP is derived from Schwann cells and plays an important role for the development and function of nociceptive sensory neurones.
Collapse
Affiliation(s)
- I Kishimoto
- Department of Biochemistry, National Cardiovascular Center Research Institute, Suita City, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Walerczyk M, Fabczak S. Additional Evidence for the Cyclic GMP Signaling Pathway Resulting in the Photophobic Behavior of Stentor coeruleus¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740829aeftcg2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Al-Ani B, Hewett PW, Ahmed S, Cudmore M, Fujisawa T, Ahmad S, Ahmed A. The release of nitric oxide from S-nitrosothiols promotes angiogenesis. PLoS One 2006; 1:e25. [PMID: 17183652 PMCID: PMC1762402 DOI: 10.1371/journal.pone.0000025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 09/25/2006] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Free nitric oxide (NO) reacts with sulphydryl residues to form S-nitrosothiols, which act as NO reservoirs. We sought to determine whether thiol-preserving agents and antioxidants, such as dithiothreitol (DTT) and vitamin C, induce NO release from S-nitrosylated proteins in endothelial cell cultures to promote angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS NO release was measured directly in cell supernatants using a Sievers NO Analyser, and in vitro angiogenesis was assessed by quantifying capillary-like tube network formation of porcine aortic endothelial cells (PAEC) on growth factor-reduced Matrigel. Incubation of PAEC with DTT or vitamin C significantly increased NO release in a concentration-dependent manner. However, the nitric oxide synthase (NOS) inhibitors, L-NNA and L-NIO, had no effect on DTT- or vitamin C-induced NO release, and there was no concomitant increase in the phosphorylation of endothelial NOS at serine-1177 following DTT or vitamin C treatment. DTT and vitamin C increased capillary-like tube network formation by nine- and two-fold, respectively, and the addition of copper ions doubled the effect of vitamin C. Surprisingly, DTT maintained endothelial tube networks for up to one month under serum-free conditions, and selective inhibitors of guanylyl cyclase (ODQ) and PKG (KT-5823) blocked this, demonstrating the requirement of cyclic GMP and PKG in this process. CONCLUSIONS/SIGNIFICANCE Both DTT and vitamin C are capable of releasing sufficient NO from S-nitrosothiols to induce capillary morphogenesis. This study provides the first evidence that increased denitrosylation leads to increased bioavailability of NO, independent of NOS activity, to promote sustained angiogenesis.
Collapse
Affiliation(s)
- Bahjat Al-Ani
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
| | - Peter W. Hewett
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
| | - Suborna Ahmed
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
| | - Melissa Cudmore
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
| | - Takeshi Fujisawa
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
| | - Shakil Ahmad
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
| | - Asif Ahmed
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
- Birmingham Women's Hospital NHS TrustBirmingham, United Kingdom
| |
Collapse
|
12
|
Leclerc PC, Lanctot PM, Auger-Messier M, Escher E, Leduc R, Guillemette G. S-nitrosylation of cysteine 289 of the AT1 receptor decreases its binding affinity for angiotensin II. Br J Pharmacol 2006; 148:306-13. [PMID: 16565729 PMCID: PMC1751562 DOI: 10.1038/sj.bjp.0706725] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Nitric oxide (NO) is known to affect the properties of various proteins via the S-nitrosylation of cysteine residues. This study evaluated the direct effects of the NO donor sodium nitroprusside (SNP) on the pharmacological properties of the AT1 receptor for angiotensin II expressed in HEK-293 cells. 2. SNP dose-dependently decreased the binding affinity of the AT1 receptor without affecting its total binding capacity. This modulatory effect was reversed within 5 min of removing SNP. 3. The effect of SNP was not modified in the presence of the G protein uncoupling agent GTPgammaS or the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. 4. The binding properties of a mutant AT1 receptor in which all five cysteine residues within the transmembrane domains had been replaced by serine was not affected by SNP. Systematic analysis of mutant AT1 receptors revealed that cysteine 289 conferred the sensitivity to SNP. 5. These results suggest that NO decreased the binding affinity of the AT1 receptor by S-nitrosylation of cysteine 289. This modulatory mechanism may be particularly relevant in pathophysiological situations where the beneficial effects of NO oppose the deleterious effects of angiotensin II.
Collapse
Affiliation(s)
- Patrice C Leclerc
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | - Pascal M Lanctot
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | - Mannix Auger-Messier
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | - Emanuel Escher
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | - Richard Leduc
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | - Gaetan Guillemette
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
- Author for correspondence:
| |
Collapse
|
13
|
Huang YH, Wei CC, Su YH, Wu BT, Ciou YY, Tu CF, Cooper TG, Yeung CH, Chu ST, Tsai MT, Yang RB. Localization and characterization of an orphan receptor, guanylyl cyclase-G, in mouse testis and sperm. Endocrinology 2006; 147:4792-800. [PMID: 16857755 DOI: 10.1210/en.2005-1476] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently identified a novel testis-enriched receptor guanylyl cyclase (GC) in the mouse, designated mGC-G. To further investigate its protein expression and function, we generated a neutralizing antibody specifically against the extracellular domain of this receptor. RT-PCR and immunohistochemical analyses show that mGC-G is predominantly expressed from round spermatids to spermatozoa in mouse testis at both the mRNA and protein levels. Flow cytometry and confocal immunofluorescence reveal that mGC-G is a cell surface protein restricted to the plasma membrane overlying the acrosome and midpiece of the flagellum in mature sperm. Interestingly, Western blot analysis demonstrates that testicular mGC-G is approximately 180 kDa but is subject to limited proteolysis during epididymal sperm transport, resulting in a smaller fragment tethered on the mature sperm surface. On Fluo-3 cytometrical analysis and computer-assisted sperm assay, we found that serum albumin-induced elevation of sperm intracellular Ca(2+) concentration, protein tyrosine phosphorylation, and progressive motility associated with capacitation are markedly reduced by preincubation of the anti-mGC-G neutralizing antibody. Together, these results indicate that mGC-G is proteolytically modified in mature sperm membrane and suggest that mGC-G-mediated signaling may play a critical role in gamete/reproductive biology.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Department of Biochemistry and Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fitzpatrick DA, O'Halloran DM, Burnell AM. Multiple lineage specific expansions within the guanylyl cyclase gene family. BMC Evol Biol 2006; 6:26. [PMID: 16549024 PMCID: PMC1435932 DOI: 10.1186/1471-2148-6-26] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 03/20/2006] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Guanylyl cyclases (GCs) are responsible for the production of the secondary messenger cyclic guanosine monophosphate, which plays important roles in a variety of physiological responses such as vision, olfaction, muscle contraction, homeostatic regulation, cardiovascular and nervous function. There are two types of GCs in animals, soluble (sGCs) which are found ubiquitously in cell cytoplasm, and receptor (rGC) forms which span cell membranes. The complete genomes of several vertebrate and invertebrate species are now available. These data provide a platform to investigate the evolution of GCs across a diverse range of animal phyla. RESULTS In this analysis we located GC genes from a broad spectrum of vertebrate and invertebrate animals and reconstructed molecular phylogenies for both sGC and rGC proteins. The most notable features of the resulting phylogenies are the number of lineage specific rGC and sGC expansions that have occurred during metazoan evolution. Among these expansions is a large nematode specific rGC clade comprising 21 genes in C. elegans alone; a vertebrate specific expansion in the natriuretic receptors GC-A and GC-B; a vertebrate specific expansion in the guanylyl GC-C receptors, an echinoderm specific expansion in the sperm rGC genes and a nematode specific sGC clade. Our phylogenetic reconstruction also shows the existence of a basal group of nitric oxide (NO) insensitive insect and nematode sGCs which are regulated by O2. This suggests that the primordial eukaryotes probably utilized sGC as an O2 sensor, with the ligand specificity of sGC later switching to NO which provides a very effective local cell-to-cell signalling system. Phylogenetic analysis of the sGC and bacterial heme nitric oxide/oxygen binding protein domain supports the hypothesis that this domain originated from a cyanobacterial source. CONCLUSION The most salient feature of our phylogenies is the number of lineage specific expansions, which have occurred within the GC gene family during metazoan evolution. Our phylogenetic analyses reveal that the rGC and sGC multi-domain proteins evolved early in eumetazoan evolution. Subsequent gene duplications, tissue specific expression patterns and lineage specific expansions resulted in the evolution of new networks of interaction and new biological functions associated with the maintenance of organismal complexity and homeostasis.
