1
|
Kayser A, Wolff A, Berlin P, Duehring L, Henze L, Mundkowski R, Bergmann W, Müller-Hilke B, Wagner C, Huehns M, Oehmcke-Hecht S, Maletzki C. Selective but not pan-CDK inhibition abrogates 5-FU-driven tissue factor upregulation in colon cancer. Sci Rep 2024; 14:10582. [PMID: 38719932 PMCID: PMC11078971 DOI: 10.1038/s41598-024-61076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Thromboembolic events are complications in cancer patients and hypercoagulability has been linked to the tissue factor (TF) pathway, making this an attractive target. Here, we investigated the effects of chemotherapeutics and CDK inhibitors (CDKI) abemaciclib/palbociclib (CDK4/6), THZ-1 (CDK7/12/13), and dinaciclib (CDK1/2/5/9) alone and in combination regimens on TF abundance and coagulation. The human colorectal cancer (CRC) cell line HROC173 was treated with 5-FU or gemcitabine to stimulate TF expression. TF+ cells were sorted, recultured, and re-analyzed. The effect of treatment alone or in combination was assessed by functional assays. Low-dose chemotherapy induced a hypercoagulable state and significantly upregulated TF, even after reculture without treatment. Cells exhibited characteristics of epithelial-mesenchymal transition, including high expression of vimentin and mucin. Dinaciclib and THZ-1 also upregulated TF, while abemaciclib and palbociclib downregulated it. Similar results were observed in coagulation assays. The same anticoagulant activity of abemaciclib was seen after incubation with peripheral immune cells from healthy donors and CRC patients. Abemaciclib reversed 5-FU-induced TF upregulation and prolonged clotting times in second-line treatment. Effects were independent of cytotoxicity, senescence, and p27kip1 induction. TF-antibody blocking experiments confirmed the importance of TF in plasma coagulation, with Factor XII playing a minor role. Short-term abemaciclib counteracts 5-FU-induced hypercoagulation and eventually even prevents thromboembolic events.
Collapse
Affiliation(s)
- Annika Kayser
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Annabell Wolff
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057, Rostock, Germany
| | - Peggy Berlin
- Department of Medicine II, Division of Gastroenterology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Lara Duehring
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057, Rostock, Germany
| | - Larissa Henze
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
- Department of Internal Medicine II, Asklepios Hospital Harz, Goslar, Germany
| | - Ralf Mundkowski
- Center of Pharmacology and Toxicology, Institute of Clinical Pharmacology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Wendy Bergmann
- Laboratory for Clinical Immunology, Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057, Rostock, Germany
| | - Brigitte Müller-Hilke
- Laboratory for Clinical Immunology, Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057, Rostock, Germany
| | - Charlotte Wagner
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Maja Huehns
- Institute of Pathology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057, Rostock, Germany.
| | - Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| |
Collapse
|
2
|
Scarini JF, Gonçalves MWA, de Lima-Souza RA, Lavareze L, de Carvalho Kimura T, Yang CC, Altemani A, Mariano FV, Soares HP, Fillmore GC, Egal ESA. Potential role of the Eph/ephrin system in colorectal cancer: emerging druggable molecular targets. Front Oncol 2024; 14:1275330. [PMID: 38651144 PMCID: PMC11033724 DOI: 10.3389/fonc.2024.1275330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
The Eph/ephrin system regulates many developmental processes and adult tissue homeostasis. In colorectal cancer (CRC), it is involved in different processes including tumorigenesis, tumor angiogenesis, metastasis development, and cancer stem cell regeneration. However, conflicting data regarding Eph receptors in CRC, especially in its putative role as an oncogene or a suppressor gene, make the precise role of Eph-ephrin interaction confusing in CRC development. In this review, we provide an overview of the literature and highlight evidence that collaborates with these ambiguous roles of the Eph/ephrin system in CRC, as well as the molecular findings that represent promising therapeutic targets.
Collapse
Affiliation(s)
- João Figueira Scarini
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Ching-Chu Yang
- Department of Pathology, School of Medicine, University of Utah (UU), Salt Lake City, UT, United States
| | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Heloisa Prado Soares
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Erika Said Abu Egal
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| |
Collapse
|
3
|
Du Q, Lin Y, Ding C, Wu L, Xu Y, Feng Q. Pharmacological Activity of Matrine in Inhibiting Colon Cancer Cells VM Formation, Proliferation, and Invasion by Downregulating Claudin-9 Mediated EMT Process and MAPK Signaling Pathway. Drug Des Devel Ther 2023; 17:2787-2804. [PMID: 37719361 PMCID: PMC10504061 DOI: 10.2147/dddt.s417077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose Matrine (Mat), the main active ingredient of traditional Chinese herbal plant Sophora flavescens Ait, has significant antitumor effects, but its pharmacological mechanism on colon cancer (CC) remains unclear. This study aimed to investigate the therapeutic effect of Mat on CC as well as the potential mechanism. Methods The vasculogenic mimicry (VM) of CC cells was observed by three-dimensional (3D) Matrigel cell culture. Cell proliferation, apoptosis, migration, invasion, and actin filament integrity were detected by CCK8, flow cytometry, wound healing, Transwell and Phalloidin staining assays. qRT-PCR and Western blotting were applied to detect the expression of EMT factors. RNA-sequencing was conducted to screen differentially expressed genes (DEGs), and the GO and KEGG pathway enrichment analyses were performed. Then, the expression of the key MAPK pathway genes and the target gene Claudin-9 (Cldn9) were analyzed. RNA interference was used to silence Cldn9 expression, and the effects of Cldn9 silencing and simultaneous treatment with Mat on VM formation, proliferation, apoptosis, invasion, and migration were investigated. Finally, the expression of EMT factors and MAPK pathway key genes was detected. Results CT26 cells formed the most typical VM structure. Mat disrupted the VM of CT26 cells, significantly suppressed their proliferation, migration, invasion, actin filament integrity, induced apoptosis, and inhibited EMT process. RNA-sequencing revealed 163 upregulated genes and 333 downregulated genes in Mat-treated CT26 cells, and the DEGs were significantly enriched in cell adhesion molecules and MAPK signaling pathways. Further confirmed that Mat significantly inhibited the phosphorylation levels of JNK and ERK, and the target gene Cldn9 was significantly upregulated in human CC tissues. Silencing Cldn9 markedly inhibited the VM, proliferative activity, invasiveness, and actin filament integrity of CT26 cells, blocked the EMT process, and downregulated the phosphorylation of JNK and ERK, whereas Mat intervention further strengthened the above trends. Conclusion This study indicated that Mat may synergistically inhibit the EMT process and MAPK signaling pathway through downregulation Cldn9, thereby exerting pharmacological effects on inhibiting VM formation, proliferation, and invasion of CC cells.
Collapse
Affiliation(s)
- Qiu Du
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People’s Republic of China
- Department of Central Laboratory, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People’s Republic of China
| | - Yingda Lin
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People’s Republic of China
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Changping Ding
- Department of Medical Laboratory, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People’s Republic of China
| | - Ling Wu
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People’s Republic of China
| | - Yuan Xu
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People’s Republic of China
| | - Qingling Feng
- Department of Emergency Intensive Care Unit, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People’s Republic of China
| |
Collapse
|
4
|
Hachey SJ, Sobrino A, Lee JG, Jafari MD, Klempner SJ, Puttock EJ, Edwards RA, Lowengrub JS, Waterman ML, Zell JA, Hughes CCW. A human vascularized microtumor model of patient-derived colorectal cancer recapitulates clinical disease. Transl Res 2023; 255:97-108. [PMID: 36481562 PMCID: PMC10593408 DOI: 10.1016/j.trsl.2022.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Accurately modeling tumor biology and testing novel therapies on patient-derived cells is critically important to developing therapeutic regimens personalized to a patient's specific disease. The vascularized microtumor (VMT), or "tumor-on-a-chip," is a physiologic preclinical cancer model that incorporates key features of the native human tumor microenvironment within a transparent microfluidic platform, allowing rapid drug screening in vitro. Herein we optimize methods for generating patient-derived VMT (pVMT) using fresh colorectal cancer (CRC) biopsies and surgical resections to test drug sensitivities at the individual patient level. In response to standard chemotherapy and TGF-βR1 inhibition, we observe heterogeneous responses between pVMT derived from 6 patient biopsies, with the pVMT recapitulating tumor growth, histological features, metabolic heterogeneity, and drug responses of actual CRC tumors. Our results suggest that a translational infrastructure providing rapid information from patient-derived tumor cells in the pVMT, as established in this study, will support efforts to improve patient outcomes.
Collapse
Affiliation(s)
- Stephanie J Hachey
- Irvine Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - Agua Sobrino
- Irvine Department of Molecular Biology and Biochemistry, University of California, Irvine, California
| | - John G Lee
- Irvine School of Medicine, University of California, Irvine, California
| | | | | | - Eric J Puttock
- Irvine Department of Mathematics, University of California, Irvine, California
| | - Robert A Edwards
- Irvine School of Medicine, University of California, Irvine, California
| | - John S Lowengrub
- Irvine Department of Mathematics, University of California, Irvine, California
| | - Marian L Waterman
- Irvine Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| | - Jason A Zell
- Irvine School of Medicine, University of California, Irvine, California
| | - Christopher C W Hughes
- Irvine Department of Molecular Biology and Biochemistry, University of California, Irvine, California; Irvine Department of Biomedical Engineering, University of California, Irvine, California.
| |
Collapse
|
5
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
6
|
Wang J, Xia W, Huang Y, Li H, Tang Y, Li Y, Yi B, Zhang Z, Yang J, Cao Z, Zhou J. A vasculogenic mimicry prognostic signature associated with immune signature in human gastric cancer. Front Immunol 2022; 13:1016612. [PMID: 36505458 PMCID: PMC9727221 DOI: 10.3389/fimmu.2022.1016612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most lethal malignant tumors worldwide with poor outcomes. Vascular mimicry (VM) is an alternative blood supply to tumors that is independent of endothelial cells or angiogenesis. Previous studies have shown that VM was associated with poor prognosis in patients with GC, but the underlying mechanisms and the relationship between VM and immune infiltration of GC have not been well studied. METHODS In this study, expression profiles from VM-related genes were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Cox regression was performed to identify key VM-related genes for survival. Subsequently, a novel risk score model in GC named VM index and a nomogram was constructed. In addition, the expression of one key VM-related gene (serpin family F member 1, SERPINF1) was validated in 33 GC tissues and 23 paracancer tissues using immunohistochemistry staining. RESULTS Univariate and multivariate Cox regression suggested that SERPINF1 and tissue factor pathway inhibitor 2 (TFPI2) were independent risk factors for the prognosis of patients with GC. The AUC (> 0.7) indicated the satisfactory discriminative ability of the nomogram. SsGESA and ESTIMATE showed that higher expression of SERPINF1 and TFPI2 is associated with immune infiltration of GC. Immunohistochemistry staining confirmed that the expression of SERPINF1 protein was significantly higher in GC tissues than that in paracancer tissues. CONCLUSION A VM index and a nomogram were constructed and showed satisfactory predictive performance. In addition, VM was confirmed to be widely involved in immune infiltration, suggesting that VM could be a promising target in guiding immunotherapy. Taken together, we identified SERPINF1 and TFPI2 as immunologic and prognostic biomarkers related to VM in GC.
