1
|
Chen X, Yao L, Ma S, Yuan X, Yang Y, Yuan Y, Liu Y, Liu L, Wang H, Yang W, Gellert M. How RAG1/2 evolved from ancestral transposases to initiate V(D)J recombination without transposition. RESEARCH SQUARE 2025:rs.3.rs-5443361. [PMID: 39989977 PMCID: PMC11844651 DOI: 10.21203/rs.3.rs-5443361/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The RAG1/2 recombinase, which initiates V(D)J recombination in jawed vertebrates, evolved from RNaseH-like transposases such as Transib and ProtoRAG 1. However, its post-cleavage transposase activity is strictly suppressed. Previous structural studies have focused only on the conserved core domains of RAG1/2, leaving the regulatory mechanisms of the non-core regions unclear. To investigate how RAG1/2 suppresses transposition and regulates DNA cleavage, we determined cryo-EM structures of nearly full-length RAG1/2 complexed with cleaved Recombination Signal Sequences (RSS) in a Signal-End Complex (SEC), at resolutions up to 2.95 Å. Two key structures, SEC-0 and SEC-PHD, reveal distinct regulatory roles of RAG2, which is absent in Transib transposase. SEC-0 displays a closed conformation, revealing that the core RAG2 facilitates sequential DNA cleavage by stabilizing the RSS-cleaved states in a "spring-loaded" mechanism. SEC-PHD reveals how RAG2's non-core PHD and Acidic Hinge (AH) domains, which are absent in ProtoRAG, inhibit target DNA binding in transposition. Histone H3K4me3, which recruits RAG1/2 to RSS sites, does not influence RAG1/2 binding to V, D or J gene segments bordered by RSS 2. In contrast, the suppressed transposition can be activated by H3K4me3 peptides that dislodge the inhibitory PHD domain 3,4. To achieve this de-repression in vivo, however, would require an unlikely close placement of two nucleosomes flanking a target DNA bent by nearly 180°. Our structural and biochemical results elucidate how RAG1 has acquired RAG2 and utilizes its core and non-core domains to enhance V(D)J recombination and suppress transposition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lan Liu
- National Institutes of Health
| | | | | | | |
Collapse
|
2
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
3
|
Zhu S, Pang Y, Zhang X, Yang C, Gao J, Fang P, Zhang Y, Yao Y, Ju F, Ye F, Zhu H, Liao P, Yao L, Dai L, Xu J, Wu B, Pan J, Wu Y. Alteration of Thyroid Hormones in Mouse Models of Alzheimer's Disease and Aging. Neuroendocrinology 2024; 114:411-422. [PMID: 38228117 DOI: 10.1159/000536089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION Aging is characterized by the deterioration of a wide range of functions in tissues and organs, and Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Hypothyroidism occurs when there is insufficient production of thyroid hormones (THs) by the thyroid. The relationship between hypothyroidism and aging as well as AD is controversial at present. METHODS We established an animal model of AD (FAD4T) with mutations in the APP and PSEN1 genes, and we performed a thyroid function test and RNA sequencing (RNA-Seq) of the thyroid from FAD4T and naturally aging mice. We also studied gene perturbation correlation in the FAD4T mouse thyroid, bone marrow, and brain by further single-cell RNA sequencing (scRNA-seq) data of the bone marrow and brain. RESULTS In this study, we found alterations in THs in both AD and aging mice. RNA-seq data showed significant upregulation of T-cell infiltration- and cell proliferation-related genes in FAD4T mouse thyroid. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that upregulated genes were enriched in the functional gene modules of activation of immune cells. Downregulated energy metabolism-related genes were prominent in aging thyroids, which reflected the reduction in THs. GSEA showed a similar enrichment tendency in both mouse thyroids, suggesting their analogous inflammation state. In addition, the regulation of leukocyte activation and migration was a common signature between the thyroid, brain, and bone marrow of FAD4T mice. CONCLUSIONS Our findings identified immune cell infiltration of the thyroid as the potential underlying mechanism of the alteration of THs in AD and aging.
Collapse
Affiliation(s)
- Siyuan Zhu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangwei Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunying Yang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Fang
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yaohui Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunjin Yao
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fangyu Ju
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Ye
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyi Zhu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Liao
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lufeng Yao
- Department of Orthopaedic Surgery, Ningbo No. 6 Hospital, Ningbo, China
| | - Lulu Dai
- Department of Ultrasound, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Xu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Wu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pan
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yijun Wu
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Peng Z, Zhang H, Hu H. The Function of Ubiquitination in T-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:135-159. [PMID: 39546141 DOI: 10.1007/978-981-97-7288-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Thymus is an important primary lymphoid organ for T cell development. After T-lineage commitment, the early thymic progenitors (ETPs) develop into CD4-CD8- (DN), CD4+CD8+ (DP) and further CD4+ SP or CD8+ SP T cells. Under the help of thymic epithelial cells (TEC), dendritic cell (DC), macrophage, and B cells, ETPs undergo proliferation, T cell receptor (TCR) rearrangement, β-selection, positive selection, and negative selection, and thus leading to the generation of T cells that are diverse repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg under the help of TEC and DC. The regulation of T cell development is complicated. As a post-translational modification, ubiquitination regulates signal transduction in diverse biological processes. Ubiquitination functions in T cell development through regulating key signal pathway or maturation and function of related cells. In this review, the regulation of T cell development by ubiquitination is summarized and discussed.
Collapse
Affiliation(s)
- Zhengcan Peng
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
5
|
Johnston R, Mathias B, Crowley SJ, Schmidt HA, White LS, Mosammaparast N, Green AM, Bednarski JJ. Nuclease-independent functions of RAG1 direct distinct DNA damage responses in B cells. EMBO Rep 2023; 24:e55429. [PMID: 36382770 PMCID: PMC9827558 DOI: 10.15252/embr.202255429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Developing B cells generate DNA double-stranded breaks (DSBs) to assemble immunoglobulin receptor (Ig) genes necessary for the expression of a mature B cell receptor. These physiologic DSBs are made by the RAG endonuclease, which is comprised of the RAG1 and RAG2 proteins. In pre-B cells, RAG-mediated DSBs activate the ATM kinase to coordinate canonical and non-canonical DNA damage responses (DDR) that trigger DSB repair and B cell developmental signals, respectively. Whether this broad cellular response is distinctive to RAG DSBs is poorly understood. To delineate the factors that direct DDR signaling in B cells, we express a tetracycline-inducible Cas9 nuclease in Rag1-deficient pre-B cells. Both RAG- and Cas9-mediated DSBs at Ig genes activate canonical DDR. In contrast, RAG DSBs, but not Cas9 DSBs, induce the non-canonical DDR-dependent developmental program. This unique response to RAG DSBs is, in part, regulated by non-core regions of RAG1. Thus, B cells trigger distinct cellular responses to RAG DSBs through unique properties of the RAG endonuclease that promotes activation of B cell developmental programs.
Collapse
Affiliation(s)
- Rachel Johnston
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Brendan Mathias
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Stephanie J Crowley
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Haley A Schmidt
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Lynn S White
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Nima Mosammaparast
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | - Abby M Green
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Jeffrey J Bednarski
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
6
|
Liu S, Huang F, Ru G, Wang Y, Zhang B, Chen X, Chu L. Mouse Models of Hepatocellular Carcinoma: Classification, Advancement, and Application. Front Oncol 2022; 12:902820. [PMID: 35847898 PMCID: PMC9279915 DOI: 10.3389/fonc.2022.902820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the subtype of liver cancer with the highest incidence, which is a heterogeneous malignancy with increasing incidence rate and high mortality. For ethical reasons, it is essential to validate medical clinical trials for HCC in animal models before further consideration on humans. Therefore, appropriate models for the study of the pathogenesis of the disease and related treatment methods are necessary. For tumor research, mouse models are the most commonly used and effective in vivo model, which is closer to the real-life environment, and the repeated experiments performed on it are closer to the real situation. Several mouse models of HCC have been developed with different mouse strains, cell lines, tumor sites, and tumor formation methods. In this review, we mainly introduce some mouse HCC models, including induced model, gene-edited model, HCC transplantation model, and other mouse HCC models, and discuss how to choose the appropriate model according to the purpose of the experiments.