Collapse
Affiliation(s)
- David A Fitzpatrick
- Biology Department, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Damien M O'Halloran
- Biology Department, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
- Center for Neuroscience, UC Davis, 1544 Newton Ct., Davis, CA 95616, USA
| | - Ann M Burnell
- Biology Department, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
15
|
Hasegawa M, Matsumoto-Ishikawa Y, Hijikata A, Hidaka Y, Go M, Shimonishi Y. Disulfide linkages and a three-dimensional structure model of the extracellular ligand-binding domain of guanylyl cyclase C. Protein J 2006; 24:315-25. [PMID: 16284729 DOI: 10.1007/s10930-005-6752-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Guanylyl cyclase C (GC-C) is a single-transmembrane receptor that is specifically activated by endogenous ligands, including guanylin, and the exogenous ligand, heat-stable enterotoxin. Using combined HPLC separation and MS analysis techniques the positions of the disulfide linkages in the extracellular ligand-binding domain (ECD) of GC-C were determined to be between Cys7-Cys94, Cys72-Cys77, Cys101-Cys128 and Cys179-Cys226. Furthermore, a three-dimensional structural model of the ECD was constructed by homology modeling, using the structure of the ECD of GC-A as a template (van den Akker et al., 2000, Nature, 406: 101-104) and the information of the disulfide linkages. Although the GC-C model was similar to the known structure of GC-A, importantly its ligand-binding site appears to be located on the quite different region from that in GC-A.
Collapse
Affiliation(s)
- Makoto Hasegawa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Francis SH, Corbin JD. Phosphodiesterase-5 Inhibition: the Molecular Biology of Erectile Function and Dysfunction. Urol Clin North Am 2005; 32:419-29, vi. [PMID: 16291034 DOI: 10.1016/j.ucl.2005.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This article discusses the role of phosphodiesterase-5 (PDE-5) inhibition in the molecular biology of erectile function and dysfunction. Commercially marketed PDE-5 inhibitors are highly specific for PDE-5, and in the face of continuing cyclic GMP (cGMP) synthesis,elevate cellular cGMP. This elevation results from direct competitive inhibition of PDE-5 and from blocking the negative feedback regulation of the enzyme. Elevation of cGMP activates cGMP-dependent protein kinase, which mediates the effects of the cGMP-signaling pathway to decrease smooth muscle tone and dilate penile vascular smooth muscle. By exploiting features of PDE-5 regulatory mechanisms that modulate PDE-5 function, the inhibitors enhance their own potencies.
Collapse
Affiliation(s)
- Sharron H Francis
- Department of Molecular Physiology and Biophysics, Light Hall, Room 702, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA.
| | | |
Collapse
|
17
|
|
18
|
Kaminski A, Gao H, Morgan NG. Involvement of the cGMP signalling pathway in the regulation of viability in insulin-secreting BRIN-BD11 cells. FEBS Lett 2004; 559:118-24. [PMID: 14960318 DOI: 10.1016/s0014-5793(04)00048-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Accepted: 12/21/2003] [Indexed: 01/01/2023]
Abstract
We have evaluated the hypothesis that cGMP may serve as an intracellular messenger regulating the viability of pancreatic beta-cells. A direct activator of soluble guanylyl cyclase, YC-1, caused a time- and dose-dependent loss of viability in clonal BRIN-BD11 beta-cells. This was accompanied by a rise in cGMP and was antagonised by Rp-8-pCPT-cGMPS, a selective inhibitor of protein kinase G (PKG). Reverse transcription polymerase chain reaction analysis confirmed that BRIN-BD11 cells (and human islets) express all three known isoforms of PKG (PKG-Ialpha, -Ibeta and II). Cell death induced by YC-1 was not sensitive to cell-permeable caspase inhibitors and was not accompanied by oligonucleosomal DNA fragmentation. The response was, however, inhibited by actinomycin D, suggesting that a transcription-dependent pathway of programmed cell death is involved in the actions of cGMP.