Collapse
Affiliation(s)
- Jie Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Xia
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yujie Huang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haoran Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuchen Tang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ye Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Yi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zixiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhifei Cao
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Vascular mimicry: A potential therapeutic target in breast cancer. Pathol Res Pract 2022; 234:153922. [DOI: 10.1016/j.prp.2022.153922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
8
|
Targeting circDGKD Intercepts TKI's Effects on Up-Regulation of Estrogen Receptor β and Vasculogenic Mimicry in Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14071639. [PMID: 35406411 PMCID: PMC8996923 DOI: 10.3390/cancers14071639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Vasculogenic mimicry (VM) has been reported as an alternative channel to increase tumor nutrient supplies and accelerate tumor progression, and is associated with poor survival prognosis in multiple cancers, including renal cell carcinoma (RCC). The currently used anti-angiogenic treatment for metastatic RCC, sunitinib, a tyrosine kinase inhibitor (TKI), has been reported to induce VM formation. Previously we identified that the estrogen receptor β (ERβ) functions as an oncogenic factor to promote RCC progression, supported by the analytic results from The Cancer Genome Atlas (TCGA) database. We have also found evidence that sunitinib induces RCC VM formation by up-regulating ERβ expression. In this study, we further demonstrated that treatment with sunitinib, as well as axitinib, another TKI, could induce ERβ expression in RCC cell lines. Clinical clear cell RCC (ccRCC) patients with higher ERβ expression are more likely to be found VE-cadherin positive and VM positive. Mechanism dissection showed that TKI- induced ERβ transcriptionally up-regulates the circular RNA of DGKD (circDGKD, hsa_circ_0058763), which enhances VE-cadherin expression by sponging the microRNA miR-125-5p family. Targeting circDGKD intercepts sunitinib-pretreatment-induced RCC VM formation, reduces metastases and improves survival in an experimental orthotopic animal model. Targeting ERβ/circDGKD signals may improve the TKI efficacy and provide novel combination therapies for metastatic RCC.
Collapse
|
9
|
Marques Dos Reis E, Vieira Berti F. Vasculogenic Mimicry-An Overview. Methods Mol Biol 2022; 2514:3-13. [PMID: 35771413 DOI: 10.1007/978-1-0716-2403-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vasculogenic mimicry (VM), a tumor microcirculation model found in melanoma in the last 20 years, is a vascular channel-like structure composed of tumor cells, but without endothelial cells, that stains positive for periodic acid-Schiff (PAS) and negative staining for CD31. VM provides, to the highly aggressive malignant tumor cells, adequate oxygen and nutrient supply for tumor growth and subsequent metastasis process and its presence are related to poor prognosis in patients. VM is independent of endothelial cells, which may partly explain why angiogenesis drug inhibitors have not achieved the expected success for cancer treatment.
Collapse
Affiliation(s)
- Emily Marques Dos Reis
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Fernanda Vieira Berti
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
10
|
Stålhammar G. Identification of Vasculogenic Mimicry in Histological Samples. Methods Mol Biol 2022; 2514:121-128. [PMID: 35771424 DOI: 10.1007/978-1-0716-2403-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vasculogenic mimicry has been identified in several malignancies and is generally associated with aggressive tumor growth and increased risk of metastasis. Patterned matrix can be identified in light microscopy of tumor sections stained with periodic acid-Schiff (PAS) without hematoxylin counterstain. In this chapter, the process is comprehensively described including tissue sources, formalin fixation and paraffin embedding, staining protocols, and the method for pattern identification in the microscope. Specific pattern types are illustrated in figures, and a number of pitfalls are detailed. The text can be used as a guideline by any researcher or clinician that wishes to evaluate histological samples for the presence of vasculogenic mimicry.
Collapse
|
11
|
Biagioni A, Andreucci E. Immunohistochemistry for VM Markers. Methods Mol Biol 2022; 2514:141-152. [PMID: 35771426 DOI: 10.1007/978-1-0716-2403-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vasculogenic mimicry (VM) is the biological process by which aggressive cancer cells are able to organize themselves-independently from endothelial cells-into new vessel-like structures to sustain fast tumor perfusion and thus an efficient supply of oxygen and nutrients, required for rapid cancer growth and dissemination. In the last two decades, the molecular mechanisms and key regulators of VM have been identified. Several methods are currently available to detect VM both in vitro and in vivo, but the gold standard is still the immunohistochemical staining of specific antigens. Even though many markers are debated if belong to the angiogenic process or VM exclusively, the immunohistochemistry of CD31 and the PAS reaction often clarify in frozen or paraffin sections the pathologic status and the vasculature grade of a tumor mass.
Collapse
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
12
|
Herrera-Vargas AK, García-Rodríguez E, Olea-Flores M, Mendoza-Catalán MA, Flores-Alfaro E, Navarro-Tito N. Pro-angiogenic activity and vasculogenic mimicry in the tumor microenvironment by leptin in cancer. Cytokine Growth Factor Rev 2021; 62:23-41. [PMID: 34736827 DOI: 10.1016/j.cytogfr.2021.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
The acquired ability to induce the formation of a functional vasculature is a hallmark of cancer. Blood vessels in tumors are formed through various mechanisms, among the most important in cancer biology, angiogenesis, and vasculogenic mimicry have been described. Leptin is one of the main adipokines secreted by adipocytes in normal breast tissue and the tumor microenvironment. Here, we provide information on the relationship between leptin and the development of angiogenesis and vasculogenic mimicry in different types of cancer. Here, we report that leptin activates different pathways such as JAK-STAT3, MAPK/ERK, PKC, JNK, p38, and PI3K-Akt to induce the expression of various angiogenic factors and vasculogenic mimicry. In vivo models, leptin induces blood vessel formation through the PI3K-Akt-mTOR pathway. Interestingly, the relationship between leptin and vasculogenic mimicry was more significant in breast cancer. The information obtained suggests that leptin could be playing an essential role in tumor survival and metastasis through the induction of vascular mechanisms such as angiogenesis and vasculogenic mimicry; thus, leptin-induced pathways could be suggested as a promising therapeutic target.
Collapse
Affiliation(s)
- Ana K Herrera-Vargas
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, GRO, 39090, Mexico.
| | - Eugenia Flores-Alfaro
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, GRO 39087, Mexico.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| |
Collapse
|
13
|
Guzel T, Mech K, Iwanowska M, Wroński M, Słodkowski M. Brain derived neurotrophic factor declines after complete curative resection in gastrointestinal cancer. PeerJ 2021; 9:e11718. [PMID: 34395067 PMCID: PMC8327966 DOI: 10.7717/peerj.11718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background Brain derived neurotrophic factor (BDNF) is a neurotrophin involved in neural and metabolic diseases, but it is also one of the crucial factors in cancer development and metastases. In the current study, we investigated serum BDNF concentrations in patients that underwent surgical treatment for colorectal cancer or pancreatic cancer. Methods Serum BDNF concentrations were measured with standard enzyme-linked immunosorbent assays, before and on the third day after the operation, in 50 consecutive patients with colorectal cancer and 25 patients with pancreatic cancer (tumours in the head of pancreas). We compared pre- and postoperative BDNF levels, according to the subsequent TNM stage, histologic stage, lymph node involvement, neuro- or angio-invasion, and resection range. Results In the pancreatic cancer group, BDNF concentrations fell significantly postoperatively (p = 0.011). In patients that underwent resections, BDNF concentrations fell (p = 0.0098), but not in patients that did not undergo resections (i.e., laparotomy alone). There were significant pre- and postoperative differences in BDNF levels among patients with (p = 0.021) and without (p = 0.034) distant metastases. Significant reductions in BDNF were observed postoperatively in patients with small tumours (i.e., below the median size; p = 0.023), in patients with negative angio- or lymphatic invasion (p = 0.028, p = 0.011, respectively), and in patients with lymph node ratios above 0.17 (p = 0.043). In the colon cancer group, the serum BDNF concentrations significantly fell postoperatively in the entire group (p = 0.0076) and in subgroups of patients with or without resections (p = 0.034, p = 0.0179, respectively). Significant before-after differences were found in subgroups with angioinvasions (p = 0.050) and in those without neuroinvasions (p = 0.049). Considering the TNM stages, the postoperative BDNF concentration fell in groups with (p = 0.0218) and without (p = 0.034) distant metastases and in patients with tumours below the median size (p = 0.018). Conclusion Our results suggested that BDNF might play an important role in gastrointestinal cancer development. BDNF levels were correlated with tumour volume, and with neuro-, angio- and lymphatic invasions. In pancreatic cancer, BDNF concentrations varied according to the surgical procedure and they fell significantly after tumour resections. Thus, BDNF may serve as a potential marker of complete resections in underdiagnosed patients. However, this hypothesis requires further investigation. In contrast, no differences according to the procedure was made in patients with colon cancer.