Collapse
Affiliation(s)
- Sha Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Liang Chu,
| |
Collapse
|
7
|
Abstract
Adaptive immunity in jawed vertebrates relies on the assembly of antigen receptor genes by the recombination activating gene 1 (RAG1)-RAG2 (collectively RAG) recombinase in a reaction known as V(D)J recombination. Extensive biochemical and structural evidence indicates that RAG and V(D)J recombination evolved from the components of a RAG-like (RAGL) transposable element through a process known as transposon molecular domestication. This Review describes recent advances in our understanding of the functional and structural transitions that occurred during RAG evolution. We use the structures of RAG and RAGL enzymes to trace the evolutionary adaptations that yielded a RAG recombinase with exquisitely regulated cleavage activity and a multilayered array of mechanisms to suppress transposition. We describe how changes in modes of DNA binding, alterations in the dynamics of protein-DNA complexes, single amino acid mutations and a modular design likely enabled RAG family enzymes to survive and spread in the genomes of eukaryotes. These advances highlight the insight that can be gained from viewing evolution of vertebrate immunity through the lens of comparative genome analyses coupled with structural biology and biochemistry.
Collapse
|
8
|
Beilinson HA, Glynn RA, Yadavalli AD, Xiao J, Corbett E, Saribasak H, Arya R, Miot C, Bhattacharyya A, Jones JM, Pongubala JM, Bassing CH, Schatz DG. The RAG1 N-terminal region regulates the efficiency and pathways of synapsis for V(D)J recombination. J Exp Med 2021; 218:e20210250. [PMID: 34402853 PMCID: PMC8374863 DOI: 10.1084/jem.20210250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
Immunoglobulin and T cell receptor gene assembly depends on V(D)J recombination initiated by the RAG1-RAG2 recombinase. The RAG1 N-terminal region (NTR; aa 1-383) has been implicated in regulatory functions whose influence on V(D)J recombination and lymphocyte development in vivo is poorly understood. We generated mice in which RAG1 lacks ubiquitin ligase activity (P326G), the major site of autoubiquitination (K233R), or its first 215 residues (Δ215). While few abnormalities were detected in R1.K233R mice, R1.P326G mice exhibit multiple features indicative of reduced recombination efficiency, including an increased Igκ+:Igλ+ B cell ratio and decreased recombination of Igh, Igκ, Igλ, and Tcrb loci. Previous studies indicate that synapsis of recombining partners during Igh recombination occurs through two pathways: long-range scanning and short-range collision. We find that R1Δ215 mice exhibit reduced short-range Igh and Tcrb D-to-J recombination. Our findings indicate that the RAG1 NTR regulates V(D)J recombination and lymphocyte development by multiple pathways, including control of the balance between short- and long-range recombination.
Collapse
Affiliation(s)
- Helen A. Beilinson
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
| | - Rebecca A. Glynn
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anurupa Devi Yadavalli
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Jianxiong Xiao
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
| | - Elizabeth Corbett
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
| | - Huseyin Saribasak
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
| | - Rahul Arya
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charline Miot
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anamika Bhattacharyya
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Jessica M. Jones
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Jagan M.R. Pongubala
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Craig H. Bassing
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David G. Schatz
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| |
Collapse
|
9
|
Abstract
V(D)J recombination assembles and diversifies Ig and T cell receptor genes in developing B and T lymphocytes. The reaction is initiated by the RAG1-RAG2 protein complex which binds and cleaves at discrete gene segments in the antigen receptor loci. To identify mechanisms that regulate V(D)J recombination, we used proximity-dependent biotin identification to analyze the interactomes of full-length and truncated forms of RAG1 in pre-B cells. This revealed an association of RAG1 with numerous nucleolar proteins in a manner dependent on amino acids 216 to 383 and allowed identification of a motif required for nucleolar localization. Experiments in transformed pre-B cell lines and cultured primary pre-B cells reveal a strong correlation between disruption of nucleoli, reduced association of RAG1 with a nucleolar marker, and increased V(D)J recombination activity. Mutation of the RAG1 nucleolar localization motif boosts recombination while removal of the first 215 amino acids of RAG1, required for efficient egress from nucleoli, reduces recombination activity. Our findings indicate that nucleolar sequestration of RAG1 is a negative regulatory mechanism in V(D)J recombination and identify regions of the RAG1 N-terminal region that control nucleolar association and egress.
Collapse
|
10
|
Chen B, Gu P, Jia J, Liu W, Liu Y, Liu W, Xu T, Lin X, Lin T, Liu Y, Chen H, Xu M, Yuan J, Zhang J, Zhang Y, Xiao D, Gu W. Optimization Strategy for Generating Gene-edited Tibet Minipigs by Synchronized Oestrus and Cytoplasmic Microinjection. Int J Biol Sci 2019; 15:2719-2732. [PMID: 31754342 PMCID: PMC6854383 DOI: 10.7150/ijbs.35930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
The Tibet minipig is a rare highland pig breed worldwide and has many applications in biomedical and agricultural research. However, Tibet minipigs are not like domesticated pigs in that their ovulation number is low, which is unfavourable for the collection of zygotes. Partly for this reason, few studies have reported the successful generation of genetically modified Tibet minipigs by zygote injection. To address this issue, we described an efficient way to generate gene-edited Tibet minipigs, the major elements of which include the utilization of synchronized oestrus instead of superovulation to obtain zygotes, optimization of the preparation strategy, and co-injection of clustered regularly interspaced short palindromic repeat sequences associated protein 9 (Cas9) mRNA and single-guide RNAs (sgRNAs) into the cytoplasm of zygotes. We successfully obtained allelic TYR gene knockout (TYR-/-) Tibet minipigs with a typical albino phenotype (i.e., red-coloured eyes with light pink-tinted irises and no pigmentation in the skin and hair) as well as TYR-/-IL2RG-/- and TYR-/-RAG1-/- Tibet minipigs with typical phenotypes of albinism and immunodeficiency, which was characterized by thymic atrophy and abnormal immunocyte proportions. The overall gene editing efficiency was 75% for the TYR single gene knockout, while for TYR-IL2RG and TYR-RAG1 dual gene editing, the values were 25% and 75%, respectively. No detectable off-target mutations were observed. By intercrossing F0 generation minipigs, targeted genetic mutations can also be transmitted to gene-edited minipigs' offspring through germ line transmission. This study is a valuable exploration for the efficient generation of gene-edited Tibet minipigs with medical research value in the future.
Collapse
Affiliation(s)
- Bangzhu Chen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China
| | - Peng Gu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China
| | - Junshuang Jia
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Yumin Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Wen Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Tao Xu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China
| | - Xiaolin Lin
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Taoyan Lin
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Hengwei Chen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Mingchen Xu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jin Yuan
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jianing Zhang
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Yinghui Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Dong Xiao
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Weiwang Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Miao J, Ying B, Li R, Tollefson AE, Spencer JF, Wold WSM, Song SH, Kong IK, Toth K, Wang Y, Wang Z. Characterization of an N-Terminal Non-Core Domain of RAG1 Gene Disrupted Syrian Hamster Model Generated by CRISPR Cas9. Viruses 2018; 10:E243. [PMID: 29734775 PMCID: PMC5977236 DOI: 10.3390/v10050243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
The accumulating evidence demonstrates that Syrian hamsters have advantages as models for various diseases. To develop a Syrian hamster (Mesocricetus auratus) model of human immunodeficiency caused by RAG1 gene mutations, we employed the CRISPR/Cas9 system and introduced an 86-nucleotide frameshift deletion in the hamster RAG1 gene encoding part of the N-terminal non-core domain of RAG1. Histological and immunohistochemical analyses demonstrated that these hamsters (referred herein as RAG1-86nt hamsters) had atrophic spleen and thymus, and developed significantly less white pulp and were almost completely devoid of splenic lymphoid follicles. The RAG1-nt86 hamsters had barely detectable CD3⁺ and CD4⁺ T cells. The expression of B and T lymphocyte-specific genes (CD3γ and CD4 for T cell-specific) and (CD22 and FCMR for B cell-specific) was dramatically reduced, whereas the expression of macrophage-specific (CD68) and natural killer (NK) cell-specific (CD94 and KLRG1) marker genes was increased in the spleen of RAG1-nt86 hamsters compared to wildtype hamsters. Interestingly, despite the impaired development of B and T lymphocytes, the RAG1-86nt hamsters still developed neutralizing antibodies against human adenovirus type C6 (HAdV-C6) upon intranasal infection and were capable of clearing the infectious viruses, albeit with slower kinetics. Therefore, the RAG1-86nt hamster reported herein (similar to the hypomorphic RAG1 mutations in humans that cause Omenn syndrome), may provide a useful model for studying the pathogenesis of the specific RAG1-mutation-induced human immunodeficiency, the host immune response to adenovirus infection and other pathogens as well as for evaluation of cell and gene therapies for treatment of this subset of RAG1 mutation patients.