Collapse
Affiliation(s)
- Anna Kaminski
- Endocrine Pharmacology Group, Institute of Biomedical and Clinical Science, Peninsula Medical School, Room N32, ITTC Building, Tamar Science Park, Plymouth, Devon PL6 8BX, UK
| | | | | |
Collapse
|
19
|
Kuhn M. Structure, Regulation, and Function of Mammalian Membrane Guanylyl Cyclase Receptors, With a Focus on Guanylyl Cyclase-A. Circ Res 2003; 93:700-9. [PMID: 14563709 DOI: 10.1161/01.res.0000094745.28948.4d] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Besides soluble guanylyl cyclase (GC), the receptor for NO, there are at least seven plasma membrane enzymes that synthesize the second-messenger cGMP. All membrane GCs (GC-A through GC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short transmembrane region, and an intracellular domain that contains the catalytic (GC) region. Although the presence of the extracellular domain suggests that all these enzymes function as receptors, specific ligands have been identified for only three of them (GC-A through GC-C). GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure and volume homeostasis and also local antihypertrophic actions in the heart. GC-B is a specific receptor for C-type natriuretic peptide, having more of a paracrine function in vascular regeneration and endochondral ossification. GC-C mediates the effects of guanylin and uroguanylin on intestinal electrolyte and water transport and on epithelial cell growth and differentiation. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have an important role in phototransduction. Finally, the functions of GC-D (located in the olfactory neuroepithelium) and GC-G (expressed in highest amounts in lung, intestine, and skeletal muscle) are completely unknown. This review discusses the structure and functions of membrane GCs, with special emphasis on the physiological endocrine and cardiac functions of GC-A, the regulation of hormone-dependent GC-A activity, and the relevance of alterations of the atrial natriuretic peptide/GC-A system to cardiovascular diseases.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Pharmacology and Toxicology, Universitätsklinikum Münster, Domagkstrasse 12, D-48149 Münster, Germany.
| |
Collapse
|
20
|
Cetin M, Ak D, Duran B, Cetin A, Guvenal T, Yanar O. Use of methylene blue and N,O-carboxymethylchitosan to prevent postoperative adhesions in a rat uterine horn model. Fertil Steril 2003; 80 Suppl 2:698-701. [PMID: 14505741 DOI: 10.1016/s0015-0282(03)00777-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To compare the anti-adhesion potential of 1% methylene blue (MB) solution and 2% N,O-carboxymethylchitosan (NOCC) gel in a rat uterine horn model. DESIGN Experimental animal study. SETTING University medical center. ANIMAL(S) Forty female Wistar albino rats randomized into four groups. INTERVENTION(S) We examined the effects of 1% MB solution and 2% NOCC gel to reduce the extent and severity of postoperative adhesions in a rat uterine horn model: no adjuvant therapy in control group, 2 mL of normal saline (NS) solution in NS group, 2 mL of 1% MB solution in MB group, and 2 mL of 2% NOCC gel in NOCC group was instilled onto uterine horns of the rats. MAIN OUTCOME MEASURE(S) Adhesions were scored according to their extent and severity. RESULT(S) The extent and severity scores of adhesions in MB and NOCC groups were significantly lower than those of control and NS groups. There was no statistically significant difference between the extent and severity scores of adhesions between MB and NOCC groups. CONCLUSION(S) These findings suggest that MB and 2% NOCC gel should be considered as an adjuvant in the prevention of postoperative intra-abdominal adhesions. Future experimental and clinical studies are required to find their optimal formulation and usage.
Collapse
Affiliation(s)
- Meral Cetin
- Department of Obstetrics and Gynecology, Cumhuriyet University School of Medicine, Sivas, Turkey.
| | | | | | | | | | | |
Collapse
|
21
|
De Léan A, McNicoll N, Labrecque J. Natriuretic peptide receptor A activation stabilizes a membrane-distal dimer interface. J Biol Chem 2003; 278:11159-66. [PMID: 12547834 DOI: 10.1074/jbc.m212862200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously (Rondeau, J.-J., McNicoll, N., Gagnon, J., Bouchard, N., Ong, H., and De Léan, A. (1995) Biochemistry 34, 2130-2136) that atrial natriuretic peptide (ANP) stabilizes a dimeric form of the natriuretic peptide receptor A (NPRA) by simultaneously interacting with both receptor subunits. However, the first crystallographic study of unliganded NPRA extracellular domain documented a V-shaped dimer involving a membrane-proximal dimer interface and separate binding sites for ANP on each monomer. We explored the possibility of an alternative A-shaped dimer involving a membrane-distal dimer interface by substituting an unpaired solvent-exposed cysteine for Trp(74) in the amino-terminal lobe of full-length NPRA. The predicted spacing between Trp(74) from both subunits drastically differs, depending on whether the V-shaped (84 A) or the A-shaped (8 A) dimer model is considered. In contrast with the expected results for the reported V-shaped dimer, the NPRA(W74C) mutant was constitutively covalently dimeric. Also, the subunits spontaneously reassociated following transient disulfide reduction by dithiothreitol and reoxidation. However, ANP could neither bind to nor activate NPRA(W74C). Permanent disulfide opening by reduction with dithiothreitol and alkylation with N-ethylmaleimide rescued ANP binding to NPRA(W74C). The NPRA mutant could be maintained as a covalent dimer while preserving its function by crosslinking with the bifunctional alkylating agent phenylenedimaleimides (PDM), the ortho-substituted oPDM being more efficient than mPDM or pPDM. These results indicate that the membrane-distal lobe of the NPRAM extracellular domains are dynamically interfacing in the unliganded state and that ANP binding stabilizes the receptor dimer with more stringent spacing at the dimer interface.
Collapse
Affiliation(s)
- André De Léan
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada.
| | | | | |
Collapse
|
22
|
Abstract
The scientific rationale of pharmacologically inhibiting phosphodiesterase type 5 (PDE5) in the treatment of erectile dysfunction (ED) is reviewed. Published literature on the nitric oxide-cyclic guanosine monophosphate (cGMP) pathway for penile erection and on PDE5 inhibition using sildenafil as the model for pharmacologic PDE5 inhibition are assessed. The key second messenger in the mediation of penile erection is cGMP. PDE5 is the predominant PDE in the corpus cavernosum, and cGMP is its primary substrate. Therefore, in men with ED, elevation of cGMP in corpus cavernosal tissue via selective inhibition of cGMP-specific PDE5 is a means of improving erectile function at minimal risk of adverse events. This approach is validated by the clinical efficacy and safety of sildenafil, the pioneering drug for selective PDE5 inhibitor therapy for ED. Sildenafil exhibits inhibitory potency against PDE5 and a 10-fold lower dose-related inhibitory potency against rod outer segment PDE6, the predominant PDE in the phototransduction cascade in rods. Thus, its pharmacologic profile is predictable, with close correlation between pharmacodynamic and pharmacokinetic properties. Clinically, sildenafil improves erectile function in a large percentage of men with ED. The most common adverse events are due to PDE5 inhibition in vascular and visceral smooth muscle; similar adverse events are expected during therapeutic use of all PDE5 inhibitors. As free sildenafil plasma concentrations approach concentrations sufficient to inhibit retinal PDE6, usually at higher therapeutic doses, transient, reversible visual adverse events can occur, albeit infrequently. Selective inhibition of PDE5 is a rational therapeutic approach in ED, as proved by the clinical success of sildenafil.