Collapse
Affiliation(s)
- Tomasz Guzel
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Mech
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marzena Iwanowska
- Department of Laboratory Diagnostics, Medical University of Warsaw, Warsaw, Poland
| | - Marek Wroński
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Słodkowski
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
CD36 promotes vasculogenic mimicry in melanoma by mediating adhesion to the extracellular matrix. BMC Cancer 2021; 21:765. [PMID: 34215227 PMCID: PMC8254274 DOI: 10.1186/s12885-021-08482-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Until recently, tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). While it is generally understood that the function of VM vessels is the same as that of EC-lined vessels (i.e. to supply oxygen and nutrients to the proliferating cancer cells), the molecular mechanisms underpinning VM are yet to be fully elucidated. Methods Human VM-competent melanoma cell lines were examined for their VM potential using the in vitro angiogenesis assays (Matrigel), together with inhibition studies using small interfering RNA and blocking monoclonal antibodies. Invasion assays and adhesion assays were used to examine cancer cell function. Results Herein we demonstrate that CD36, a cell surface glycoprotein known to promote angiogenesis by ECs, also supports VM formation by human melanoma cancer cells. In silico analysis of CD36 expression within the melanoma cohort of The Cancer Genome Atlas suggests that melanoma patients with high expression of CD36 have a poorer clinical outcome. Using in vitro ‘angiogenesis’ assays and CD36-knockdown approaches, we reveal that CD36 supports VM formation by human melanoma cells as well as adhesion to, and invasion through, a cancer derived extracellular matrix substrate. Interestingly, thrombospondin-1 (TSP-1), a ligand for CD36 on ECs that inhibits angiogenesis, has no effect on VM formation. Further investigation revealed a role for laminin, but not collagen or fibronectin, as ligands for CD36 expressing melanoma cells. Conclusions Taken together, this study suggests that CD36 is a novel regulator of VM by melanoma cancer cells that is facilitated, at least in part, via integrin-α3 and laminin. Unlike angiogenesis, VM is not perturbed by the presence of TSP-1, thus providing new information on differences between these two processes of tumor vascularization which may be exploited to combat cancer progression.
Collapse
|
15
|
Liang Z, Liu H, Zhang Y, Xiong L, Zeng Z, He X, Wang F, Wu X, Lan P. Cyr61 from adipose-derived stem cells promotes colorectal cancer metastasis and vasculogenic mimicry formation via integrin α V β 5. Mol Oncol 2021; 15:3447-3467. [PMID: 33999512 PMCID: PMC8637569 DOI: 10.1002/1878-0261.12998] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/14/2021] [Accepted: 05/14/2021] [Indexed: 01/11/2023] Open
Abstract
Adipose‐derived stem cells (ADSCs) play a vital role in colorectal cancer (CRC) progression, but the mechanism remains largely unknown. Herein, we found that ADSCs isolated from CRC patients produced more cysteine‐rich 61 (Cyr61) than those from healthy donors, and the elevated serum Cyr61 levels were associated with advanced TNM stages. Moreover, serum Cyr61 displayed a better diagnostic value for CRC compared to carcinoembryonic antigen (CEA) and carbohydrate antigen (CA19‐9). Mechanistically, integrin αVβ5 was identified as the functional receptor by which Cyr61 promotes CRC cell metastasis in vitro and in vivo by activating the αVβ5/FAK/NF‐κB signaling pathway. In addition, Cyr61 promotes vasculogenic mimicry (VM) formation, thereby promoting tumor growth and metastasis through a αVβ5/FAK/HIF‐1α/STAT3/MMP2 signaling cascade. Histologically, xenografts and clinical samples of CRC both exhibited VM, which was correlated with HIF‐1α and MMP2 activation. Notably, we demonstrated the synergistic effect of combined anti‐VM therapy (integrin αVβ5 inhibitor) and anti‐VEGF therapy (bevacizumab) in patient‐derived xenograft models. Further investigation showed that CRC cell‐derived exosomal STAT3 promoted Cyr61 transcription in ADSCs. These findings indicate that Cyr61 derived from ADSCs plays a critical role in promoting CRC progression via integrin αVβ5 and provides a novel antitumor strategy by targeting Cyr61/αVβ5.
Collapse
Affiliation(s)
- Zhenxing Liang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Huashan Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Yunfeng Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Xiong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziwei Zeng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengwei Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xianrui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
16
|
Olejarz W, Kubiak-Tomaszewska G, Chrzanowska A, Lorenc T. Exosomes in Angiogenesis and Anti-angiogenic Therapy in Cancers. Int J Mol Sci 2020; 21:ijms21165840. [PMID: 32823989 PMCID: PMC7461570 DOI: 10.3390/ijms21165840] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is the process through which new blood vessels are formed from pre-existing ones. Exosomes are involved in angiogenesis in cancer progression by transporting numerous pro-angiogenic biomolecules like vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), and microRNAs. Exosomes promote angiogenesis by suppressing expression of factor-inhibiting hypoxia-inducible factor 1 (HIF-1). Uptake of tumor-derived exosomes (TEX) by normal endothelial cells activates angiogenic signaling pathways in endothelial cells and stimulates new vessel formation. TEX-driven cross-talk of mesenchymal stem cells (MSCs) with immune cells blocks their anti-tumor activity. Effective inhibition of tumor angiogenesis may arrest tumor progression. Bevacizumab, a VEGF-specific antibody, was the first antiangiogenic agent to enter the clinic. The most important clinical problem associated with cancer therapy using VEGF- or VEFGR-targeting agents is drug resistance. Combined strategies based on angiogenesis inhibitors and immunotherapy effectively enhances therapies in various cancers, but effective treatment requires further research.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.K.-T.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grażyna Kubiak-Tomaszewska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.K.-T.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland;
| | - Tomasz Lorenc
- 1st Department of Clinical Radiology, Medical University of Warsaw, ul. Chałubińskiego 5, 02-004 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-502-1073
| |
Collapse
|
17
|
Fathi Maroufi N, Taefehshokr S, Rashidi MR, Taefehshokr N, Khoshakhlagh M, Isazadeh A, Mokarizadeh N, Baradaran B, Nouri M. Vascular mimicry: changing the therapeutic paradigms in cancer. Mol Biol Rep 2020; 47:4749-4765. [PMID: 32424524 DOI: 10.1007/s11033-020-05515-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Cancer is a major problem in the health system, and despite many efforts to effectively treat it, none has yet been fully successful. Angiogenesis and metastasis are considered as major challenges in the treatment of various cancers. Researchers have struggled to succeed with anti-angiogenesis drugs for the effective treatment of cancer, although new challenges have emerged in the treatment with the emergence of resistance to anti-angiogenesis and anti-metastatic drugs. Numerous studies have shown that different cancers can resist anti-angiogenesis drugs in a new process called vascular mimicry (VM). The studies have revealed that cells resistant to anti-angiogenesis cancer therapies are more capable of forming VMs in the in vivo and in vitro environment, although there is a link between the presence of VM and poor clinical outcomes. Given the importance of the VM in the challenges facing cancer treatment, researchers are trying to identify factors that prevent the formation of these structures. In this review article, it is attempted to provide a comprehensive overview of the molecules and main signaling pathways involved in VM phenomena, as well as the agents currently being identified as anti-VM and the role of VM in response to treatment and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nazila Fathi Maroufi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Mahdieh Khoshakhlagh
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narmin Mokarizadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Cuda TJ, Riddell AD, Liu C, Whitehall VL, Borowsky J, Wyld DK, Burge ME, Ahern E, Griffin A, Lyons NJR, Rose SE, Clark DA, Stevenson ARL, Hooper JD, Puttick S, Thomas PA. PET Imaging Quantifying 68Ga-PSMA-11 Uptake in Metastatic Colorectal Cancer. J Nucl Med 2020; 61:1576-1579. [PMID: 32358088 DOI: 10.2967/jnumed.119.233312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
At diagnosis, 22% of colorectal cancer (CRC) patients have metastases, and 50% later develop metastasis. Peptide receptor radionuclide therapy (PRRT), such as 177Lu-PSMA-617, is used to treat metastatic prostate cancer. 177Lu-PSMA-617 targets prostate-specific membrane antigen (PSMA), a cell-surface protein enriched in prostate cancer and the neovasculature of other solid tumors, including CRC. We performed 68Ga-PSMA-11 PET/CT imaging of 10 patients with metastatic CRC to assess metastasis avidity. Eight patients had lesions lacking avidity, and 2 had solitary metastases exhibiting very low avidity. Despite expression of PSMA in CRC neovasculature, none of the patients exhibited tumor avidity sufficient to be considered for 177Lu-PSMA-617 PRRT.
Collapse
Affiliation(s)
- Tahleesa J Cuda
- University of Queensland, Brisbane, Australia.,Metro North Hospital and Health Service, Brisbane, Australia
| | - Andrew D Riddell
- University of Queensland, Brisbane, Australia.,Metro North Hospital and Health Service, Brisbane, Australia
| | - Cheng Liu
- University of Queensland, Brisbane, Australia.,Envoi Specialist Pathologists, Herston, Australia.,QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Vicki L Whitehall
- University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Jennifer Borowsky
- University of Queensland, Brisbane, Australia.,Metro North Hospital and Health Service, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Herston, Australia
| | - David K Wyld
- University of Queensland, Brisbane, Australia.,Metro North Hospital and Health Service, Brisbane, Australia
| | - Matthew E Burge
- University of Queensland, Brisbane, Australia.,Metro North Hospital and Health Service, Brisbane, Australia
| | - Elizabeth Ahern
- University of Queensland, Brisbane, Australia.,Metro North Hospital and Health Service, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Alison Griffin
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Nicholas J R Lyons
- University of Queensland, Brisbane, Australia.,Metro North Hospital and Health Service, Brisbane, Australia
| | | | - David A Clark
- University of Queensland, Brisbane, Australia.,Metro North Hospital and Health Service, Brisbane, Australia
| | - Andrew R L Stevenson
- University of Queensland, Brisbane, Australia.,Metro North Hospital and Health Service, Brisbane, Australia
| | | | | | - Paul A Thomas
- University of Queensland, Brisbane, Australia .,Metro North Hospital and Health Service, Brisbane, Australia.,Herston Imaging Research Facility, Herston, Australia
| |
Collapse
|
19
|
Mabeta P. Paradigms of vascularization in melanoma: Clinical significance and potential for therapeutic targeting. Biomed Pharmacother 2020; 127:110135. [PMID: 32334374 DOI: 10.1016/j.biopha.2020.110135] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer. Malignant melanoma in particular has a poor prognosis and although treatment has improved, drug resistance continues to be a challenge. Angiogenesis, the formation of blood vessels from existing microvessels, precedes the progression of melanoma from a radial growth phase to a malignant phenotype. In addition, melanoma cells can form networks of vessel-like fluid conducting channels through vasculogenic mimicry (VM). Both angiogenesis and VM have been postulated to contribute to the development of resistance to treatment and to enable metastasis. Also, the metastatic spread of melanoma is highly dependent on lymphangiogenesis, the formation of lymphatic vessels from pre-existing vessels. Interestingly, the design and clinical testing of drugs that target VM and lymphangiogenesis lag behind that of angiogenesis inhibitors. Despite this, antiangiogenic drugs have not significantly improved the overall survival of melanoma patients, thus necessitating the targeting of alternative mechanisms. In this article, I review the roles of the three paradigms of tissue perfusion, namely, angiogenesis, VM and lymphangiogenesis, in promoting melanoma progression and metastasis. This article also explores the latest development and potential opportunities in the therapeutic targeting of these processes.