Collapse
Affiliation(s)
- Jinxin Miao
- Department of Pathology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA.
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - Rong Li
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA.
| | - Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - Seok-Hwan Song
- Department of Animal Science, Division of Applied Life Science (BK21Plus), Graduate School of Gyeongsang National University, Jinju 52828, Korea.
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21Plus), Graduate School of Gyeongsang National University, Jinju 52828, Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - Yaohe Wang
- Department of Pathology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA.
- Auratus Bio, LLC., Canton, SD 57104, USA.
| |
Collapse
|
12
|
Carmona LM, Schatz DG. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination. FEBS J 2017; 284:1590-1605. [PMID: 27973733 PMCID: PMC5459667 DOI: 10.1111/febs.13990] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/10/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022]
Abstract
The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented.
Collapse
Affiliation(s)
- Lina Marcela Carmona
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, New Haven, CT, USA
| |
Collapse
|
13
|
Lescale C, Deriano L. The RAG recombinase: Beyond breaking. Mech Ageing Dev 2016; 165:3-9. [PMID: 27863852 DOI: 10.1016/j.mad.2016.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/04/2016] [Accepted: 11/11/2016] [Indexed: 11/17/2022]
Abstract
DNA double-strand breaks (DSBs) are commonly seen as lesions that threaten genome integrity and contribute to cancer and aging processes. However, in the context of antigen receptor gene assembly, known as V(D)J recombination, DSBs are obligatory intermediates that allow the establishment of genetic diversity and adaptive immunity. V(D)J recombination is initiated when the lymphoid-restricted recombination-activating genes RAG1 and RAG2 are expressed and form a site-specific endonuclease (the RAG nuclease or RAG recombinase). Here, we discuss the ability of the RAG nuclease to minimize the risks of genome disruption by coupling the breakage and repair steps of the V(D)J reaction. This implies that the RAG genes, derived from an ancient transposon, have undergone strong selective pressure to prohibit transposition in favor of promoting controlled DNA end joining in cis by the ubiquitous DNA damage response and DNA repair machineries. We also discuss the idea that, in addition to being essential for the rearrangement of antigen receptor genes, RAG-mediated DSBs could impact cellular processes and outcomes by affecting genetic and epigenetic programs.
Collapse
Affiliation(s)
- Chloé Lescale
- Department of Immunology and Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Ludovic Deriano
- Department of Immunology and Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
14
|
Rodgers KK. Riches in RAGs: Revealing the V(D)J Recombinase through High-Resolution Structures. Trends Biochem Sci 2016; 42:72-84. [PMID: 27825771 DOI: 10.1016/j.tibs.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Development of the adaptive immune system is dependent on V(D)J recombination, which forms functional antigen receptor genes through rearrangement of component gene segments. The V(D)J recombinase, comprising recombination-activating proteins RAG1 and RAG2, guides the initial DNA cleavage events to the recombination signal sequence (RSS), which flanks each gene segment. Although the enzymatic steps for RAG-mediated endonucleolytic activity were established over two decades ago, only recently have high-resolution structural studies of the catalytically active core regions of the RAG proteins shed light on conformational requirements for the reaction. While outstanding questions remain, we have a clearer picture of how RAG proteins function in generating the diverse repertoires of antigen receptors, the underlying foundation of the adaptive immune system.
Collapse
Affiliation(s)
- Karla K Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| |
Collapse
|
15
|
Maman Y, Teng G, Seth R, Kleinstein SH, Schatz DG. RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2. Nucleic Acids Res 2016; 44:9624-9637. [PMID: 27436288 PMCID: PMC5175335 DOI: 10.1093/nar/gkw633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/16/2016] [Accepted: 07/02/2016] [Indexed: 02/01/2023] Open
Abstract
The RAG1/RAG2 endonuclease initiates V(D)J recombination at antigen receptor loci but also binds to thousands of places outside of these loci. RAG2 localizes directly to lysine 4 trimethylated histone 3 (H3K4me3) through a plant homeodomain (PHD) finger. The relative contribution of RAG2-dependent and RAG1-intrinsic mechanisms in determining RAG1 binding patterns is not known. Through analysis of deep RAG1 ChIP-seq data, we provide a quantitative description of the forces underlying genome-wide targeting of RAG1. Surprisingly, sequence-specific DNA binding contributes minimally to RAG1 targeting outside of antigen receptor loci. Instead, RAG1 binding is driven by two distinct modes of interaction with chromatin: the first is driven by H3K4me3, promoter-focused and dependent on the RAG2 PHD, and the second is defined by H3K27Ac, enhancer-focused and dependent on ‘non-core’ portions of RAG1. Based on this and additional chromatin and genomic features, we formulated a predictive model of RAG1 targeting to the genome. RAG1 binding sites predicted by our model correlate well with observed patterns of RAG1-mediated breaks in human pro-B acute lymphoblastic leukemia. Overall, this study provides an integrative model for RAG1 genome-wide binding and off-target activity and reveals a novel role for the RAG1 non-core region in RAG1 targeting.
Collapse
Affiliation(s)
- Yaakov Maman
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Grace Teng
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Rashu Seth
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA .,Howard Hughes Medical Institute, 295 Congress Avenue, New Haven, CT 06511, USA
| |
Collapse
|
16
|
Ulusoy E, Karaca NE, Azarsiz E, Berdeli A, Aksu G, Kutukculer N. Recombinase Activating Gene 1 Deficiencies Without Omenn Syndrome May Also Present With Eosinophilia and Bone Marrow Fibrosis. J Clin Med Res 2016; 8:379-84. [PMID: 27081423 PMCID: PMC4817577 DOI: 10.14740/jocmr2316w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 12/17/2022] Open
Abstract
Background Severe combined immunodeficiency (SCID) syndromes are a heterogenous group of diseases characterized by impairment in both cellular and humoral immunity with a range of genetic disorders. Complete recombinase activating gene (RAG) deficiency is associated with classical T-B-NK+ SCID which is the most common phenotype of Turkish SCID patients. There is a broad spectrum of hypomorfic RAG mutations including Omenn syndrome, leaky or atypical SCID with expansion of γδ T cells, autoimmunity and cytomegalovirus (CMV) infections. Methods Twenty-one (44%) patients had RAG1 deficiency of all 44 SCID patients followed up by pediatric immunology department. A retrospective analysis was conducted on the medical records of all SCID patients with RAG1 deficiency. Results Eight patients were classified as T-B-NK+ SCID, five patients as T+B-NK+ SCID (three of these were Omenn phenotype), and eight patients as T+B+NK+ SCID phenotype. Mean age of the whole study group, mean age at onset of symptoms and mean age at diagnosis were 87.7 ± 73.8 (12 - 256), 4.4 ± 8.2 (1 - 36) and 29.1 ± 56.8 (1 - 244) months, respectively. Consanguinity was present in 11 (52%) of 21 patients. Autoimmunity was found in six patients (28%). Ten patients (47%) had CMV infection, four (19%) had Epstein-Barr virus (EBV) infections and three (14%) had Bacillus Calmette-Guerin (BCG) infections. Seven patients who had refractory cytopenia (two pancytopenia and five bicytopenia) underwent bone marrow biopsy, three of whom had bone marrow fibrosis. Future evaluations must be considered about bone marrow fibrosis in RAG1 deficiency patients. Eosinophilia was observed in 10 patients, seven of whom did not have Omenn phenotype. Conclusion Non-Omenn phenotype RAG1 deficiencies can also present with eosinophilia. This report is presented to emphasize that RAG1 mutations may lead to diverse clinical phenotypes.