Collapse
Affiliation(s)
- Jackie D Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA.
| | | | | |
Collapse
|
23
|
Abstract
Cyclic nucleotide-gated (CNG) channels are nonselective cation channels first identified in retinal photoreceptors and olfactory sensory neurons (OSNs). They are opened by the direct binding of cyclic nucleotides, cAMP and cGMP. Although their activity shows very little voltage dependence, CNG channels belong to the superfamily of voltage-gated ion channels. Like their cousins the voltage-gated K+ channels, CNG channels form heterotetrameric complexes consisting of two or three different types of subunits. Six different genes encoding CNG channels, four A subunits (A1 to A4) and two B subunits (B1 and B3), give rise to three different channels in rod and cone photoreceptors and in OSNs. Important functional features of these channels, i.e., ligand sensitivity and selectivity, ion permeation, and gating, are determined by the subunit composition of the respective channel complex. The function of CNG channels has been firmly established in retinal photoreceptors and in OSNs. Studies on their presence in other sensory and nonsensory cells have produced mixed results, and their purported roles in neuronal pathfinding or synaptic plasticity are not as well understood as their role in sensory neurons. Similarly, the function of invertebrate homologs found in Caenorhabditis elegans, Drosophila, and Limulus is largely unknown, except for two subunits of C. elegans that play a role in chemosensation. CNG channels are nonselective cation channels that do not discriminate well between alkali ions and even pass divalent cations, in particular Ca2+. Ca2+ entry through CNG channels is important for both excitation and adaptation of sensory cells. CNG channel activity is modulated by Ca2+/calmodulin and by phosphorylation. Other factors may also be involved in channel regulation. Mutations in CNG channel genes give rise to retinal degeneration and color blindness. In particular, mutations in the A and B subunits of the CNG channel expressed in human cones cause various forms of complete and incomplete achromatopsia.
Collapse
Affiliation(s)
- U Benjamin Kaupp
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Jülich, Germany.
| | | |
Collapse
|
24
|
Walerczyk M, Fabczak S. Additional evidence for the cyclic GMP signaling pathway resulting in the photophobic behavior of Stentor coeruleus. Photochem Photobiol 2001; 74:829-36. [PMID: 11783940 DOI: 10.1562/0031-8655(2001)074<0829:aeftcg>2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report that exo- and endogenous guanosine 3',5'-cyclic monophosphate (cGMP) specifically influenced the photophobic response. In behavioral experiments the slowly hydrolyzable and membrane-permeable analogs of cGMP (8-bromo-cGMP [Br-cGMP] and N6,2'-o-dibutyryl-cGMP) dramatically prolonged the time for ciliary stop response and decreased the duration of ciliary reversal in a dose-dependent manner. When analogs of adenosine 3',5'-cyclic monophosphate (cAMP) (8-bromo-cAMP or N6,2'-o-dibutyryl-cAMP) were used, no essential effects were detected on the kinetics of the photophobic response. Both nonspecific cyclic nucleotide phosphodiesterase (PDE) activity inhibitors (3-isobutyl-1-methylxanthine [IBMX] and 1,3-dimethylxanthine [theophylline]) and the highly specific cGMP-PDE activity inhibitor 1,4-dihydro-5-[2-propoxyphenyl]-7H-1,2,3-triazolo[4,5-d]pyrimidine-7-one (zaprinast) mimicked the effects of cGMP analogs. Treatment of cells with an inhibitor of guanylate cyclase activity (6-anilino-5,8-quinolinedione [LY 83583]) exerted an effect opposite to that of cGMP analogs and PDE activity inhibitors. The positive physiological effect of LY 83583 was significantly diminished in ciliates that were treated simultaneously with Br-cGMP. In an assay of cell cyclic nucleotide content, the exposure of dark-adapted Stentor to light evoked a transient decrease in the basal level of intracellular cGMP. Alterations in internal cGMP levels were more distinct when the intensity of applied illumination was increased. In the presence of IBMX or theophylline the basal content of cGMP was markedly enhanced, and the photoinduced changes in cGMP level were less pronounced. In this paper the possible whole molecular mechanism by which the ciliary orientation in Stentor is controlled by light is presented.
Collapse
Affiliation(s)
- M Walerczyk
- Department of Cell Biology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
25
|
Roelofs J, Loovers HM, Van Haastert PJ. GTPgammaS regulation of a 12-transmembrane guanylyl cyclase is retained after mutation to an adenylyl cyclase. J Biol Chem 2001; 276:40740-5. [PMID: 11522784 DOI: 10.1074/jbc.m105154200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DdGCA is a Dictyostelium guanylyl cyclase with a topology typical for mammalian adenylyl cyclases containing 12 transmembrane-spanning regions and two cyclase domain. In Dictyostelium cells heterotrimeric G-proteins are essential for guanylyl cyclase activation by extracellular cAMP. In lysates, guanylyl cyclase activity is strongly stimulated by guanosine 5'-3-O-(thio) triphosphate (GTPgammaS), which is also a substrate of the enzyme. DdGCA was converted to an adenylyl cyclase by introducing three point mutations. Expression of the obtained DdGCA(kqd) in adenylyl cyclase-defective cells restored the phenotype of the mutant. GTPgammaS stimulated the adenylyl cyclase activity of DdGCA(kqd) with properties similar to those of the wild-type enzyme (decrease of K(m) and increase of V(max)), demonstrating that GTPgammaS stimulation is independent of substrate specificity. Furthermore, GTPgammaS activation of DdGCA(kqd) is retained in several null mutants of Galpha and Gbeta proteins, indicating that GTPgammaS activation is not mediated by a heterotrimeric G-protein but possibly by a monomeric G-protein.