Collapse
Affiliation(s)
- Peace Mabeta
- Angiogenesis Laboratory, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
20
|
Fathi Maroufi N, Rashidi MR, Vahedian V, Akbarzadeh M, Fattahi A, Nouri M. Therapeutic potentials of Apatinib in cancer treatment: Possible mechanisms and clinical relevance. Life Sci 2020; 241:117106. [DOI: 10.1016/j.lfs.2019.117106] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
21
|
Zhang Z, Imani S, Shasaltaneh MD, Hosseinifard H, Zou L, Fan Y, Wen Q. The role of vascular mimicry as a biomarker in malignant melanoma: a systematic review and meta-analysis. BMC Cancer 2019; 19:1134. [PMID: 31752759 PMCID: PMC6873453 DOI: 10.1186/s12885-019-6350-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vasculogenic mimicry (VM) a microvascular system consisting of non-endothelial cells that is newly formed by aggressive tumors, has been proposed as an important therapeutic target in malignant melanoma (MM). We performed a systematic literature review to evaluate the diagnostic and prognostic accuracy of VM status for overall survival of MM patients. METHODS The quality of the included studies was evaluated using the QUADAS-2 tool. Diagnostic capacity of VM variables, including sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under summary receiver operating characteristic (SROC), were pooled using Meta-DiSc software. RESULTS A retrospective observational study was conducted based on twelve clinical studies including 978 clinically confirmed melanoma patients with proportion (P). VM+ melanoma cells were associated with poor prognosis in 38% of MM group (P = 0.35, 95% confidence intervals (CI): 0.27-0.42, p < 0.001). The pooled sensitivity and specificity were 0.82 (95% CI: 0.79-0.84) and 0.69 (95% CI: 0.66-0.71), respectively. Furthermore, the pooled PLR, NLR, and DOR were 2.56 (95% CI: 1.94-3.93), 0.17 (95% CI: 0.07-0.42), and 17.75 (95% CI: 5.30-59.44), respectively. Furthermore, the AUC of SROC was 0.63, indicating high reliability of VM status as a biomarker. Importantly, subgroup results suggested that VM+ status is a significantly accurate prognostic biomarker when diagnosed by the CD31-/PAS+ staining methods in Asian MM samples (p < 0.001). CONCLUSIONS Our findings support the potential of VM status of tumors as a promising prognostic biomarker and emphasize an effective adjuvant therapeutic strategy in the prognosis of Asian MM patients.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| | | | - Hossein Hosseinifard
- Research Center for Evidence Based Medicine (RCEBM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| | - Yu Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province 646000 People’s Republic of China
| |
Collapse
|
22
|
Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 2019; 77:1745-1770. [PMID: 31690961 PMCID: PMC7190605 DOI: 10.1007/s00018-019-03351-7] [Citation(s) in RCA: 1131] [Impact Index Per Article: 188.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Tumor vascularization occurs through several distinct biological processes, which not only vary between tumor type and anatomic location, but also occur simultaneously within the same cancer tissue. These processes are orchestrated by a range of secreted factors and signaling pathways and can involve participation of non-endothelial cells, such as progenitors or cancer stem cells. Anti-angiogenic therapies using either antibodies or tyrosine kinase inhibitors have been approved to treat several types of cancer. However, the benefit of treatment has so far been modest, some patients not responding at all and others acquiring resistance. It is becoming increasingly clear that blocking tumors from accessing the circulation is not an easy task to accomplish. Tumor vessel functionality and gene expression often differ vastly when comparing different cancer subtypes, and vessel phenotype can be markedly heterogeneous within a single tumor. Here, we summarize the current understanding of cellular and molecular mechanisms involved in tumor angiogenesis and discuss challenges and opportunities associated with vascular targeting.
Collapse
Affiliation(s)
- Roberta Lugano
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Mohanraj Ramachandran
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Anna Dimberg
- The Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden.
| |
Collapse
|
23
|
Pape J, Magdeldin T, Ali M, Walsh C, Lythgoe M, Emberton M, Cheema U. Cancer invasion regulates vascular complexity in a three-dimensional biomimetic model. Eur J Cancer 2019; 119:179-193. [PMID: 31470251 DOI: 10.1016/j.ejca.2019.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/20/2022]
Abstract
INTRODUCTION There is a growing appreciation for including a complex, vascularised stroma in three-dimensional (3D) tumour models to recapitulate the native tumour microenvironment in situ. METHODS Using a compartmentalised, biomimetic, 3D cancer model, comprising a central cancer mass surrounded by a vascularised stroma, we have tested the invasive capability of colorectal cancer cells. RESULTS We show histological analysis of dense collagen I/laminin scaffolds, forming necrotic cores with cellular debris. Furthermore, cancer cells within this 3D matrix form spheroids, which is corroborated with high EpCAM expression. We validate the invasive growth of cancer cells into the stroma through quantitative image analysis and upregulation of known invasive gene markers, including metastasis associated in colon cancer 1, matrix metalloproteinase 7 and heparinase. Tumouroids containing highly invasive HCT116 cancer masses form less complex and less branched vascular networks, recapitulating 'leaky' vasculature associated with highly metastatic cancers. Angiogenic factors regulating this were vascular endothelial growth factor A and hepatocyte growth factor active protein. Where vascular networks were formed with less invasive cancer masses (HT29), higher expression of vascular endothelial cadherin active protein resulted in more complex and branched networks. To eliminate the cell-cell interaction between the cancer mass and stroma, we developed a three-compartment model containing an acellular ring to test the chemoattractant pull from the cancer mass. This resulted in migration of endothelial networks through the acellular ring accompanied by alignment of vascular networks at the cancer/stroma boundary. DISCUSSION This work interrogates to the gene and protein level how cancer cells influence the development of a complex stroma, which shows to be directly influenced by the invasive capability of the cancer.
Collapse
Affiliation(s)
- Judith Pape
- Institute of Orthopaedics and Musculoskeletal Sciences, Division of Surgery and Interventional Science, University College London, Stanmore Campus, Brockley Hill, HA7 4LP, London, United Kingdom
| | - Tarig Magdeldin
- Institute of Orthopaedics and Musculoskeletal Sciences, Division of Surgery and Interventional Science, University College London, Stanmore Campus, Brockley Hill, HA7 4LP, London, United Kingdom
| | - Morium Ali
- Center for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, University College London, WC1E 6DD, London, United Kingdom
| | - Claire Walsh
- Center for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, University College London, WC1E 6DD, London, United Kingdom
| | - Mark Lythgoe
- Center for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, University College London, WC1E 6DD, London, United Kingdom
| | - Mark Emberton
- Faculty of Medical Sciences, University College London, Bloomsbury Campus Maple House, 149 Tottenham Court Road, W1T 7NF, London, United Kingdom
| | - Umber Cheema
- Institute of Orthopaedics and Musculoskeletal Sciences, Division of Surgery and Interventional Science, University College London, Stanmore Campus, Brockley Hill, HA7 4LP, London, United Kingdom.
| |
Collapse
|
24
|
Valdivia A, Mingo G, Aldana V, Pinto MP, Ramirez M, Retamal C, Gonzalez A, Nualart F, Corvalan AH, Owen GI. Fact or Fiction, It Is Time for a Verdict on Vasculogenic Mimicry? Front Oncol 2019; 9:680. [PMID: 31428573 PMCID: PMC6688045 DOI: 10.3389/fonc.2019.00680] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
The term vasculogenic mimicry (VM) refers to the capacity of certain cancer cells to form fluid-conducting structures within a tumor in an endothelial cell (EC)-free manner. Ever since its first report by Maniotis in 1999, the existence of VM has been an extremely contentious issue. The overwhelming consensus of the literature suggests that VM is frequently observed in highly aggressive tumors and correlates to lower patient survival. While the presence of VM in vivo in animal and patient tumors are claimed upon the strong positive staining for glycoproteins (Periodic Acid Schiff, PAS), it is by no means universally accepted. More controversial still is the existence of an in vitro model of VM that principally divides the scientific community. Original reports demonstrated that channels or tubes occur in cancer cell monolayers in vitro when cultured in matrigel and that these structures may support fluid movement. However, several years later many papers emerged stating that connections formed between cancer cells grown on matrigel represented VM. We speculate that this became accepted by the cancer research community and now the vast majority of the scientific literature reports both presence and mechanisms of VM based on intercellular connections, not the presence of fluid conducting tubes. In this opinion paper, we call upon evidence from an exhaustive review of the literature and original data to argue that the majority of in vitro studies presented as VM do not correspond to this phenomenon. Furthermore, we raise doubts on the validity of concluding the presence of VM in patient samples and animal models based solely on the presence of PAS+ staining. We outline the requirement for new biomarkers of VM and present criteria by which VM should be defined in vitro and in vivo.
Collapse
Affiliation(s)
- Andrés Valdivia
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gabriel Mingo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Varina Aldana
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio P Pinto
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Ramirez
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Claudio Retamal
- Faculty of Medicine and Science, Center of Cellular Biology and Biomedicine (CEBICEM), Universidad San Sebastian, Santiago, Chile
| | - Alfonso Gonzalez
- Faculty of Medicine and Science, Center of Cellular Biology and Biomedicine (CEBICEM), Universidad San Sebastian, Santiago, Chile
| | - Francisco Nualart
- Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Alejandro H Corvalan
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
25
|
VEGF Induce Vasculogenic Mimicry of Choroidal Melanoma through the PI3k Signal Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3909102. [PMID: 31380420 PMCID: PMC6657640 DOI: 10.1155/2019/3909102] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/08/2019] [Accepted: 06/16/2019] [Indexed: 01/09/2023]
Abstract
Purpose To explore the effect of VEGF (vascular endothelial growth factor) on the vasculogenic mimicry (VM) formation of Choroidal Melanoma (CM) through PI3k signal pathway, to find novel targets for CM therapy. Methods This research investigated the molecular mechanism of VEGF promoting VM formation of CM. First, we evaluated the expressions of VEGF in 20 CM specimens by immunohistochemical determination. Then we detected expressions of VEGF, AKT, MT1-MMP, MMP2, and MMP9 of OCM-1 in hypoxia. siRNA was used to inhibit the expression of VEGF, to realize the control of the VM formation. The VM formation was evaluated through wound healing assay, transwell assay, and apoptosis. And then we testify the correlation of the VM and the factors in protein and mRNA level preliminarily. Results VEGF protein was expressed in CM in all 20 cases of CM, especially along the VM. In hypoxia, the expression of VEGF in OCM-1 increased significantly. VEGF gene deletion reduced the proliferation, migration, and invasion of OCM-1. VEGF gene deletion impaired the expression of invasive associated genes like VEGF, p-AKT, AKT, MT1-MMP, MMP2, and MMP9. These results indicate that VEGF induce VM formation in CM by activating PI3K/AKT signaling pathway. Conclusions VEGF promoted VM formation by the PI3K signal transduction pathway, indicating a molecular mechanism which may be used to develop new therapeutic targets for the clinical treatment of CM.