Collapse
Affiliation(s)
- Ezgi Ulusoy
- Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | - Elif Azarsiz
- Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Afig Berdeli
- Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Guzide Aksu
- Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Necil Kutukculer
- Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
17
|
Lescale C, Abramowski V, Bedora-Faure M, Murigneux V, Vera G, Roth DB, Revy P, de Villartay JP, Deriano L. RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair. Nat Commun 2016; 7:10529. [PMID: 26833222 PMCID: PMC4740868 DOI: 10.1038/ncomms10529] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
XRCC4-like factor (XLF) functions in classical non-homologous end-joining (cNHEJ) but is dispensable for the repair of DNA double-strand breaks (DSBs) generated during V(D)J recombination. A long-standing hypothesis proposes that, in addition to its canonical nuclease activity, the RAG1/2 proteins participate in the DNA repair phase of V(D)J recombination. Here we show that in the context of RAG2 lacking the C-terminus domain (Rag2c/c mice), XLF deficiency leads to a profound lymphopenia associated with a severe defect in V(D)J recombination and, in the absence of p53, increased genomic instability at V(D)J sites. In addition, Rag2c/cXLF−/−p53−/− mice develop aggressive pro-B cell lymphomas bearing complex chromosomal translocations and gene amplifications involving Igh and c-myc/pvt1 loci. Our results reveal an unanticipated functional interplay between the RAG complex and XLF in repairing RAG-induced DSBs and maintaining genome integrity during antigen receptor gene assembly. Antigen receptor diversity relies on careful DNA cleavage and repair. Here the authors identify a functional interplay between RAG2 and XLF during V(D)J recombination, revealing an important role for the RAG complex in repairing induced DNA double-strand breaks and maintaining genome integrity.
Collapse
Affiliation(s)
- Chloé Lescale
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | - Vincent Abramowski
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Marie Bedora-Faure
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | - Valentine Murigneux
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | - Gabriella Vera
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - David B Roth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Université Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris 75015, France
| | - Ludovic Deriano
- Departments of Immunology and Genomes and Genetics, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| |
Collapse
|
18
|
Xu K, Liu H, Shi Z, Song G, Zhu X, Jiang Y, Zhou Z, Liu X. Disruption of the RAG2 zinc finger motif impairs protein stability and causes immunodeficiency. Eur J Immunol 2015; 46:1011-9. [PMID: 26692406 DOI: 10.1002/eji.201545896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 11/18/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022]
Abstract
Although the RAG2 core domain is the minimal region required for V(D)J recombination, the noncore region also plays important roles in the regulation of recombination, and mutations in this region are often related to severe combined immunodeficiency. A complete understanding of the functions of the RAG2 noncore region and the potential contributions of its individual residues has not yet been achieved. Here, we show that the zinc finger motif within the noncore region of RAG2 is indispensable for maintaining the stability of the RAG2 protein. The zinc finger motif in the noncore region of RAG2 is highly conserved from zebrafish to humans. Knock-in mice carrying a zinc finger mutation (C478Y) exhibit decreased V(D)J recombination efficiency and serious impairment in T/B-cell development due to RAG2 instability. Further studies also reveal the importance of the zinc finger motif for RAG2 stability. Moreover, mice harboring a RAG2 noncore region mutation (N474S), which is located near C478 but is not zinc-binding, exhibit no impairment in either RAG2 stability or T/B-cell development. Taken together, our findings contribute to defining critical functions of the RAG2 zinc finger motif and provide insights into the relationships between the mutations within this motif and immunodeficiency diseases.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhubing Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guangrong Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuzhang Jiang
- Department of Medical Laboratory, Huaian First People's Hospital, Nanjing Medical University, Huaian, Jiangsu, China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Méndez C, Ahlenstiel CL, Kelleher AD. Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus. World J Virol 2015; 4:219-244. [PMID: 26279984 PMCID: PMC4534814 DOI: 10.5501/wjv.v4.i3.219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/24/2015] [Accepted: 04/29/2015] [Indexed: 02/05/2023] Open
Abstract
While human immunodeficiency virus 1 (HIV-1) infection is controlled through continuous, life-long use of a combination of drugs targeting different steps of the virus cycle, HIV-1 is never completely eradicated from the body. Despite decades of research there is still no effective vaccine to prevent HIV-1 infection. Therefore, the possibility of an RNA interference (RNAi)-based cure has become an increasingly explored approach. Endogenous gene expression is controlled at both, transcriptional and post-transcriptional levels by non-coding RNAs, which act through diverse molecular mechanisms including RNAi. RNAi has the potential to control the turning on/off of specific genes through transcriptional gene silencing (TGS), as well as fine-tuning their expression through post-transcriptional gene silencing (PTGS). In this review we will describe in detail the canonical RNAi pathways for PTGS and TGS, the relationship of TGS with other silencing mechanisms and will discuss a variety of approaches developed to suppress HIV-1 via manipulation of RNAi. We will briefly compare RNAi strategies against other approaches developed to target the virus, highlighting their potential to overcome the major obstacle to finding a cure, which is the specific targeting of the HIV-1 reservoir within latently infected cells.
Collapse
|
20
|
Abstract
The variable domains of Ig and T-cell receptor genes in vertebrates are assembled from gene fragments by the V(D)J recombination process. The RAG1-RAG2 recombinase (RAG1/2) initiates this recombination by cutting DNA at the borders of recombination signal sequences (RSS) and their neighboring gene segments. The RAG1 protein is also known to contain a ubiquitin E3 ligase activity, located in an N-terminal region that is not strictly required for the basic recombination reaction but helps to regulate recombination. The isolated E3 ligase domain was earlier shown to ubiquitinate one site in a neighboring RAG1 sequence. Here we show that autoubiquitination of full-length RAG1 at this specific residue (K233) results in a large increase of DNA cleavage by RAG1/2. A mutational block of the ubiquitination site abolishes this effect and inhibits recombination of a test substrate in mouse cells. Thus, ubiquitination of RAG1, which can be promoted by RAG1's own ubiquitin ligase activity, plays a significant role in governing the level of V(D)J recombination activity.
Collapse
|
21
|
Abstract
The recombination-activating gene products, RAG1 and RAG2, initiate V(D)J recombination during lymphocyte development by cleaving DNA adjacent to conserved recombination signal sequences (RSSs). The reaction involves DNA binding, synapsis, and cleavage at two RSSs located on the same DNA molecule and results in the assembly of antigen receptor genes. We have developed single-molecule assays to examine RSS binding by RAG1/2 and their cofactor high-mobility group-box protein 1 (HMGB1) as they proceed through the steps of this reaction. These assays allowed us to observe in real time the individual molecular events of RAG-mediated cleavage. As a result, we are able to measure the binding statistics (dwell times) and binding energies of the initial RAG binding events and characterize synapse formation at the single-molecule level, yielding insights into the distribution of dwell times in the paired complex and the propensity for cleavage on forming the synapse. Interestingly, we find that the synaptic complex has a mean lifetime of roughly 400 s and that its formation is readily reversible, with only ∼40% of observed synapses resulting in cleavage at consensus RSS binding sites.