Collapse
Affiliation(s)
- J Roelofs
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | | | | |
Collapse
|
26
|
Goy MF, Oliver PM, Purdy KE, Knowles JW, Fox JE, Mohler PJ, Qian X, Smithies O, Maeda N. Evidence for a novel natriuretic peptide receptor that prefers brain natriuretic peptide over atrial natriuretic peptide. Biochem J 2001; 358:379-87. [PMID: 11513736 PMCID: PMC1222070 DOI: 10.1042/0264-6021:3580379] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) exert their physiological actions by binding to natriuretic peptide receptor A (NPRA), a receptor guanylate cyclase (rGC) that synthesizes cGMP in response to both ligands. The family of rGCs is rapidly expanding, and it is plausible that there might be additional, as yet undiscovered, rGCs whose function is to provide alternative signalling pathways for one or both of these peptides, particularly given the low affinity of NPRA for BNP. We have investigated this hypothesis, using a genetically modified (knockout) mouse in which the gene encoding NPRA has been disrupted. Enzyme assays and NPRA-specific Western blots performed on tissues from wild-type mice demonstrate that ANP-activated cGMP synthesis provides a good index of NPRA protein expression, which ranges from maximal in adrenal gland, lung, kidney, and testis to minimal in heart and colon. In contrast, immunoreactive NPRA is not detectable in tissues isolated from NPRA knockout animals and ANP- and BNP-stimulatable GC activities are markedly reduced in all mutant tissues. However, testis and adrenal gland retain statistically significant, high-affinity responses to BNP. This residual response to BNP cannot be accounted for by natriuretic peptide receptor B, or any other known mammalian rGC, suggesting the presence of a novel receptor in these tissues that prefers BNP over ANP.
Collapse
Affiliation(s)
- M F Goy
- Departments of Cell and Molecular Physiology, University of North Carolina, Box 7545, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
van den Akker F. Structural insights into the ligand binding domains of membrane bound guanylyl cyclases and natriuretic peptide receptors. J Mol Biol 2001; 311:923-37. [PMID: 11556325 DOI: 10.1006/jmbi.2001.4922] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane bound guanylyl cyclases are single chain transmembrane receptors that produce the second messenger cGMP by either intra- or extracellular stimuli. This class of type I receptors contain an intracellular catalytic guanylyl cyclase domain, an adjacent kinase-like domain and an extracellular ligand binding domain though some receptors have their ligands yet to be identified. The most studied member is the atrial natriuretic peptide (ANP) receptor, which is involved in blood pressure regulation. Extracellular ANP binding induces a conformational change thereby activating the pre-oligomerized receptor leading to the production of cGMP. The recent crystal structure of the dimerized hormone binding domain of the ANP receptor provides a first three-dimensional view of this domain and can serve as a basis to structurally analyze mutagenesis, cross-linking, and genetic studies of this class of receptors as well as a non-catalytic homolog, the clearance receptor. The fold of the ligand binding domain is that of a bilobal periplasmic binding protein (PBP) very similar to that of the Leu/Ile/Val binding protein, AmiC, multi-domain transmembrane metabotropic glutamate receptors, and several DNA binding proteins such as the lactose repressor. Unlike these structural homologs, the guanylyl cyclase receptors bind much larger molecules at a site seemingly remote from the usual small molecule binding site in periplasmic binding protein folds. Detailed comparisons with these structural homologs offer insights into mechanisms of signal transduction and allosteric regulation, and into the remarkable usage of the periplasmic binding protein fold in multi-domain receptors/proteins.
Collapse
Affiliation(s)
- F van den Akker
- Department of Molecular Biology/NB20, Cleveland Clinic Foundation, Ohio 44195, USA.
| |
Collapse
|
28
|
Akker FVD. Detailed analysis of the atrial natriuretic factor receptor hormone-binding domain crystal structure. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-ray crystal structure of the dimerized atrial natriuretic factor (ANF) receptor hormone-binding domain has provided a first structural view of this anti-hypertensive receptor. The structure reveals a surprising evolutionary link to the periplasmic-binding protein fold family. Furthermore, the presence of a chloride ion in the membrane distal domain and the presence of a second putative effector pocket suggests that the extracellular domain of this receptor is allosterically regulated. The scope of this article is to extensively review the data published on this receptor and to correlate it with the hormone-binding domain structure. In addition, a more detailed description is provided of the important features of this structure including the different binding sites for the ANF hormone, chloride ion, putative effector pocket, glycosylation sites, and dimer interface.Key words: crystal structure, periplasmic-binding protein fold, guanylyl cyclase, hormone receptor.
Collapse
|
29
|
Honda A, Adams SR, Sawyer CL, Lev-Ram V, Tsien RY, Dostmann WR. Spatiotemporal dynamics of guanosine 3',5'-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc Natl Acad Sci U S A 2001; 98:2437-42. [PMID: 11226257 PMCID: PMC30156 DOI: 10.1073/pnas.051631298] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the dynamics of guanosine 3',5'-cyclic monophosphate (cGMP) in single living cells, we constructed genetically encoded, fluorescent cGMP indicators by bracketing cGMP-dependent protein kinase (cGPK), minus residues 1-77, between cyan and yellow mutants of green fluorescent protein. cGMP decreased fluorescence resonance energy transfer (FRET) and increased the ratio of cyan to yellow emissions by up to 1.5-fold with apparent dissociation constants of approximately 2 microM and >100:1 selectivity for cGMP over cAMP. To eliminate constitutive kinase activity, Thr(516) of cGPK was mutated to Ala. Emission ratio imaging of the indicators transfected into rat fetal lung fibroblast (RFL)-6 showed cGMP transients resulting from activation of soluble and particulate guanylyl cyclase, respectively, by nitric oxide (NO) and C-type natriuretic peptide (CNP). Whereas all naive cells tested responded to CNP, only 68% responded to NO. Both sets of signals showed large and variable (0.5-4 min) latencies. The phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) did not elevate cGMP on its own but consistently amplified responses to NO or CNP, suggesting that basal activity of guanylate cyclase is very low and emphasizing the importance of PDEs in cGMP recycling. A fraction of RFL cells showed slowly propagating tides of cGMP spreading across the cell in response to delocalized application of NO. Biolistically transfected Purkinje neurons showed cGMP responses to parallel fiber activity and NO donors, confirming that single-cell increases in cGMP occur under conditions appropriate to cause synaptic plasticity.
Collapse
Affiliation(s)
- A Honda
- Department of Pharmacology and Molecular Physiology, University of Vermont, College of Medicine, Burlington, VT 05405-0068, USA
| | | | | | | | | | | |
Collapse
|
30
|
Nighorn A, Simpson PJ, Morton DB. The novel guanylyl cyclase MsGC-I is strongly expressed in higher-order neuropils in the brain of Manduca sexta. J Exp Biol 2001; 204:305-14. [PMID: 11136616 DOI: 10.1242/jeb.204.2.305] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Guanylyl cyclases are usually characterized as being either soluble (sGCs) or receptor (rGCs). We have recently cloned a novel guanylyl cyclase, MsGC-I, from the developing nervous system of the hawkmoth Manduca sexta that cannot be classified as either an sGC or an rGC. MsGC-I shows highest sequence identity with receptor guanylyl cyclases throughout its catalytic and dimerization domains, but does not contain the ligand-binding, transmembrane or kinase-like domains characteristic of receptor guanylyl cyclases. In addition, MsGC-I contains a C-terminal extension of 149 amino acid residues. In this paper, we report the expression of MsGC-I in the adult. Northern blots show that it is expressed preferentially in the nervous system, with high levels in the pharate adult brain and antennae. In the antennae, immunohistochemical analyses show that it is expressed in the cell bodies and dendrites, but not axons, of olfactory receptor neurons. In the brain, it is expressed in a variety of sensory neuropils including the antennal and optic lobes. It is also expressed in structures involved in higher-order processing including the mushroom bodies and central complex. This complicated expression pattern suggests that this novel guanylyl cyclase plays an important role in mediating cyclic GMP levels in the nervous system of Manduca sexta.