Collapse
|
26
|
Azad T, Ghahremani M, Yang X. The Role of YAP and TAZ in Angiogenesis and Vascular Mimicry. Cells 2019; 8:cells8050407. [PMID: 31052445 PMCID: PMC6562567 DOI: 10.3390/cells8050407] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a physiological process that begins in utero and continues throughout life in both good health and disease. Understanding the underlying mechanism in angiogenesis could uncover a new therapeutic approach in pathological angiogenesis. Since its discovery, the Hippo signaling pathway has emerged as a key player in controlling organ size and tissue homeostasis. Recently, new studies have discovered that Hippo and two of its main effectors, Yes-associated protein (YAP) and its paralog transcription activator with PDZ binding motif (TAZ), play critical roles during angiogenesis. In this review, we summarize the mechanisms by which YAP/TAZ regulate endothelial cell shape, behavior, and function in angiogenesis. We further discuss how YAP/TAZ function as part of developmental and pathological angiogenesis. Finally, we review the role of YAP/TAZ in tumor vascular mimicry and propose directions for future work.
Collapse
Affiliation(s)
- Taha Azad
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Mina Ghahremani
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
27
|
Sun L, Yu J, Wang P, Shen M, Ruan S. HIT000218960 promotes gastric cancer cell proliferation and migration through upregulation of HMGA2 expression. Oncol Lett 2019; 17:4957-4963. [PMID: 31186705 PMCID: PMC6507353 DOI: 10.3892/ol.2019.10176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to elucidate whether the long non-coding RNA (lncRNA) HIT000218960 could accelerate the proliferative and migratory ability of gastric cancer (GC) cells by regulating high-mobility group AT-hook 2 (HMGA2) gene. The reverse transcription-quantitative polymerase chain reaction was used to determine HIT000218960 and HMGA2 expression levels in GC tissues and cells. The HMGA2 protein level was detected by western blotting. A χ2 test was used to determine the association between the HIT000218960 expression level and the clinical characteristics of patients with GC. GC cells were transfected with small interfering (si)-negative control, si-HIT000218960 and si-HIT000218960+pcDNA-HMGA2, prior to assessing the cell proliferative and migratory ability using the Cell Counting Kit-8 and Transwell assays, respectively. HIT000218960 and HMGA2 were highly expressed in GC tissues compared with in healthy tissues. In addition, HIT000218960 and HMGA2 were positively correlated in GC tissues. The HIT000218960 expression level was associated with tumor size, Tumor-Node-Metastasis staging and lymph node metastasis in patients with GC. HIT000218960 silencing decreased the proliferative and migratory ability of HGC27 and NCI-N87 cells; however, HMGA2 overexpression partly reversed this inhibitory effect. The results of the present study indicated that HIT000218960 could promote HGC27 and NCI-N87 cell proliferation and migration, which may be mediated by HMGA2.
Collapse
Affiliation(s)
- Leitao Sun
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jieru Yu
- College of Basic Medical Science, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310006, P.R. China
| | - Peipei Wang
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang 310006, P.R. China
| | - Minhe Shen
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
28
|
Orlova A, Sirotkina M, Smolina E, Elagin V, Kovalchuk A, Turchin I, Subochev P. Raster-scan optoacoustic angiography of blood vessel development in colon cancer models. PHOTOACOUSTICS 2019; 13:25-32. [PMID: 30555784 PMCID: PMC6275215 DOI: 10.1016/j.pacs.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 05/03/2023]
Abstract
Raster-scan optoacoustic angiography at 532 nm wavelength with 50 μm lateral resolution at 2 mm diagnostic depth was used for quantitative characterization of neoangiogenesis in colon cancer models. Two tumor models of human colon adenocarcinoma (HT-29) and murine colon carcinoma (CT26) different in their histology and vascularization were compared. Tumors of both origins showed an inhomogeneous distribution of areas with high and low vascularization. Rapidly growing CT26 tumor demonstrated a higher rate of vessel growth from the periphery to the center. Peculiarities of the vascularity of tumor models revealed by optoacoustic imaging were confirmed by fluorescent microscopy with FITC-dextran and morphological analysis. The obtained results may be important for the investigation of tumor development and for improvement of colon cancer treatment strategies.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
- Corresponding author.
| | - Marina Sirotkina
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Ekaterina Smolina
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Vadim Elagin
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Andrey Kovalchuk
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Ilya Turchin
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Pavel Subochev
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
29
|
Correlation Between Tumor Vasculogenic Mimicry and Poor Prognosis of Human Digestive Cancer Patients: A Systematic Review and Meta-Analysis. Pathol Oncol Res 2018; 25:849-858. [PMID: 30361906 DOI: 10.1007/s12253-018-0496-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
Vasculogenic mimicry (VM) is a new pattern of blood supplement independent of endothelial vessels, which is related with tumor invasion, metastasis and prognosis. However, the role of VM in the prognosis of cancer patients is controversial. This study aimed to perform a meta-analysis of the published data to attempt to clarify the prognostic value of VM in the digestive cancer. Relevant studies were retrieved from the PubMed, Web of Science, Cochrane Library, Chinese National Knowledge Infrastructure and VIP databases published before March 29, 2018. Studies were included if they detected VM in the digestive cancer and analyzed the overall survival (OS) or disease-free survival (DFS) according to VM status. Two independent reviewers screened the studies, extracted data, and evaluated the quality of included studies with the Newcastle-Ottawa scale. Meta-analysis was performed using STATA 12.0 software. A total of 22 studies with 2411 patients were included in this meta-analysis. Meta-analysis showed that VM was related with the poor OS (HR = 2.30, 95% CI: 2.06-2.56, P < 0.001) and DFS (HR = 2.60, 95% CI: 2.07-3.27, P < 0.001) of patients with digestive cancer. Subgroup analysis showed VM was related with tumor differentiation, lymph node metastasis and TNM stage. Moreover, the present meta-analysis was reliable, and there was no obvious publication bias. This meta-analysis suggested that VM was a poor prognosis of digestive cancer patients. Further large and well-designed studies are required.
Collapse
|
30
|
Ge H, Luo H. Overview of advances in vasculogenic mimicry - a potential target for tumor therapy. Cancer Manag Res 2018; 10:2429-2437. [PMID: 30122992 PMCID: PMC6080880 DOI: 10.2147/cmar.s164675] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vasculogenic mimicry (VM) describes the process utilized by highly aggressive cancer cells to generate vascular-like structures without the presence of endothelial cells. VM has been vividly described in various tumors and participates in cancer progression dissemination and metastasis. Diverse molecular mechanisms and signaling pathways are involved in VM formation. Furthermore, the patterning characteristics of VM, detected with molecular imaging, are being investigated for use as a tool to aid clinical practice. This review explores the most recent studies investigating the role of VM in tumor induction. Indeed, the recognition of these advances will increasingly affect the development of novel therapeutic target strategies for VM in human cancer.
Collapse
Affiliation(s)
- Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China,
| | - Hui Luo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China, .,Division of Graduate, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
31
|
Karim ME, Tha KK, Othman I, Borhan Uddin M, Chowdhury EH. Therapeutic Potency of Nanoformulations of siRNAs and shRNAs in Animal Models of Cancers. Pharmaceutics 2018; 10:E65. [PMID: 29861465 PMCID: PMC6026921 DOI: 10.3390/pharmaceutics10020065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
RNA Interference (RNAi) has brought revolutionary transformations in cancer management in the past two decades. RNAi-based therapeutics including siRNA and shRNA have immense scope to silence the expression of mutant cancer genes specifically in a therapeutic context. Although tremendous progress has been made to establish catalytic RNA as a new class of biologics for cancer management, a lot of extracellular and intracellular barriers still pose a long-lasting challenge on the way to clinical approval. A series of chemically suitable, safe and effective viral and non-viral carriers have emerged to overcome physiological barriers and ensure targeted delivery of RNAi. The newly invented carriers, delivery techniques and gene editing technology made current treatment protocols stronger to fight cancer. This review has provided a platform about the chronicle of siRNA development and challenges of RNAi therapeutics for laboratory to bedside translation focusing on recent advancement in siRNA delivery vehicles with their limitations. Furthermore, an overview of several animal model studies of siRNA- or shRNA-based cancer gene therapy over the past 15 years has been presented, highlighting the roles of genes in multiple cancers, pharmacokinetic parameters and critical evaluation. The review concludes with a future direction for the development of catalytic RNA vehicles and design strategies to make RNAi-based cancer gene therapy more promising to surmount cancer gene delivery challenges.