Collapse
|
22
|
Zhang YH, Shetty K, Surleac MD, Petrescu AJ, Schatz DG. Mapping and Quantitation of the Interaction between the Recombination Activating Gene Proteins RAG1 and RAG2. J Biol Chem 2015; 290:11802-17. [PMID: 25745109 DOI: 10.1074/jbc.m115.638627] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 12/21/2022] Open
Abstract
The RAG endonuclease consists of RAG1, which contains the active site for DNA cleavage, and RAG2, an accessory factor whose interaction with RAG1 is critical for catalytic function. How RAG2 activates RAG1 is not understood. Here, we used biolayer interferometry and pulldown assays to identify regions of RAG1 necessary for interaction with RAG2 and to measure the RAG1-RAG2 binding affinity (KD ∼0.4 μM) (where RAG1 and RAG2 are recombination activating genes 1 or 2). Using the Hermes transposase as a guide, we constructed a 36-kDa "mini" RAG1 capable of interacting robustly with RAG2. Mini-RAG1 consists primarily of the catalytic center and the residues N-terminal to it, but it lacks a zinc finger region in RAG1 previously implicated in binding RAG2. The ability of Mini-RAG1 to interact with RAG2 depends on a predicted α-helix (amino acids 997-1008) near the RAG1 C terminus and a region of RAG1 from amino acids 479 to 559. Two adjacent acidic amino acids in this region (Asp-546 and Glu-547) are important for both the RAG1-RAG2 interaction and recombination activity, with Asp-546 of particular importance. Structural modeling of Mini-RAG1 suggests that Asp-546/Glu-547 lie near the predicted 997-1008 α-helix and components of the active site, raising the possibility that RAG2 binding alters the structure of the RAG1 active site. Quantitative Western blotting allowed us to estimate that mouse thymocytes contain on average ∼1,800 monomers of RAG1 and ∼15,000 molecules of RAG2, implying that nuclear concentrations of RAG1 and RAG2 are below the KD value for their interaction, which could help limit off-target RAG activity.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- From the Departments of Immunobiology and Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06511
| | - Keerthi Shetty
- From the Departments of Immunobiology and Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06511
| | - Marius D Surleac
- the Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania, and
| | - Andrei J Petrescu
- the Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania, and
| | - David G Schatz
- From the Departments of Immunobiology and Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06511, the Howard Hughes Medical Institute, New Haven, Connecticut 06511
| |
Collapse
|
23
|
Byrum JN, Zhao S, Rahman NS, Gwyn LM, Rodgers W, Rodgers KK. An interdomain boundary in RAG1 facilitates cooperative binding to RAG2 in formation of the V(D)J recombinase complex. Protein Sci 2015; 24:861-73. [PMID: 25676158 DOI: 10.1002/pro.2660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 11/09/2022]
Abstract
V(D)J recombination assembles functional antigen receptor genes during lymphocyte development. Formation of the recombination complex containing the recombination activating proteins, RAG1 and RAG2, is essential for the site-specific DNA cleavage steps in V(D)J recombination. However, little is known concerning how complex formation leads to a catalytically-active complex. Here, we combined limited proteolysis and mass spectrometry methods to identify regions of RAG1 that are sequestered upon association with RAG2. These results show that RAG2 bridges an interdomain boundary in the catalytic region of RAG1. In a second approach, mutation of RAG1 residues within the interdomain boundary were tested for disruption of RAG1:RAG2 complex formation using fluorescence-based pull down assays. The core RAG1 mutants demonstrated varying effects on complex formation with RAG2. Interestingly, two mutants showed opposing results for the ability to interact with core versus full length RAG2, indicating that the non-core region of RAG2 participates in binding to core RAG1. Significantly, all of the RAG1 interdomain mutants demonstrated altered stoichiometries of the RAG complexes, with an increased number of RAG2 per RAG1 subunit compared to the wild type complex. Based on our results, we propose that interaction of RAG2 with RAG1 induces cooperative interactions of multiple binding sites, induced through conformational changes at the RAG1 interdomain boundary, and resulting in formation of the DNA cleavage active site.
Collapse
Affiliation(s)
- Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73190
| | | | | | | | | | | |
Collapse
|
24
|
Shimazaki N, Lieber MR. Histone methylation and V(D)J recombination. Int J Hematol 2014; 100:230-7. [PMID: 25060705 DOI: 10.1007/s12185-014-1637-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 01/27/2023]
Abstract
V(D)J recombination is the process by which the diversity of antigen receptor genes is generated and is also indispensable for lymphocyte development. This recombination event occurs in a cell lineage- and stage-specific manner, and is carefully controlled by chromatin structure and ordered histone modifications. The recombinationally active V(D)J loci are associated with hypermethylation at lysine4 of histone H3 and hyperacetylation of histones H3/H4. The recombination activating gene 1 (RAG1) and RAG2 complex initiates recombination by introducing double-strand DNA breaks at recombination signal sequences (RSS) adjacent to each coding sequence. To be recognized by the RAG complex, RSS sites must be within an open chromatin context. In addition, the RAG complex specifically recognizes hypermethylated H3K4 through its plant homeodomain (PHD) finger in the RAG2 C terminus, which stimulates RAG catalytic activity via that interaction. In this review, we describe how histone methylation controls V(D)J recombination and discuss its potential role in lymphoid malignancy by mistargeting the RAG complex.
Collapse
Affiliation(s)
- Noriko Shimazaki
- Section of Molecular and Computational Biology, Departments of Pathology, Biochemistry and Molecular Biology, Molecular Microbiology and Immunology, USC Norris Comprehensive Cancer Ctr., Rm. 5428, 1441 Eastlake Ave., MC 9176, Los Angeles, CA, 90089-9176, USA,
| | | |
Collapse
|
25
|
Gigi V, Lewis S, Shestova O, Mijušković M, Deriano L, Meng W, Luning Prak ET, Roth DB. RAG2 mutants alter DSB repair pathway choice in vivo and illuminate the nature of 'alternative NHEJ'. Nucleic Acids Res 2014; 42:6352-64. [PMID: 24753404 PMCID: PMC4041462 DOI: 10.1093/nar/gku295] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA double-stranded breaks (DSBs) can be repaired by several mechanisms, including classical NHEJ (c-NHEJ) and a poorly defined, error-prone process termed alternative NHEJ (a-NHEJ). How cells choose between these alternatives to join physiologic DSBs remains unknown. Here, we show that deletion of RAG2's C-terminus allows a-NHEJ to repair RAG-mediated DSBs in developing lymphocytes from both c-NHEJ-proficient and c-NHEJ-deficient mice, demonstrating that the V(D)J recombinase influences repair pathway choice in vivo. Analysis of V(D)J junctions revealed that, contrary to expectation, junctional characteristics alone do not reliably distinguish between a-NHEJ and c-NHEJ. These data suggest that a-NHEJ is not necessarily mutagenic, and may be more prevalent than previously appreciated. Whole genome sequencing of a lymphoma arising in a p53−/− mouse bearing a C-terminal RAG2 truncation reveals evidence of a-NHEJ and also of aberrant recognition of DNA sequences resembling RAG recognition sites.
Collapse
Affiliation(s)
- Vered Gigi
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susanna Lewis
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Olga Shestova
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martina Mijušković
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ludovic Deriano
- Departments of Immunology and Genomes & Genetics, Institut Pasteur, CNRS-URA 1961, 75015 Paris, France
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David B Roth
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Chaumeil J, Micsinai M, Ntziachristos P, Roth DB, Aifantis I, Kluger Y, Deriano L, Skok JA. The RAG2 C-terminus and ATM protect genome integrity by controlling antigen receptor gene cleavage. Nat Commun 2014; 4:2231. [PMID: 23900513 PMCID: PMC3903180 DOI: 10.1038/ncomms3231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 07/02/2013] [Indexed: 01/16/2023] Open
Abstract
Tight control of antigen-receptor gene rearrangement is required to preserve genome integrity and prevent the occurrence of leukemia and lymphoma. Nonetheless, mistakes can happen, leading to the generation of aberrant rearrangements, such as Tcra/d-Igh inter-locus translocations that are a hallmark of ATM deficiency. Current evidence indicates that these translocations arise from the persistence of unrepaired breaks converging at different stages of thymocyte differentiation. Here we show that a defect in feedback control of RAG2 activity gives rise to bi-locus breaks and damage on Tcra/d and Igh in the same T cell at the same developmental stage, which provides a direct mechanism for generating these inter-locus rearrangements. Both the RAG2 C-terminus and ATM prevent bi-locus RAG-mediated cleavage through modulation of 3D conformation (higher order loops) and nuclear organization of the two loci. This limits the number of potential substrates for translocation and provides an important mechanism for protecting genome stability.