Collapse
Affiliation(s)
- A Nighorn
- Arizona Research Laboratories, Room 611, Gould-Simpson Building, Division of Neurobiology, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
31
|
Buhimschi IA, San Martin-Clark O, Aguan K, Thompson LP, Weiner CP. Differential alterations in responsiveness in particulate and soluble guanylate cyclases in pregnant guinea pig myometrium. Am J Obstet Gynecol 2000; 183:1512-9. [PMID: 11120520 DOI: 10.1067/mob.2000.107462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The mechanism underlying myometrial quiescence during pregnancy is unknown. Our group has previously shown that during pregnancy myometrial cyclic guanosine monophosphate content rises to several hundred times the nonpregnant levels, only to abruptly decline days before the onset of labor. Cyclic guanosine monophosphate plays an integral role in the relaxation of smooth muscle. The aim of this investigation was therefore to determine the effects of pregnancy on both soluble and particulate guanylate cyclase enzymatic activities and messenger ribonucleic acid expressions. STUDY DESIGN Myometrium was obtained from randomly cycling adult nonpregnant guinea pigs and near-term (50-60 days' gestation) pregnant guinea pigs of similar chronologic age. Subcellular fractions were prepared by differential ultracentrifugation. Guanylate cyclase activity was determined by the conversion of guanosine triphosphate to cyclic guanosine monophosphate under basal or stimulated conditions in either the soluble guanylate cyclase or particulate guanylate cyclase fraction. A nitric oxide donor, S-nitroso- N-penacillamine, was used to activate soluble guanylate cyclase (n = 10 animals in each group). Several natriuretic peptides (atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide) and uroguanylin were used to stimulate the different particulate guanylate cyclase isoforms guanylate cyclase A, guanylate cyclase B, and guanylate cyclase C, respectively, in pregnant (n = 8) and nonpregnant (n = 6) animals. Cyclic guanosine monophosphate content was measured by radioimmunoassay, and enzymatic activity was expressed as picomoles of cyclic guanosine monophosphate per milligram of protein per minute. Total guanylate cyclase represented the sum of soluble guanylate cyclase and particulate guanylate cyclase activities for a tissue. To investigate whether the observed changes in guanylate cyclase activity were paralleled by changes in receptor expression, messenger ribonucleic acid levels of the genes for guanylate cyclase A and guanylate cyclase B isoforms were quantified by ribonuclease protection assay (n = 5 animals in each group). RESULTS Under basal conditions particulate guanylate cyclase represented 78% (nonpregnant state) to 88% (during pregnancy) of the total guanylate cyclase activity in the guinea pig myometrium. Pregnancy further reduced myometrial soluble guanylate cyclase (both basal and stimulated by nitric oxide) relative to the nonpregnant state. Pregnancy selectively increased atrial natriuretic peptide-stimulated particulate guanylate cyclase activity (attributed to guanylate cyclase A), although it did not change basal myometrial particulate guanylate cyclase activity in general. Guanylate cyclase B (particulate guanylate cyclase stimulated by C-type natriuretic peptide) and guanylate cyclase C (particulate guanylate cyclase stimulated by uroguanylin) activities were unaltered by pregnancy. The selective increase in responsiveness of particulate guanylate cyclase to atrial natriuretic peptide during pregnancy was not paralleled by an increased in level of messenger ribonucleic acid for the gene for guanylate cyclase A. CONCLUSION Pregnancy reduced the in vitro responsiveness of the myometrial soluble guanylate cyclase to nitric oxide while increasing the responsiveness of the particulate isoform to atrial natriuretic peptide and brain natriuretic peptide through a mechanism independent of any change in receptor expression.
Collapse
Affiliation(s)
- I A Buhimschi
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore 21201-1559, USA
| | | | | | | | | |
Collapse
|
32
|
Burkhardt M, Glazova M, Gambaryan S, Vollkommer T, Butt E, Bader B, Heermeier K, Lincoln TM, Walter U, Palmetshofer A. KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells. J Biol Chem 2000; 275:33536-41. [PMID: 10922374 DOI: 10.1074/jbc.m005670200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many signal transduction pathways are mediated by the second messengers cGMP and cAMP, cGMP- and cAMP-dependent protein kinases (cGK and PKA), phosphodiesterases, and ion channels. To distinguish among the different cGMP effectors, inhibitors of cGK and PKA have been developed including the K-252 compound KT5823 and the isoquinolinesulfonamide H89. KT5823, an in vitro inhibitor of cGK, has also been used in numerous studies with intact cells to implicate or rule out the involvement of this protein kinase in a given cellular response. However, the efficacy and specificity of KT5823 as cGK inhibitor in intact cells or tissues have never been demonstrated. Here, we analyzed the effects of both KT5823 and H89 on cyclic-nucleotide-mediated phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in intact human platelets and rat mesangial cells. These two cell types both express high levels of cGK. KT5823 inhibited purified cGK. However, with both intact human platelets and rat mesangial cells, KT5823 failed to inhibit cGK-mediated serine 157 and serine 239 phosphorylation of VASP induced by nitric oxide, atrial natriuretic peptide, or the membrane-permeant cGMP analog, 8-pCPT-cGMP. KT5823 enhanced 8-pCPT-cGMP-stimulated VASP phosphorylation in platelets and did not inhibit forskolin-stimulated VASP phosphorylation in either platelets or mesangial cells. In contrast H89, an inhibitor of both PKA and cGK, clearly inhibited 8-pCPT-cGMP and forskolin-stimulated VASP phosphorylation in the two cell types. The data indicate that KT5823 inhibits purified cGK but does not affect a cGK-mediated response in the two different cell types expressing cGK I. These observations indicate that data that interpret the effects of KT5823 in intact cells as the major or only criteria supporting the involvement of cGK clearly need to be reconsidered.