Collapse
Affiliation(s)
- Md Emranul Karim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Kyi Kyi Tha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Mohammad Borhan Uddin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
32
|
Rhodocetin-αβ selectively breaks the endothelial barrier of the tumor vasculature in HT1080 fibrosarcoma and A431 epidermoid carcinoma tumor models. Oncotarget 2018; 9:22406-22422. [PMID: 29854288 PMCID: PMC5976474 DOI: 10.18632/oncotarget.25032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/19/2018] [Indexed: 11/29/2022] Open
Abstract
The tumor vasculature differs from normal blood vessels in morphology, composition and stability. Here, we describe a novel tumor vessel-disrupting mechanism. In an HT1080/mouse xenograft tumor model rhodocetin-αβ was highly effective in disrupting the tumor endothelial barrier. Mechanistically, rhodocetin-αβ triggered MET signaling via neuropilin-1. As both neuropilin-1 and MET were only lumen-exposed in a subset of abnormal tumor vessels, but not in normal vessels, the prime target of rhodocetin-αβ were these abnormal tumor vessels. Consequently, cells lining such tumor vessels became increasingly motile which compromised the vessel wall tightness. After this initial leakage, rhodocetin-αβ could leave the bloodstream and reach the as yet inaccessible neuropilin-1 on the basolateral side of endothelial cells and thus disrupt nearby vessels. Due to the specific neuropilin-1/MET co-distribution on cells lining such abnormal tumor vessels in contrast to normal endothelial cells, rhodocetin-αβ formed the necessary trimeric signaling complex of rhodocetin-αβ-MET-neuropilin-1 only in these abnormal tumor vessels. This selective attack of tumor vessels, sparing endothelial cell-lined vessels of normal tissues, suggests that the neuropilin-1-MET signaling axis may be a promising drugable target for anti-tumor therapy, and that rhodocetin-αβ may serve as a lead structure to develop novel anti-tumor drugs that target such vessels.
Collapse
|
33
|
M2-like tumor-associated macrophages drive vasculogenic mimicry through amplification of IL-6 expression in glioma cells. Oncotarget 2018; 8:819-832. [PMID: 27903982 PMCID: PMC5352199 DOI: 10.18632/oncotarget.13661] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
Vasculogenic mimicry (VM) has offered a new horizon for understanding tumor angiogenesis, but the mechanisms of VM in glioma progression have not been studied explicitly until now. As a significant component of immune infiltration in tumor microenvironment, macrophages have been demonstrated to play an important role in tumor growth and angiogenesis. However, whether macrophages could play a potential key role in glioma VM is still poorly understood. Herein we reported that both VM and CD163+ cells were associated with WHO grade and reduced patient survival, and VM channel counting was correlated to the number of infiltrated CD163+ cells in glioma specimens. In vitro studies of glioma cell lines implicated that M2-like macrophages (M2) promoted glioma VM. We found that conditional medium derived from M2 amplified IL-6 expression in glioma cells. Furthermore, our data indicated that IL-6 could promote glioma VM, as blocking IL-6 with neutralizing antibodies abrogated M2-mediated VM enhancement. In addition, the potent PKC inhibitor bisindolylmaleimide I could prevent M2-induced IL-6 upregulation and further inhibited glioma VM facilitation. Taken together, our results suggested that M2-like macrophages drove glioma VM through amplifying IL-6 secretion in glioma cells via PKC pathway.
Collapse
|
34
|
Zhang F, Zhang CM, Li S, Wang KK, Guo BB, Fu Y, Liu LY, Zhang Y, Jiang HY, Wu CJ. Low dosage of arsenic trioxide inhibits vasculogenic mimicry in hepatoblastoma without cell apoptosis. Mol Med Rep 2017; 17:1573-1582. [PMID: 29138840 PMCID: PMC5780096 DOI: 10.3892/mmr.2017.8046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/12/2017] [Indexed: 01/03/2023] Open
Abstract
Hepatoblastoma (HB) is the most common type of pediatric liver malignancy, which predominantly occurs in young children (aged <5 years), and continues to be a therapeutic challenge in terms of metastasis and drug resistance. As a new pattern of tumor blood supply, vasculogenic mimicry (VM) is a channel structure lined by tumor cells rather than endothelial cells, which contribute to angiogenesis. VM occurs in a variety of solid tumor types, including liver cancer, such as hepatocellular carcinoma. The aim of the present study was to elucidate the effect of arsenic trioxide (As2O3) on VM. In vitro experiments identified that HB cell line HepG2 cells form typical VM structures on Matrigel, and the structures were markedly damaged by As2O3 at a low concentration before the cell viability significantly decreased. The western blot results indicated that As2O3 downregulated the expression level of VM-associated proteins prior to the appearance of apoptotic proteins. In vivo, VM has been observed in xenografts of HB mouse models and identified by periodic acid-Schiff+/CD105− channels lined by HepG2 cells without necrotic cells. As2O3 (2 mg/kg) markedly depresses tumor growth without causing serious adverse reactions by decreasing the number of VM channels via inhibiting the expression level of VM-associated proteins. Thus, the present data strongly indicate that low dosage As2O3 reduces the formation of VM in HB cell line HepG2 cells, independent of cell apoptosis in vivo and in vitro, and may represent as a candidate drug for HB targeting VM.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chun-Mei Zhang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shu Li
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Kun-Kun Wang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bin-Bin Guo
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yao Fu
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lu-Yang Liu
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yu Zhang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hai-Yu Jiang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chang-Jun Wu
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
35
|
Collateral Damage Intended-Cancer-Associated Fibroblasts and Vasculature Are Potential Targets in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18112355. [PMID: 29112161 PMCID: PMC5713324 DOI: 10.3390/ijms18112355] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
After oncogenic transformation, tumor cells rewire their metabolism to obtain sufficient energy and biochemical building blocks for cell proliferation, even under hypoxic conditions. Glucose and glutamine become their major limiting nutritional demands. Instead of being autonomous, tumor cells change their immediate environment not only by their metabolites but also by mediators, such as juxtacrine cell contacts, chemokines and other cytokines. Thus, the tumor cells shape their microenvironment as well as induce resident cells, such as fibroblasts and endothelial cells (ECs), to support them. Fibroblasts differentiate into cancer-associated fibroblasts (CAFs), which produce a qualitatively and quantitatively different extracellular matrix (ECM). By their contractile power, they exert tensile forces onto this ECM, leading to increased intratumoral pressure. Moreover, along with enhanced cross-linkage of the ECM components, CAFs thus stiffen the ECM. Attracted by tumor cell- and CAF-secreted vascular endothelial growth factor (VEGF), ECs sprout from pre-existing blood vessels during tumor-induced angiogenesis. Tumor vessels are distinct from EC-lined vessels, because tumor cells integrate into the endothelium or even mimic and replace it in vasculogenic mimicry (VM) vessels. Not only the VM vessels but also the characteristically malformed EC-lined tumor vessels are typical for tumor tissue and may represent promising targets in cancer therapy.
Collapse
|
36
|
Gu M, Zheng X. Osteopontin and vasculogenic mimicry formation are associated with response to neoadjuvant chemotherapy in advanced breast cancer. Onco Targets Ther 2017; 10:4121-4127. [PMID: 28860821 PMCID: PMC5571838 DOI: 10.2147/ott.s129414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction Osteopontin (OPN), a multifunctional phosphoprotein, has been implicated in a series of important physiologic and pathophysiologic processes. In breast cancer, OPN functionally contributes to the tumorigenicity of spheroid-forming cells. It also plays a critical role in enhancing the proliferation, tumorigenicity, and ability to display vasculogenic mimicry (VM) of spheroid-forming cells in breast cancer. However, the role of OPN in breast cancer is not clear. Patients and methods This study investigated OPN expression and VM in breast cancer patients before neoadjuvant chemotherapy (NACT). Their association with clinicopathologic factors was first analyzed by immunohistochemistry. Then, the response of breast cancer patients to NACT was evaluated. The correlation between the clinicopathologic factors, including the molecular subtype, and the response to NACT was analyzed. Results Immunohistochemical analysis showed positive staining of OPN in 40% of the breast cancer patients, whereas VM, which was related to tumor stage, was observed in 30% of cases. OPN expression was found to have a significant correlation with VM (P<0.05). The results also indicated that the clinicopathologic factors were not related to the response to NACT, including the molecular subtype. The multivariate analysis of clinicopathologic features correlated with pathological complete response (pCR) indicated that OPN(+)VM(+) was correlated with pCR (P<0.001). Conclusion Our findings underlined that the concurrence of OPN-positive expression and VM can predict the pCR to NACT in breast cancer. The efficiency of NACT in certain patients can be easily predicted by detecting the expression of OPN and VM.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery.,Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xinyu Zheng
- Department of Breast Surgery.,Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
37
|
Liu W, Lv C, Zhang B, Zhou Q, Cao Z. MicroRNA-27b functions as a new inhibitor of ovarian cancer-mediated vasculogenic mimicry through suppression of VE-cadherin expression. RNA (NEW YORK, N.Y.) 2017; 23:1019-1027. [PMID: 28396577 PMCID: PMC5473136 DOI: 10.1261/rna.059592.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
Aggressive cancer cells gain robust tumor vascular mimicry (VM) capability that promotes tumor growth and metastasis. VE-cadherin is aberrantly overexpressed in vasculogenic cancer cells and regarded as a master gene of tumor VM. Although microRNAs (miRNAs) play an important role in modulating tumor angiogenesis and cancer metastasis, the miRNA that targets VE-cadherin expression in cancer cells to inhibit tumor cell-mediated VM is enigmatic. In this study, we found that miR-27b levels are negatively co-related to VE-cadherin expression in ovarian cancer cells and tumor cell-mediated VM, and demonstrated that miR-27b could bind to the 3'-untranslated region (3'UTR) of VE-cadherin mRNA. Overexpression of miR-27b in aggressive ovarian cancer cell lines Hey1B and ES2 significantly diminished intracellular VE-cadherin expression; convincingly, the inhibitory effect of miR-27b could be reversed by miR-27b specific inhibitor. Intriguingly, miR-27b not only effectively suppressed ovarian cancer cell migration and invasion, but also markedly inhibited formation of ovarian cancer cell-mediated capillary-like structures in vitro and suppressed generation of functional tumor blood vessels in mice. Together, our study suggests that miR-27b functions as a new inhibitor of ovarian cancer cell-mediated VM through suppression of VE-cadherin expression, providing a new potential drug candidate for antitumor VM and anti-ovarian cancer therapy.