Collapse
Affiliation(s)
- Julie Chaumeil
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Coussens M, Wendland RL, Deriano L, Lindsay CR, Arnal SM, Roth DB. RAG2's acidic hinge restricts repair-pathway choice and promotes genomic stability. Cell Rep 2013; 4:870-8. [PMID: 23994475 PMCID: PMC4008148 DOI: 10.1016/j.celrep.2013.07.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/25/2013] [Accepted: 07/25/2013] [Indexed: 11/21/2022] Open
Abstract
V(D)J recombination-associated DNA double-strand breaks (DSBs) are normally repaired by the high-fidelity classical nonhomologous end-joining (cNHEJ) machinery. Previous studies implicated the recombination-activating gene (RAG)/DNA postcleavage complex (PCC) in regulating pathway choice by preventing access to inappropriate repair mechanisms such as homologous recombination (HR) and alternative NHEJ (aNHEJ). Here, we report that RAG2's "acidic hinge," previously of unknown function, is critical for several key steps. Mutations that reduce the hinge's negative charge destabilize the PCC, disrupt pathway choice, permit repair of RAG-mediated DSBs by the translocation-prone aNHEJ machinery, and reduce genomic stability in developing lymphocytes. Structural predictions and experimental results support our hypothesis that reduced flexibility of the hinge underlies these outcomes. Furthermore, sequence variants present in the human population reduce the hinge's negative charge, permit aNHEJ, and diminish genomic integrity.
Collapse
Affiliation(s)
- Marc Coussens
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
| | - Rebecca L. Wendland
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
| | - Ludovic Deriano
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
- Lymphocyte Development and Oncogenesis Unit, Department of Immunology, Pasteur Institute, Paris, 75015, France
| | - Cory R. Lindsay
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine of The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Suzzette M. Arnal
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
| | - David B. Roth
- Department of Pathology, New York University School of Medicine, New York, New York, 10016, USA
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, Raymond and Ruth Perelman School of Medicine of The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
28
|
Malu S, Malshetty V, Francis D, Cortes P. Role of non-homologous end joining in V(D)J recombination. Immunol Res 2013; 54:233-46. [PMID: 22569912 DOI: 10.1007/s12026-012-8329-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway of V(D)J recombination was discovered almost three decades ago. Yet it continues to baffle scientists because of its inherent complexity and the multiple layers of regulation that are required to efficiently generate a diverse repertoire of T and B cells. The non-homologous end-joining (NHEJ) DNA repair pathway is an integral part of the V(D)J reaction, and its numerous players perform critical functions in generating this vast diversity, while ensuring genomic stability. In this review, we summarize the efforts of a number of laboratories including ours in providing the mechanisms of V(D)J regulation with a focus on the NHEJ pathway. This involves discovering new players, unraveling unknown roles for known components, and understanding how deregulation of these pathways contributes to generation of primary immunodeficiencies. A long-standing interest of our laboratory has been to elucidate various mechanisms that control RAG activity. Our recent work has focused on understanding the multiple protein-protein interactions and protein-DNA interactions during V(D)J recombination, which allow efficient and regulated generation of the antigen receptors. Exploring how deregulation of this process contributes to immunodeficiencies also continues to be an important area of research for our group.
Collapse
Affiliation(s)
- Shruti Malu
- Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | |
Collapse
|
29
|
Mao MG, Lei JL, Alex PM, Hong WS, Wang KJ. Characterization of RAG1 and IgM (mu chain) marking development of the immune system in red-spotted grouper (Epinephelus akaara). FISH & SHELLFISH IMMUNOLOGY 2012; 33:725-735. [PMID: 22796426 DOI: 10.1016/j.fsi.2012.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/18/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
In vertebrates, lymphoid-specific recombinase protein encoded by recombination-activating genes (RAG1/2) plays a key role in V(D)J recombination of the T-cell receptor and B-cell receptor. In this study, both RAG1 and the immunoglobulin M (IgM) mu chain were cloned to characterize their potential role in the immune defense at developmental stages of red-spotted grouper, Epinephelus akaara. The open reading frame (ORF) of E. akaara RAG1 included 2778 nucleotide residues encoding a putative protein of 925 amino acids, while the ORF of the IgM mu chain had 1734 nucleotide residues encoding 578 amino acids including variable (VH) and constant (CH1-CH2-CH3-CH4) regions. E. akaara RAG1 was composed of a zinc-binding dimerization domain (ZDD) with a RING finger and zinc finger A (ZFA) in the non-core region and a nonamer-binding region (NBR), with a zinc finger B (ZFB), the central and C-terminal domains in the core region. Tridimensional models of the ZDD and NBR of E. akaara RAG1 were constructed for the first time in fishes, while a 3D model of the E. akaara IgM mu chain was also clarified. The RAG1 mRNA was only detected in the thymus and kidney of 4-month and 1.5-year old groupers using qPCR, and the RAG1 protein was confirmed using western blotting and immunohistochemistry. The IgM mu mRNA was examined in most tissues except the gonad. RAG1 and IgM mu gene expression were observed at 15 dph (days post-hatching) and 23 dph respectively, and increased to a higher level at 37 dph. In addition, this was the first time that the morphology of the E. akaara thymus was characterized. The oval-shaped thymus of 4-month old fish was clearly seen and there were amounts of T lymphocytes present. The results suggested that the immune action of E. akaara was likely to start to develop around 15 dph to 29 dph. The transcript level of the RAG1 gene and the number of lymphocytes in the thymus between 4-month and 1.5-year old groupers indicated that age-related thymic atrophy also occurs in fishes. The similar functional structures of RAG1 and IgM protein between fish and mammals indicated that teleost species share a similar mechanism of V(D)J recombination with higher vertebrates.
Collapse
Affiliation(s)
- Ming-Guang Mao
- State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, Fujian, China
| | | | | | | | | |
Collapse
|
30
|
Coster G, Gold A, Chen D, Schatz DG, Goldberg M. A dual interaction between the DNA damage response protein MDC1 and the RAG1 subunit of the V(D)J recombinase. J Biol Chem 2012; 287:36488-98. [PMID: 22942284 DOI: 10.1074/jbc.m112.402487] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The first step in V(D)J recombination is the formation of specific DNA double-strand breaks (DSBs) by the RAG1 and RAG2 proteins, which form the RAG recombinase. DSBs activate a complex network of proteins termed the DNA damage response (DDR). A key early event in the DDR is the phosphorylation of histone H2AX around DSBs, which forms a binding site for the tandem BRCA1 C-terminal (tBRCT) domain of MDC1. This event is required for subsequent signal amplification and recruitment of additional DDR proteins to the break site. RAG1 bears a histone H2AX-like motif at its C terminus (R1Ct), making it a putative MDC1-binding protein. In this work we show that the tBRCT domain of MDC1 binds the R1Ct motif of RAG1. Surprisingly, we also observed a second binding interface between the two proteins that involves the Proline-Serine-Threonine rich (PST) repeats of MDC1 and the N-terminal non-core region of RAG1 (R1Nt). The repeats-R1Nt interaction is constitutive, whereas the tBRCT-R1Ct interaction likely requires phosphorylation of the R1Ct motif of RAG1. As the C terminus of RAG1 has been implicated in inhibition of RAG activity, we propose a model in which phosphorylation of the R1Ct motif of RAG1 functions as a self-initiated regulatory signal.
Collapse
Affiliation(s)
- Gideon Coster
- Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
31
|
Mechanistic basis for RAG discrimination between recombination sites and the off-target sites of human lymphomas. Mol Cell Biol 2011; 32:365-75. [PMID: 22064481 DOI: 10.1128/mcb.06187-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During V(D)J recombination, RAG targeting to correct sites versus off-target sites relies on both DNA sequence features and on chromatin marks. Kinetic analysis using the first highly active full-length purified RAG1/RAG2 complexes has now allowed us to define the important catalytic features of this complex. We found that the overall rate of nicking, but not hairpinning, is critical for the discrimination between correct (optimal) versus off-target (suboptimal) sites used in human T-cell lymphomas, and we show that the C-terminal portion of RAG2 is required for this. This type of kinetic analysis permits us to analyze only the catalytically active RAG complex, in contrast to all other methods, which are unavoidably confounded by mixture with inactive RAG complexes. Moreover, we can distinguish the two major features of any enzymatic catalysis: the binding constant (K(D)) and the catalytic turnover rate, k(cat). Beyond a minimal essential threshold of heptamer quality, further suboptimal heptamer deviations primarily reduce the catalytic rate constant k(cat) for nicking. Suboptimal nonamers reduce not only the binding of the RAG complex to the recombination site (K(D)) but also the catalytic rate constant, consistent with a tight interaction between the RAG complex and substrate during catalysis. These features explain many aspects of RAG physiology and pathophysiology.