Collapse
Affiliation(s)
- M Burkhardt
- Institute of Clinical Biochemistry and Pathobiochemistry and the Division of Nephrology, Medical University Clinic Wuerzburg, 97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tu Y, Budelmann BU. Inhibitory effect of cyclic guanosine 3',5'-monophosphate (cGMP) on the afferent resting activity in the cephalopod statocyst. Brain Res 2000; 880:65-9. [PMID: 11032990 DOI: 10.1016/s0006-8993(00)02777-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of exo- and endogenous cGMP on the resting activity (RA) of afferent crista fibers were studied in isolated preparations of the statocysts of the cuttlefish Sepia officinalis and the squid Sepioteuthis lessoniana. Bath application of the membrane-permeable cGMP analogs 8-bromo-cGMP (B-cGMP) and N(2),2'-o-dibutyryl 3', 5'-cyclic guanosine monophosphate (dB-cGMP), and of the selective inhibitor of cGMP-phosphodiesterase zaprinast (ZAP), caused an inhibition of RA. The inhibitory effects of B-cGMP and dB-cGMP remained when the preparation was pre-treated with: (i) the guanylate cyclase inhibitors 1H-[1,2,4]oxadiazolo[4,3, -a]quinoxalin-1-one (ODQ) or cystamine (CYS); (ii) the adenylate cyclase inhibitors nicotinic acid (NIC-A), 2',3'dideoxyadenosine (DDA), or MDL-12330A (MDL); (iii) the guanylate cyclase inhibitor methylene blue (M-BLU) and the adenylate cyclase inhibitor MDL combined; or (iv) the nitric oxide (NO) synthase inhibitors N(G)-nitric-L-arginine methyl ester HCl (L-NAME) or N(G)-nitro-L-arginine (L-NOARG). These data indicate that cGMP, as an intracellular messenger, has a tonic inhibitory effect on the RA of afferent crista fibers in cephalopod statocysts.
Collapse
Affiliation(s)
- Y Tu
- The Marine Biomedical Institute, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1163, USA
| | | |
Collapse
|
34
|
Meyer MR, Angele A, Kremmer E, Kaupp UB, Muller F. A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc Natl Acad Sci U S A 2000; 97:10595-600. [PMID: 10984544 PMCID: PMC27070 DOI: 10.1073/pnas.97.19.10595] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Indexed: 11/18/2022] Open
Abstract
It is well established that signal transduction in sensory neurons of the rat olfactory epithelium involves a cAMP-signaling pathway. However, a small number of olfactory neurons specifically express cGMP-signaling components, namely a guanylyl cyclase (GC-D) and a cGMP-stimulated phosphodiesterase (PDE2). Here, we show that this subset of olfactory neurons expressing GC-D and PDE2 does also express the subunit of a cGMP-selective cyclic nucleotide-gated (CNG) channel that has been previously identified in cone photoreceptors. Further, components of the prototypical cAMP-signaling pathway could not be detected in this subpopulation of cells. These results imply that these neurons use an alternative signaling pathway, with cGMP as the intracellular messenger, and that, in these cells, the receptor current is initiated by the opening of cGMP-gated channels.
Collapse
Affiliation(s)
- M R Meyer
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
35
|
Qian X, Prabhakar S, Nandi A, Visweswariah SS, Goy MF. Expression of GC-C, a receptor-guanylate cyclase, and its endogenous ligands uroguanylin and guanylin along the rostrocaudal axis of the intestine. Endocrinology 2000; 141:3210-24. [PMID: 10965892 DOI: 10.1210/endo.141.9.7644] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Members of the receptor-guanylate cyclase (rGC) family possess an intracellular catalytic domain that is regulated by an extracellular receptor domain. GC-C, an intestinally expressed rGC, was initially cloned by homology as an orphan receptor. The search for its ligands has yielded three candidates: STa (a bacterial toxin that causes traveler's diarrhea) and the endogenous peptides uroguanylin and guanylin. Here, by performing Northern and Western blots, and by measuring [125I]STa binding and STa-dependent elevation of cGMP levels, we investigate whether the distribution of GC-C matches that of its endogenous ligands in the rat intestine. We establish that 1) uroguanylin is essentially restricted to small bowel; 2) guanylin is very low in proximal small bowel, increasing to prominent levels in distal small bowel and throughout colon; 3) GC-C messenger RNA and STa-binding sites are uniformly expressed throughout the intestine; and 4) GC-C-mediated cGMP synthesis peaks at the proximal and distal extremes of the intestine (duodenum and colon), but is nearly absent in the middle (ileum). These observations suggest that GC-C's activity may be posttranslationally regulated, demonstrate that the distribution of GC-C is appropriate to mediate the actions of both uroguanylin and guanylin, and help to refine current hypotheses about the physiological role(s) of these peptides.
Collapse
Affiliation(s)
- X Qian
- Department of Cell and Molecular Physiology, University of North Carolina, Chaptel Hill 27599-7545, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Contraction and relaxation of smooth muscle is a tightly regulated process involving numerous endogenous substances and their intracellular second messengers. We examine the key role of cyclic guanosine monophosphate (cGMP) in mediating smooth muscle relaxation. We briefly review the current art regarding cGMP generation and degradation, while focusing on the recent identification of the molecular mechanisms underlying cGMP-mediated smooth muscle relaxation. cGMP-induced SM relaxation is mediated mainly by cGMP-dependent protein kinase activation. It involves several molecular events culminating in a reduction in intracellular Ca(2+) concentration and a decrease in the sensitivity of the contractile system to Ca(2+). We propose that the cGMP-induced decrease in Ca(2+) sensitivity is a strategic way to achieve "active relaxation" of the smooth muscle. In summary, we present compelling evidence supporting a key role for cGMP as a mediator of smooth muscle relaxation in physiological and pharmacological settings.
Collapse
Affiliation(s)
- J A Carvajal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
More than 50 million Americans display blood pressures outside the safe physiological range. Unfortunately for most individuals, the molecular basis of hypertension is unknown, in part because pathological elevations of blood pressure are the result of abnormal expression of multiple genes. This review identifies a number of important blood pressure regulatory genes including their loci in the human, mouse, and rat genome. Phenotypes of gene deletions and overexpression in mice are summarized. More detailed discussion of selected gene products follows, beginning with proteins involved in ion transport, specifically the epithelial sodium channel and sodium proton exchangers. Next, proteins involved in vasodilation/natriuresis are discussed with emphasis on natriuretic peptides, guanylin/uroguanylin, and nitric oxide. The renin angiotensin aldosterone system has an important role antagonizing the vasodilatory cyclic GMP system.