Collapse
Affiliation(s)
- Wenming Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Chunping Lv
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, 2011 Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province, and Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
38
|
Wang Y, Liu P, Wang X, Mao H. Role of X‑linked inhibitor of apoptosis‑associated factor‑1 in vasculogenic mimicry in ovarian cancer. Mol Med Rep 2017; 16:325-330. [PMID: 28534973 DOI: 10.3892/mmr.2017.6597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
X-linked inhibitor of apoptosis‑associated factor 1 (XAF1) was identified as a novel X-linked inhibitor of apoptosis (XIAP) binding partner that may reverse the anti‑apoptotic effect of XIAP. Previous studies have revealed that XAF1 serves an important role in cancer angiogenesis. Vasculogenic mimicry (VM) describes the formation of fluid‑conducting channels by highly invasive and genetically dysregulated tumor cells. VM is critical for tumor blood supply and is associated with aggressive actions and metastasis. The aim of present study was to investigate the potential association between XAF1 expression with VM of ovarian cancer, and evaluate the role of XAF1 in tumor cell migration and invasion of SKOV3 cells. VM structure and XAF1 expression were detected in 94 tissue samples of advanced epithelial ovarian cancer (EOC). Invasion and migration of the SKOV3 human ovarian carcinoma cell line were identified by Transwell assay. It was revealed that the presence of VM was associated with high grade advanced ovarian cancer. Reduced XAF1 expression was significantly associated with presence of VM. Overexpression of XAF1 significantly reduced invasion and migration of SKOV3 cells, and inhibited vascular endothelial growth factor protein expression. Furthermore, vasculature was suppressed by overexpression of XAF1 in vivo in xenograft models. In conclusion, XAF1 expression was associated with VM in ovarian cancer, suggesting a potential role of XAF1 in the formation of VM in EOC. These findings may facilitate the development of novel therapeutic agents for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Peishu Liu
- Department of Obstetrics and Gynaecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hongluan Mao
- Department of Obstetrics and Gynaecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
39
|
Jinjun W, Zhaowei W, Qiang L, Zhijun X, Juanzi Z, Lin L, Guixi J. sFLT-1 inhibits proliferation, migration, and invasion of colorectal cancer SW480 cells through vascular mimicry formation suppression. Tumour Biol 2017; 39:1010428317698339. [PMID: 28468595 DOI: 10.1177/1010428317698339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To investigate the effects of soluble fms-like tyrosine kinase-1 on the vascular mimicry formation, proliferation, migration, and invasion of colorectal cancer SW480 cells. The recombinant plasmid pBLAST49-sFLT-1 or pBLAST49 control plasmid was transfected into SW480 cells to obtain hsFLT-1-SW480 or Ctrl-SW480 cells. The three-dimensional model culture, sulforhodamine B assay, scratch assay, and Transwell assay were performed to detect the vascular mimicry formation, proliferation, migration, and invasion of colorectal cancer SW480 cells, respectively. Western blotting was used to detect the expression of vascular endothelial–cadherin protein. Compared with Ctrl-SW480 cells, vascular mimicry formation ((0.85 ± 0.04) vs (7.40 ± 0.69), p < 0.05) and vascular endothelial–cadherin expression ((1.25 ± 0.08) vs (1.89 ± 0.03), p < 0.05) were significantly decreased, and the growth rate was also significantly decreased in hsFLT-1-SW480 cells ((32.54 ± 5.12) vs (88.13 ± 11.52), p < 0.05). Moreover, the migration ((0.46 ± 0.08) vs (0.94 ± 0.03), p < 0.05) and invasion capacity ((59.14 ± 3.64) vs (134.85 ± 10.16), p < 0.05) of SW480 cells were significantly inhibited upon soluble fms-like tyrosine kinase-1 transfection. soluble fms-like tyrosine kinase-1 inhibits cell proliferation, migration, and invasion of colorectal cancer SW480 cells through suppression of vascular mimicry formation, which provides a good basis for the development of new drugs for the treatment of colorectal cancer by targeting both angiogenesis and vascular mimicry formation.
Collapse
Affiliation(s)
- Wang Jinjun
- Department of Vascular Surgery, The Affiliated Qingdao Hiser hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong Province, China
| | - Wang Zhaowei
- Department of Vascular Surgery, The Affiliated Qingdao Hiser hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong Province, China
| | - Li Qiang
- Department of Vascular Surgery, The Affiliated Qingdao Hiser hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong Province, China
| | - Xue Zhijun
- Department of Vascular Surgery, The Affiliated Qingdao Hiser hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong Province, China
| | - Zhang Juanzi
- Department of Vascular Surgery, The Affiliated Qingdao Hiser hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong Province, China
| | - Li Lin
- Department of Vascular Surgery, The Affiliated Qingdao Hiser hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong Province, China
| | - Jiang Guixi
- Department of Vascular Surgery, The Affiliated Qingdao Hiser hospital of Qingdao University (Qingdao Hospital of Traditional Chinese Medicine), Qingdao, Shandong Province, China
| |
Collapse
|
40
|
Zhu B, Zhou L, Yu L, Wu S, Song W, Gong X, Wang D. Evaluation of the correlation of vasculogenic mimicry, ALDH1, KAI1 and microvessel density in the prediction of metastasis and prognosis in colorectal carcinoma. BMC Surg 2017; 17:47. [PMID: 28431527 PMCID: PMC5399824 DOI: 10.1186/s12893-017-0246-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/13/2017] [Indexed: 01/13/2023] Open
Abstract
Background Metastasis and recurrence are the most common reasons for treatment failure of colorectal carcinoma (CRC). Vasculogenic mimicry (VM, blood supply formation often seen in highly aggressive tumors), Aldehyde dehydrogenase 1 (ALDH1, a biomarker of cancer stem cells), KAI1 (a suppressor gene of tumor metastasis) are all valuable factors for metastasis and prognosis in diverse human cancers. However, the correlation of VM, ALDH1, KAI1 and microvessel density (MVD) in CRC is unclear. In this study, we analyzed the correlations among VM, ALDH1, KAI1 and MVD, as well as their respective correlations with clinicopathological parameters and survival in CRC. Methods The level of VM, ALDH1, KAI1 and MVD in 204 whole tissue samples of CRC were examined by immunhistochemistry. Clinical data was also collected. Results Levels of VM, ALDH1 and MVD were significantly higher, and levels of KAI1 significantly lower, in CRC tissues than in normal colorectal tissues. Levels of VM, ALDH1 and MVD were positively associated with invasion of depth, lymph node metastasis (LNM), distant metastasis and tumor-node-metastasis (TNM) stages, and negatively with patients’ overall survival (OS). Levels of KAI1 was negatively correlated with invasion of depth, LNM, distant metastasis and TNM stages, and the KAI1 positive expression subgroup had significantly longer OS than did the KAI1- subgroup. In multivariate analysis, high levels of VM, ALDH1 and KAI1, as well as TNM stages were independently correlated with lower OS in patients with CRC. Conclusions VM, MVD and the expression of ALDH1 and KAI1 may represent promising metastatic and prognostic biomarkers, as well as potential therapeutic targets for CRC.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No.287, Changhuai Road, Bengbu, Anhui Province, China
| | - Lei Zhou
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No.287, Changhuai Road, Bengbu, Anhui Province, China
| | - Lan Yu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No.287, Changhuai Road, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No.287, Changhuai Road, Bengbu, Anhui Province, China.
| | - Wenqing Song
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No.287, Changhuai Road, Bengbu, Anhui Province, China
| | - Xiaomeng Gong
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No.287, Changhuai Road, Bengbu, Anhui Province, China
| | - Danna Wang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, No.287, Changhuai Road, Bengbu, Anhui Province, China
| |
Collapse
|
41
|
Hypoxia-induced vasculogenic mimicry formation in human colorectal cancer cells: Involvement of HIF-1a, Claudin-4, and E-cadherin and Vimentin. Sci Rep 2016; 6:37534. [PMID: 27869227 PMCID: PMC5116622 DOI: 10.1038/srep37534] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
Vasculogenic mimicry (VM) plays an important role in colorectal cancer (CRC) metastasis, and both hypoxia and the epithelial-mesenchymal transition (EMT) are necessary for VM. In this study, HIF-1α expression was upregulated in the VM-positive CRC cell line HCT-116 and thereby affected the expression of the EMT-related markers Claudin-4, E-cadherin (E-cd) and Vimentin(VIM). SB431542 and U0126EtOH, which can inhibit of EMT were used to treat HCT-116 and HCT-8 in these experiments. Both of the inhibitors had significant effect on EMT markers and the formations of VM in CRC cells. In addition, knockdown of HIF-1α in the HCT-116 cells inhibited their capacity for VM. Our study reveals a regulatory role for HIF-1α in VM and suggests that targeting either HIF-1α or EMT may be a valuable strategy for the elimination of CRC metastasis.
Collapse
|
42
|
Parayath NN, Nehoff H, Norton SE, Highton AJ, Taurin S, Kemp RA, Greish K. Styrene maleic acid-encapsulated paclitaxel micelles: antitumor activity and toxicity studies following oral administration in a murine orthotopic colon cancer model. Int J Nanomedicine 2016; 11:3979-91. [PMID: 27574427 PMCID: PMC4993259 DOI: 10.2147/ijn.s110251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oral administration of paclitaxel (PTX), a broad spectrum anticancer agent, is challenged by its low uptake due to its poor bioavailability, efflux through P-glycoprotein, and gastrointestinal toxicity. We synthesized PTX nanomicelles using poly(styrene-co-maleic acid) (SMA). Oral administration of SMA-PTX micelles doubled the maximum tolerated dose (60 mg/kg vs 30 mg/kg) compared to the commercially available PTX formulation (PTX [Ebewe]). In a murine orthotopic colon cancer model, oral administration of SMA-PTX micelles at doses 30 mg/kg and 60 mg/kg reduced tumor weight by 54% and 69%, respectively, as compared to the control group, while no significant reduction in tumor weight was observed with 30 mg/kg of PTX (Ebewe). In addition, toxicity of PTX was largely reduced by its encapsulation into SMA. Furthermore, examination of the tumors demonstrated a decrease in the number of blood vessels. Thus, oral delivery of SMA-PTX micelles may provide a safe and effective strategy for the treatment of colon cancer.