Collapse
|
32
|
Abstract
V(D)J recombination assembles immunoglobulin and T cell receptor genes during lymphocyte development through a series of carefully orchestrated DNA breakage and rejoining events. DNA cleavage requires a series of protein-DNA complexes containing the RAG1 and RAG2 proteins and recombination signals that flank the recombining gene segments. In this review, we discuss recent advances in our understanding of the function and domain organization of the RAG proteins, the composition and structure of RAG-DNA complexes, and the pathways that lead to the formation of these complexes. We also consider the functional significance of RAG-mediated histone recognition and ubiquitin ligase activities, and the role played by RAG in ensuring proper repair of DNA breaks made during V(D)J recombination. Finally, we propose a model for the formation of RAG-DNA complexes that involves anchoring of RAG1 at the recombination signal nonamer and RAG2-dependent surveillance of adjoining DNA for suitable spacer and heptamer sequences.
Collapse
Affiliation(s)
- David G Schatz
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
33
|
Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, Dionne-Laporte A, Spiegelman D, Henrion E, Diallo O, Thibodeau P, Bachand I, Bao JYJ, Tong AHY, Lin CH, Millet B, Jaafari N, Joober R, Dion PA, Lok S, Krebs MO, Rouleau GA. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 2011; 43:860-3. [PMID: 21743468 DOI: 10.1038/ng.886] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/15/2011] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a severe psychiatric disorder that profoundly affects cognitive, behavioral and emotional processes. The wide spectrum of symptoms and clinical variability in schizophrenia suggest a complex genetic etiology, which is consistent with the numerous loci thus far identified by linkage, copy number variation and association studies. Although schizophrenia heritability may be as high as ∼80%, the genes responsible for much of this heritability remain to be identified. Here we sequenced the exomes of 14 schizophrenia probands and their parents. We identified 15 de novo mutations (DNMs) in eight probands, which is significantly more than expected considering the previously reported DNM rate. In addition, 4 of the 15 identified DNMs are nonsense mutations, which is more than what is expected by chance. Our study supports the notion that DNMs may account for some of the heritability reported for schizophrenia while providing a list of genes possibly involved in disease pathogenesis.
Collapse
Affiliation(s)
- Simon L Girard
- Centre of Excellence in Neuromics of Université de Montréal, Centre Hospitalier de l'Université de Montréal Research Center, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ramos PS, Williams AH, Ziegler JT, Comeau ME, Guy RT, Lessard CJ, Li H, Edberg JC, Zidovetzki R, Criswell LA, Gaffney PM, Graham DC, Graham RR, Kelly JA, Kaufman KM, Brown EE, Alarcón GS, Petri MA, Reveille JD, McGwin G, Vilá LM, Ramsey-Goldman R, Jacob CO, Vyse TJ, Tsao BP, Harley JB, Kimberly RP, Alarcón-Riquelme ME, Langefeld CD, Moser KL. Genetic analyses of interferon pathway-related genes reveal multiple new loci associated with systemic lupus erythematosus. ARTHRITIS AND RHEUMATISM 2011; 63:2049-57. [PMID: 21437871 PMCID: PMC3128183 DOI: 10.1002/art.30356] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The overexpression of interferon (IFN)-inducible genes is a prominent feature of systemic lupus erythematosus (SLE); it serves as a marker for active and more severe disease, and is also observed in other autoimmune and inflammatory conditions. This study was undertaken to investigate the genetic variations responsible for sustained activation of IFN-responsive genes in SLE. METHODS We systematically evaluated association of SLE with a total of 1,754 IFN pathway-related genes, including IFN-inducible genes known to be differentially expressed in SLE patients and their direct regulators. We used a 3-stage study design in which 2 cohorts (total of 939 SLE cases and 3,398 controls) were analyzed independently and jointly for association with SLE, and the results were adjusted for the number of comparisons. RESULTS A total of 15,166 single-nucleotide polymorphisms (SNPs) passed all quality control filters; 305 of these SNPs demonstrated replicated association with SLE in both cohorts. Nine variants were further genotyped for confirmation in an average of 1,316 independent SLE cases and 3,215 independent controls. Association with SLE was confirmed for several genes, including those for the transmembrane receptor CD44 (CD44 [rs507230]; P = 3.98 × 10⁻¹²), the cytokine pleiotrophin (PTN [rs919581]; P = 5.38 × 10⁻⁴), the heat-shock protein DnaJ (DNAJA1 [rs10971259]; P = 6.31 × 10⁻³), and the nuclear import protein karyopherin α1 (KPNA [rs6810306]; P = 4.91 × 10⁻²). CONCLUSION This study expands the number of candidate genes that have been shown to be associated with SLE and highlights potential of pathway-based approaches for gene discovery. Identification of the causal alleles will help elucidate the molecular mechanisms responsible for activation of the IFN system in SLE.
Collapse
Affiliation(s)
- Paula S Ramos
- Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 2011; 711:61-72. [PMID: 21329706 DOI: 10.1016/j.mrfmmm.2011.02.005] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/31/2011] [Accepted: 02/06/2011] [Indexed: 04/13/2023]
Abstract
A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis.
Collapse
Affiliation(s)
- Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany
| | | |
Collapse
|
36
|
Arbuckle JL, Rahman NS, Zhao S, Rodgers W, Rodgers KK. Elucidating the domain architecture and functions of non-core RAG1: the capacity of a non-core zinc-binding domain to function in nuclear import and nucleic acid binding. BMC BIOCHEMISTRY 2011; 12:23. [PMID: 21599978 PMCID: PMC3124419 DOI: 10.1186/1471-2091-12-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/20/2011] [Indexed: 12/19/2022]
Abstract
Background The repertoire of the antigen-binding receptors originates from the rearrangement of immunoglobulin and T-cell receptor genetic loci in a process known as V(D)J recombination. The initial site-specific DNA cleavage steps of this process are catalyzed by the lymphoid specific proteins RAG1 and RAG2. The majority of studies on RAG1 and RAG2 have focused on the minimal, core regions required for catalytic activity. Though not absolutely required, non-core regions of RAG1 and RAG2 have been shown to influence the efficiency and fidelity of the recombination reaction. Results Using a partial proteolysis approach in combination with bioinformatics analyses, we identified the domain boundaries of a structural domain that is present in the 380-residue N-terminal non-core region of RAG1. We term this domain the Central Non-core Domain (CND; residues 87-217). Conclusions We show how the CND alone, and in combination with other regions of non-core RAG1, functions in nuclear localization, zinc coordination, and interactions with nucleic acid. Together, these results demonstrate the multiple roles that the non-core region can play in the function of the full length protein.
Collapse
Affiliation(s)
- Janeen L Arbuckle
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | | | |
Collapse
|
37
|
The RAG2 C terminus suppresses genomic instability and lymphomagenesis. Nature 2011; 471:119-23. [PMID: 21368836 PMCID: PMC3174233 DOI: 10.1038/nature09755] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 12/15/2010] [Indexed: 01/09/2023]
Abstract
Misrepair of DNA double-strand breaks (DSBs) produced by the V(D)J recombinase (the RAG1/RAG2 proteins) at immunoglobulin (Ig) and T cell receptor (Tcr) loci has been implicated in pathogenesis of lymphoid malignancies in humans1 and in mice2–7. Defects in DNA damage response factors such as ATM and combined deficiencies in classical nonhomologous end joining (NHEJ) and p53 predispose to RAG-initiated genomic rearrangements and lymphomagenesis2–11. Although we showed previously that RAG1/RAG2 shepherd the broken DNA ends to classical NHEJ for proper repair12,13, roles for the RAG proteins in preserving genomic stability remain poorly defined. Here we show that the RAG2 C-terminus, although dispensable for recombination14,15, is critical for maintaining genomic stability. Thymocytes from “core” Rag2 homozygotes (Rag2c/c mice) show dramatic disruption of Tcrα/δ locus integrity. Furthermore, all Rag2c/c p53−/− mice, unlike Rag1c/c p53−/− and p53−/− animals, rapidly develop thymic lymphomas bearing complex chromosomal translocations, amplifications, and deletions involving the Tcrα/δ and Igh loci. We also find these features in lymphomas from Atm−/− mice. We show that, like ATM-deficiency3, core RAG2 severely destabilizes the RAG post-cleavage complex. These results reveal a novel genome guardian role for RAG2 and suggest that similar “end release/end persistence” mechanisms underlie genomic instability and lymphomagenesis in Rag2c/c p53−/− and Atm−/− mice.