Collapse
Affiliation(s)
- D L Garbers
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9050, USA.
| | | |
Collapse
|
38
|
van den Akker F, Zhang X, Miyagi M, Huo X, Misono KS, Yee VC. Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature 2000; 406:101-4. [PMID: 10894551 DOI: 10.1038/35017602] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The atrial natriuretic peptide (ANP) hormone is secreted by the heart in response to an increase in blood pressure. ANP exhibits several potent anti-hypertensive actions in the kidney, adrenal gland and vascular system. These actions are induced by hormone binding extracellularly to the ANP receptor, thereby activating its intracellular guanylyl cyclase domain for the production of cyclic GMP. Here we present the crystal structure of the glycosylated dimerized hormone-binding domain of the ANP receptor at 2.0-A resolution. The monomer comprises two interconnected subdomains, each encompassing a central beta-sheet flanked by alpha-helices, and exhibits the type I periplasmic binding protein fold. Dimerization is mediated by the juxtaposition of four parallel helices, arranged two by two, which brings the two protruding carboxy termini into close relative proximity. From affinity labelling and mutagenesis studies, the ANP-binding site maps to the side of the dimer crevice and extends to near the dimer interface. A conserved chloride-binding site is located in the membrane distal domain, and we found that hormone binding is chloride dependent. These studies suggest mechanisms for hormone activation and the allostery of the ANP receptor.
Collapse
Affiliation(s)
- F van den Akker
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ochoa De Alda JA, Ajlani G, Houmard J. Synechocystis strain PCC 6803 cya2, a prokaryotic gene that encodes a guanylyl cyclase. J Bacteriol 2000; 182:3839-42. [PMID: 10851002 PMCID: PMC94558 DOI: 10.1128/jb.182.13.3839-3842.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synechocystis strain PCC 6803 exhibits similar levels of cyclic AMP (cAMP) and cyclic GMP (cGMP). A thorough analysis of its genome showed that Cya2 (Sll0646) has all the sequence determinants required in terms of activity and purine specificity for being a guanylyl cyclase. Insertional mutagenesis of cya2 caused a marked reduction in cGMP content without altering the cAMP content. Thus, Cya2 represents the first example of a prokaryotic guanylyl cyclase.
Collapse
Affiliation(s)
- J A Ochoa De Alda
- Dynamique des Membranes Végétales, Complexes Protéines-Pigments, CNRS UMR8543, Ecole Normale Supérieure, 75230 Paris Cedex 05, France.
| | | | | |
Collapse
|
40
|
Buhimschi IA, Yallampalli C, Buhimschi CS, Saade GR, Garfield RE. Distinct regulation of nitric oxide and cyclic guanosine monophosphate production by steroid hormones in the rat uterus. Mol Hum Reprod 2000; 6:404-14. [PMID: 10775643 DOI: 10.1093/molehr/6.5.404] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has previously been reported that uterine nitric oxide (NO) production is enhanced during rat pregnancy compared to non-pregnant, labouring or postpartum states. The present hypothesis is that these changes in uterine NO production during pregnancy are caused by the interplay of oestrogen and progesterone. It is further postulated that changes in cyclic guanosine monophosphate (cGMP) production closely follow the changes in uterine NO synthesis. To test these hypotheses a variety of hormonal regimens (17beta-oestradiol, progesterone and combinations) were applied to different rat models (prepubertal, non-pregnant intact and ovariectomized as well as pregnant rats). The production of nitric oxide (NO) as well as basal and in-vitro NO-stimulated cGMP tissue content were measured in parallel. NO production was measured by the accumulation of nitrites and nitrates in a 24 h incubation medium as analysed by Greiss reaction. cGMP content was measured by radioimmunoassay. Diethylenetriamine/NO (DETA/NO) was used as NO donor. NO production in the rat uterus was markedly increased by pregnancy compared to other physiological (prepubertal, or cycling dioestrus) and experimentally induced (OVX) states. In contrast, uterine cGMP was significantly decreased in pregnancy. Pregnancy also inhibited the elevation in uterine cGMP after in-vitro NO challenge. Chronic 17beta-oestradiol treatment in prepubertal and/or OVX models increased NO production and also mimicked the effect of pregnancy on cGMP. Administration of progesterone in prepubertal rats induced a parallel decrease in both uterine NO and cGMP. In conclusion, sex steroid hormones distinctly regulate uterine NO and cGMP production depending upon the dose and regimen used, as well as the animal's reproductive state.
Collapse
Affiliation(s)
- I A Buhimschi
- The University of Texas Medical Branch, Department of Obstetrics and Gynaecology, Division of Reproductive Sciences, Galveston, Texas, USA
| | | | | | | | | |
Collapse
|
41
|
Andreopoulos S, Papapetropoulos A. Molecular aspects of soluble guanylyl cyclase regulation. GENERAL PHARMACOLOGY 2000; 34:147-57. [PMID: 11120376 DOI: 10.1016/s0306-3623(00)00062-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme (comprised of alpha and beta subunits) that generates the intracellular second messenger cyclic guanosine monophosphate (cGMP) from guanosine triphosphate (GTP). cGMP is subsequently important for the regulation of protein kinases, ion channels, and phosphodiesterases. Since recent evidence has demonstrated that heterodimerization of the alpha/beta subunits is essential for basal and stimulated enzymatic activity, the existence of several types of isoforms for each of the two subunits, along with their varying degrees of expression in different tissues, implies that multiple regulatory mechanisms exist for sGC. Yet, progress in studying and clarifying the regulatory processes that can alter sGC expression and activity has only slowly started being elucidated. In the following paper, we elaborate on sGC structure, function, and distribution along with recently described signaling pathways that modulate sGC gene expression.
Collapse
Affiliation(s)
- S Andreopoulos
- "George P. Livanos" Laboratory, Department of Critical Care and Pulmonary Services, Levangelismos Hospital, University of Athens, Ploutarchou 3, 5th Floor, 10675, Athens, Greece
| | | |
Collapse
|
42
|
|
43
|
Abstract
Many diffusible axon guidance cues and their receptors have been identified recently. These cues are often found to be bifunctional, acting as attractants or repellents under different circumstances. Studies of cytoplasmic signaling mechanisms have led to the notion that the response of a growth cone to a particular guidance cue depends on the internal state of the neuron, which, in turn, is under the influence of other coincident signals received by the neuron. Furthermore, many diffusible guidance cues appear to share common cytoplasmic signaling pathways.
Collapse
Affiliation(s)
- H J Song
- Molecular Neurobiology Laboratory, Howard Hughes Medical Institute at the Salk Institute, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|