Collapse
Affiliation(s)
| | | | - Samuel E Norton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew J Highton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sebastien Taurin
- Department of Pharmacology and Toxicology
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA
| | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Khaled Greish
- Department of Pharmacology and Toxicology
- Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
43
|
Gao S, Fan C, Huang H, Zhu C, Su M, Zhang Y. Effects of HCG on human epithelial ovarian cancer vasculogenic mimicry formation in vivo. Oncol Lett 2016; 12:459-466. [PMID: 27347165 PMCID: PMC4907296 DOI: 10.3892/ol.2016.4630] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/29/2016] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer is the leading cause of mortality due to gynecological malignancy, and vasculogenic mimicry (VM) formation is correlated with poor prognosis. In a previous study, the present authors observed that human chorionic gonadotropin (HCG) could promote VM formation in three-dimensional OVCAR-3 cell cultures. In order to investigate whether HCG could promote VM formation in ovarian cancer in vivo, the role of OVCAR-3 cells overexpressing or depleted of chorionic gonadotropin, beta polypeptide 5 (CGB5, which is the fifth subunit of β-HCG and was identified as the key part of HCG) were injected into nude mice in the present study, while BeWo cells were used as a positive control. The results demonstrated that overexpressed CGB5 promoted xenografts tumor formation in nude mice, and the results of hematoxylin and eosin and cluster of differentiation (CD)34-periodic acid-Schiff dual staining revealed that CGB5 promoted VM formation. Furthermore, reverse transcription-polymerase chain reaction and immunochemistry staining demonstrated that the expression of the vascular markers CD31, vascular endothelial growth factor and factor VIII was also upregulated in the CGB5-overexpressing xenografts tumors. In addition, the expression of luteinizing hormone receptor (LHR), the receptor of CGB5, was increased in CGB5-overexpressing cells. In conclusion, CGB5 may promote tumor growth and VM formation via activation of the LHR signal transduction pathway, which may support a novel strategy for ovarian cancer therapy.
Collapse
Affiliation(s)
- Sainan Gao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chao Fan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Changlai Zhu
- Department of Electron Microscopy, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Min Su
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
44
|
Liang J, Yang B, Cao Q, Wu X. Association of Vasculogenic Mimicry Formation and CD133 Expression with Poor Prognosis in Ovarian Cancer. Gynecol Obstet Invest 2016; 81:529-536. [PMID: 27160772 DOI: 10.1159/000445747] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/22/2016] [Indexed: 11/19/2022]
Abstract
AIMS This study was conducted to investigate the association of vasculogenic mimicry (VM) formation and CD133 expression with the clinical outcomes of patients with ovarian cancer. METHODS This retrospective study was performed in 120 ovarian carcinoma samples. VM formation and CD133 expression was identified with CD31/periodic acid-Schiff double-staining and CD133 immunohistochemical staining. Collected clinical and pathological data included age at diagnosis, histologic type, tumor grade, tumor stage, lymph node metastases and response to chemotherapy. The overall survival time was calculated. RESULTS VM was identified in 52 (43%) of 120 ovarian carcinoma tissues and CD133 expression was found in 56 (47%) cases. Both VM formation and CD133 expression were associated with advanced tumor stage, high-grade carcinoma and non-response to chemotherapy (p < 0.05). They were also associated with shorter overall survival time (p < 0.05) by log-rank test. Combined marker of VM formation and CD133 expression was associated with high-grade ovarian carcinoma, late-stage disease, non-response to chemotherapy and shorter overall survival time (p < 0.05). CONCLUSIONS VM formation and CD133 expression can provide additional prognostic information for patients with ovarian cancer. Combined marker of VM formation and CD133 expression may be a potent predictor for poor prognosis for patients with ovarian cancer.
Collapse
Affiliation(s)
- Jun Liang
- Department of Obstetrics and Gynecology, Hebei Medical University, Hebei, China
| | | | | | | |
Collapse
|
45
|
Synergistic Effect and Molecular Mechanisms of Traditional Chinese Medicine on Regulating Tumor Microenvironment and Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1490738. [PMID: 27042656 PMCID: PMC4793102 DOI: 10.1155/2016/1490738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/26/2016] [Indexed: 12/23/2022]
Abstract
The interaction of tumor cells with the microenvironment is like a relationship between the “seeds” and “soil,” which is a hotspot in recent cancer research. Targeting at tumor microenvironment as well as tumor cells has become a new strategy for cancer treatment. Conventional cancer treatments mostly focused on single targets or single mechanism (the seeds or part of the soil); few researches intervened in the whole tumor microenvironment and achieved ideal therapeutic effect as expected. Traditional Chinese medicine displays a broad range of biological effects, and increasing evidence has shown that it may relate with synergistic effect on regulating tumor microenvironment and cancer cells. Based on literature review and our previous studies, we summarize the synergistic effect and the molecular mechanisms of traditional Chinese medicine on regulating tumor microenvironment and cancer cells.
Collapse
|
46
|
Tumor vasculogenic mimicry predicts poor prognosis in cancer patients: a meta-analysis. Angiogenesis 2016; 19:191-200. [DOI: 10.1007/s10456-016-9500-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/11/2016] [Indexed: 01/10/2023]
|
47
|
Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, Xu S, Xiao L, Lu J, Luo X, Tang M, Bode AM, Dong Z, Sun L, Cao Y. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget 2015; 6:5804-5817. [PMID: 25714020 PMCID: PMC4467403 DOI: 10.18632/oncotarget.3331] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/03/2015] [Indexed: 02/05/2023] Open
Abstract
LMP1, which is encoded by the Epstein-Barr virus, is proposed to be one of the major oncogenic factors involved in nasopharyngeal carcinoma (NPC). Previous studies demonstrated that down-regulation of LMP1 by LMP1-targeted DNAzyme (DZ1) increases the radiosensitivity of NPC. However, the mechanism by which DZ1 contributes to this radiosensitivity remains unclear. In this study, we determined whether a DZ1 blockade of LMP1 expression has an overall positive effect on the radiotherapy of NPCs by repressing HIF-1/VEGF activity and to investigate the mechanisms underlying LMP1-induced HIF-1 activation in NPC cells. The results showed that DZ1 inhibited the microtubule-forming ability of HUVECs co-cultured with NPC cells, which occurs with the down-regulation of VEGF expression and secretion. Moreover, LMP1 increases phosphorylated JNKs/c-Jun signaling, which is involved in the regulation of HIF-1/VEGF activity. After silencing LMP1 and decreasing phosphorylation of JNKs, NPC cells exhibited an enhanced radiosensitivity. Furthermore, in vivo experiments revealed a significant inhibition of tumor growth and a marked reduction of the Ktrans parameter, which reflects the condition of tumor micro-vascular permeability. Taken together, our data suggested that VEGF expression is increased by LMP1 through the JNKs/c-Jun signaling pathway and indicated that DZ1 enhances the radiosensitivity of NPC cells by inhibiting HIF-1/VEGF activity.
Collapse
Affiliation(s)
- Lifang Yang
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Liyu Liu
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhijie Xu
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Deyun Feng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Dong
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - San Xu
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Lanbo Xiao
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingchen Lu
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangjian Luo
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Tang
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ya Cao
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
48
|
Qiao L, Liang N, Zhang J, Xie J, Liu F, Xu D, Yu X, Tian Y. Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med 2015; 19:315-26. [PMID: 25598425 PMCID: PMC4407602 DOI: 10.1111/jcmm.12496] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022] Open
Abstract
Vasculogenic mimicry (VM) is a brand-new tumour vascular paradigm independent of angiogenesis that describes the specific capacity of aggressive cancer cells to form vessel-like networks that provide adequate blood supply for tumour growth. A variety of molecule mechanisms and signal pathways participate in VM induction. Additionally, cancer stem cell and epithelial-mesenchymal transitions are also shown to be implicated in VM formation. As a unique perfusion way, VM is associated with tumour invasion, metastasis and poor cancer patient prognosis. Due to VM's important effects on tumour progression, more VM-related strategies are being utilized for anticancer treatment. Here, with regard to the above aspects, we make a review of advanced research on VM in cancer.
Collapse
Affiliation(s)
- Lili Qiao
- Department of Oncology, Shandong University School of Medicine, Jinan, Shandong Pro, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tang NN, Zhu H, Zhang HJ, Zhang WF, Jin HL, Wang L, Wang P, He GJ, Hao B, Shi RH. HIF-1α induces VE-cadherin expression and modulates vasculogenic mimicry in esophageal carcinoma cells. World J Gastroenterol 2014; 20:17894-17904. [PMID: 25548487 PMCID: PMC4273139 DOI: 10.3748/wjg.v20.i47.17894] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/03/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether hypoxia inducible factor (HIF)-1α modulates vasculogenic mimicry (VM) by upregulating VE-cadherin expression in esophageal squamous cell carcinoma (ESCC). METHODS Esophageal squamous cancer cell lines Eca109 and TE13 were transfected with plasmids harboring small interfering RNAs targeting HIF-1α or VE-cadherin. The proliferation and invasion of esophageal carcinoma cells were detected by MTT and Transwell migration assays. The formation of tubular networks of cells was analyzed by 3D culture in vitro. BALB/c nude mice were used to observe xenograft tumor formation. The relationship between the expression of HIF-1α and VE-cadherin, ephrinA2 (EphA2) and laminin5γ2 (LN5γ2) was measured by Western blot and real-time polymerase chain reaction. RESULTS Knockdown of HIF-1α inhibited cell proliferation (32.3% ± 6.1% for Eca109 cells and 38.6% ± 6.8% for TE13 cells, P < 0.05). Both Eca109 and TE13 cells formed typical tubular networks. The number of tubular networks markedly decreased when HIF-1α or VE-cadherin was knocked down. Expression of VE-cadherin, EphA2 and LN5γ2 was dramatically inhibited, but the expression of matrix metalloproteinase 2 had no obvious change in HIF-1α-silenced cells. Knockdown of VE-cadherin significantly decreased expression of both EphA2 and LN5γ2 (P < 0.05), while HIF-1α expression was unchanged. The time for xenograft tumor formation was 6 ± 1.2 d for Eca109 cells and Eca109 cells transfected with HIF-1α Neo control short hairpin RNA (shRNA) vector, and 8.4 ± 2.1 d for Eca109 cells transfected with an shRNA against HIF-1α. Knockdown of HIF-1α inhibited vasculogenic mimicry (VM) and tumorigenicity in vivo. CONCLUSION HIF-1α may modulate VM in ESCC by regulating VE-cadherin expression, which affects VM formation through EphA2 and LN5γ2.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Squamous Cell/blood supply
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Esophageal Neoplasms/blood supply
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/pathology
- Esophageal Squamous Cell Carcinoma
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Laminin/genetics
- Laminin/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Mimicry
- Neoplasm Invasiveness
- Neovascularization, Pathologic
- RNA Interference
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Tumor Burden
Collapse
|
50
|
Zhang S, Fu Z, Wei J, Guo J, Liu M, Du K. Peroxiredoxin 2 is involved in vasculogenic mimicry formation by targeting VEGFR2 activation in colorectal cancer. Med Oncol 2014; 32:414. [DOI: 10.1007/s12032-014-0414-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 01/09/2023]
|