Collapse
|
38
|
Asai E, Wada T, Sakakibara Y, Toga A, Toma T, Shimizu T, Nampoothiri S, Imai K, Nonoyama S, Morio T, Muramatsu H, Kamachi Y, Ohara O, Yachie A. Analysis of mutations and recombination activity in RAG-deficient patients. Clin Immunol 2011; 138:172-7. [DOI: 10.1016/j.clim.2010.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/26/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022]
|
39
|
Desiderio S. Temporal and spatial regulatory functions of the V(D)J recombinase. Semin Immunol 2010; 22:362-9. [PMID: 21036059 DOI: 10.1016/j.smim.2010.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 12/20/2022]
Abstract
In developing lymphocytes, V(D)J recombination is subject to tight spatial and temporal regulation. An emerging body of evidence indicates that some of these constraints, particularly with respect to locus specificity and cell cycle phase, are enforced by regulatory cues that converge directly on the RAG proteins themselves. Active chromatin is bound by RAG-2 through a specific histone modification that may serve the recombinase as an allosteric activator as well as a docking site. RAG-1 possesses intrinsic histone ubiquitin ligase activity, suggesting that the recombinase not only responds to chromatin modification but is itself able to modify chromatin. The cyclin A/Cdk2 component of the cell cycle clock triggers periodic destruction of RAG-2, thereby restricting V(D)J recombination to the G0/G1 cell cycle phases. These examples illustrate that the RAG proteins, in addition to their direct actions on DNA, are able to detect and respond to intracellular signals, thereby coordinating recombinase activity with intracellular processes such as cell division and transcription.
Collapse
Affiliation(s)
- Stephen Desiderio
- Department of Molecular Biology and Genetics and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21210, United States
| |
Collapse
|
40
|
Oliver SS, Denu JM. Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a "histone language". Chembiochem 2010; 12:299-307. [PMID: 21243717 DOI: 10.1002/cbic.201000474] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Indexed: 12/21/2022]
Abstract
Histone proteins organize DNA into dynamic chromatin structures and regulate processes such as transcription, repair, and replication. Control of chromatin function and structure is mediated in part by reversible post-translational modifications (PTMs) on histones. The most N-terminal region of histone H3 contains a high density of modifiable residues. Here we focus on the dynamic interplay between histone modification states on the H3 N terminus and the binding modules that recognize these states. Specifically, we discuss the effect of auxiliary modifications to H3K4unmod/me3 binding modules (specifically H3R2 methylation, H3T3 phosphorylation, and H3T6 phosphorylation). Emerging evidence suggests that histone PTMs behave less like a strict "code", but more like a "language", which better illustrates the importance of context. Using androgen-receptor-mediated gene activation as an example, we propose a model of how the combinatorial natures of PTMs on the H3 N terminus and the complexes that recognize these epigenetic modifications control gene expression.
Collapse
Affiliation(s)
- Samuel S Oliver
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
41
|
Couëdel C, Roman C, Jones A, Vezzoni P, Villa A, Cortes P. Analysis of mutations from SCID and Omenn syndrome patients reveals the central role of the Rag2 PHD domain in regulating V(D)J recombination. J Clin Invest 2010; 120:1337-44. [PMID: 20234091 DOI: 10.1172/jci41305] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/20/2010] [Indexed: 01/22/2023] Open
Abstract
Rag2 plays an essential role in the generation of antigen receptors. Mutations that impair Rag2 function can lead to severe combined immunodeficiency (SCID), a condition characterized by complete absence of T and B cells, or Omenn syndrome (OS), a form of SCID characterized by the virtual absence of B cells and the presence of oligoclonal autoreactive T cells. Here, we present a comparative study of a panel of mutations that were identified in the noncanonical plant homeodomain (PHD) of Rag2 in patients with SCID or OS. We show that PHD mutant mouse Rag2 proteins that correspond to those found in these patients greatly impaired endogenous recombination of Ig gene segments in a Rag2-deficient pro-B cell line and that this correlated with decreased protein stability, impaired nuclear localization, and/or loss of the interaction between Rag2 and core histones. Our results demonstrate that point mutations in the PHD of Rag2 compromise the functionality of the entire protein, thus explaining why the phenotype of cells expressing PHD point mutants differs from those expressing core Rag2 protein that lacks the entire C-terminal region and is therefore devoid of the regulation imposed by the PHD. Together, our findings reveal the various deleterious effects of PHD Rag2 mutations and demonstrate the crucial role of this domain in regulating antigen receptor gene assembly. We believe these results reveal new mechanisms of immunodeficiency in SCID and OS.
Collapse
Affiliation(s)
- Chrystelle Couëdel
- Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
42
|
Niehues T, Perez-Becker R, Schuetz C. More than just SCID--the phenotypic range of combined immunodeficiencies associated with mutations in the recombinase activating genes (RAG) 1 and 2. Clin Immunol 2010; 135:183-92. [PMID: 20172764 DOI: 10.1016/j.clim.2010.01.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/23/2010] [Accepted: 01/25/2010] [Indexed: 01/08/2023]
Abstract
Combined immunodeficiencies with impaired numbers and function of T- and B-cells can be attributed to defects in the recombinase activating genes (RAG). The products of these genes, the RAG1 and 2 proteins, are key players in the V(D)J recombination process leading to the assembly of antigen receptor genes. Complete RAG deficiency (RAGD) with no V(D)J (<1% recombination activity of wild type) is associated with classical SCID and absence of T- and B-cells. In RAGD with residual V(D)J activity (>1% recombination activity of wild type), several clinical and immunological subtypes have been described: RAGD with skin inflammation and alphabeta T-cell expansion (classical Omenn syndrome), RAGD with skin inflammation and without T-cell expansion (incomplete Omenn syndrome), RAGD with gammadelta T-cell expansion and RAGD with granulomas. Engraftment of maternal T-cells can add to variation in phenotype. The potential role of epigenetic factors that influence the emergence of these phenotypes is discussed. Thorough assessment and interpretation of clinical and immunological findings will guide treatment modalities as intense as hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Tim Niehues
- HELIOS Klinikum Krefeld, Center for Child and Adolescent Health, Krefeld, Germany.
| | | | | |
Collapse
|
43
|
Progress of adaptive immunity system of agnathan vertebrates. YI CHUAN = HEREDITAS 2009; 31:969-76. [DOI: 10.3724/sp.j.1005.2009.00969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Fugmann SD. The origins of the Rag genes--from transposition to V(D)J recombination. Semin Immunol 2009; 22:10-6. [PMID: 20004590 DOI: 10.1016/j.smim.2009.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 11/11/2009] [Indexed: 01/06/2023]
Abstract
The recombination activating genes 1 and 2 (Rag1 and Rag2) encode the key enzyme that is required for the generation of the highly diversified antigen receptor repertoire central to adaptive immunity. The longstanding model proposed that this gene pair was acquired by horizontal gene transfer to explain its abrupt appearance in the vertebrate lineage. The analyses of the enormous amount of sequence data created by many genome sequencing projects now provide the basis for a more refined model as to how this unique gene pair evolved from a selfish DNA transposon into a sophisticated DNA recombinase essential for immunity.
Collapse
Affiliation(s)
- Sebastian D Fugmann
- Laboratory of Cellular and Molecular Biology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|