1
|
Machado NR, Fagundes BO, do Nascimento LA, Bergamasco IS, Sgnotto FDR, Fernandes IG, Fernandes JR, Pinto TNC, da Borges JVS, Benard G, Sato MN, Victor JR. Deciphering the IgG Idiotype Network Through Proteomic Analysis of Potential Targets in SARS-CoV-2-Induced Immune Responses. Immunology 2025; 175:226-239. [PMID: 40077865 DOI: 10.1111/imm.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The association between COVID-19 and autoimmune diseases has gained increasing recognition, yet the specific targets of SARS-CoV-2-induced IgG are currently in focus for several studies. This study aims to explore the proteomic targets of these antibodies and their potential role in autoimmunity. We utilised a human proteome microarray encompassing 23 736 unique proteins, including isoform variants and fragments, as catalogued by the Human Protein Atlas. Serum samples were analysed from four groups: healthy controls (N-exp HC), individuals vaccinated with protein-based vaccines (N-Cov Vac) and patients with moderate or severe COVID-19 (COVID-Mod and COVID-Sev). The evaluation of SARS-CoV-2-induced IgG antibodies revealed their potential to recognise multiple human proteins. Key targets included interferon alpha (IFN-α), tumour growth factor beta (TGF-β), interleukin 1 (IL-1), CXCL16, TGF-β receptors, CD34, CD47 and BCL2. The antibodies also targeted proteins from genes overexpressed in various immune cells, such as CD4+ and CD8+ T cells, γδ T cells, B cells, dendritic cells and NK cells. Reactivity was also observed with proteins specifically expressed in multiple organs, including the brain, liver, lungs and heart. Targeting patterns differed between COVID-19 patients and controls, with some proteins showing differential recognition in moderate versus severe cases. Furthermore, we evaluated the protein-protein interaction network (PPIN) of all targeted proteins and observed minimal structural homology and co-expression among the evaluated proteins, with almost no relation to the SARS-CoV-2 immune system reactome. The results suggest that the profile of SARS-CoV-2-induced IgG autoantibodies is associated with disease severity. In contrast, protein-vaccinated individuals exhibited a profile similar to non-exposed controls, suggesting that autoreactive IgG is specifically linked to active SARS-CoV-2 infection. These findings reveal a complex network of SARS-CoV-2-induced IgG idiotypes capable of targeting human proteins, not merely through simple cross-recognition of homologous proteins. This highlights the need for further investigations to determine whether they may influence COVID-19 pathophysiology and its clinical outcomes.
Collapse
Affiliation(s)
- Nicolle Rakanidis Machado
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Beatriz Oliveira Fagundes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Lais Alves do Nascimento
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | - Iara Grigoletto Fernandes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Juliana Ruiz Fernandes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Thalyta Nery Carvalho Pinto
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Gil Benard
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
- Post Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, Brazil
- School of Medicine, Santo Amaro University (UNISA), São Paulo, Brazil
| |
Collapse
|
2
|
de-Apoena Reche DT, Machado NR, Fagundes BO, Bergamasco IS, de Sousa TR, do Nascimento LA, Cunha FRM, de-Oliveira MG, da-Ressureição Sgnotto F, França CN, Victor JR. IgG from Dermatophagoides pteronyssinus (Der p)-atopic individuals modulates non-atopic thymic B cell phenotype (alfa-4/beta-7) and cytokine production (IFN-γ, IL-9, and IL-10) with direct membrane interaction. Sci Rep 2024; 14:7274. [PMID: 38538762 PMCID: PMC10973508 DOI: 10.1038/s41598-024-57950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/23/2024] [Indexed: 04/01/2024] Open
Abstract
Studies about thymic B cells are scarce in the literature, but it was suggested that they can exert modulatory and regulatory functions on the immune system. Thymic B cells can play some role in regulating the most frequent allergic background worldwide, the atopy induced by the mite Dermatophagoides pteronyssinus (Der p). Here, we aimed to evaluate if the polyclonal IgG repertoire produced by Der p-atopic individuals can influence the homing and cytokine profile of human thymic B derived from non-atopic children aged less than seven days. With this purpose, we produced polyclonal IgG formulations and cultivated human thymocytes in their presence. We also assessed IgG subclasses and the direct interaction of IgG with thymic B cell membranes. Our results could demonstrate that Der p-atopic IgG could not reduce the expression of α4β7 homing molecule as observed in response to the other IgG formulations and could reduce the frequency of IFN-γ- and IL-9-producing thymic B cells compared to the mock condition. Der p-atopic IgG could also induce thymic IL-10-producing B cells compared to control conditions. The IgG derived from Der p-atopic individuals failed to diminish the population of IL-13-producing thymic B cells, unlike the reduction observed with other IgG formulations when compared to the mock condition. All IgG formulations had similar levels of IgG subclasses and directly interacted with thymic B cell membranes. Finally, we performed experiments using peripheral non-atopic B cells where IgG effects were not observed. In conclusion, our observation demonstrates that IgG induced in allergic individuals can modulate non-atopic thymic B cells, potentially generating thymic B cells prone to allergy development, which seems to not occur in mature B cells.
Collapse
Affiliation(s)
| | - Nicolle Rakanidis Machado
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 500, 3rd Floor, São Paulo, SP, 05403-000, Brazil
| | - Beatriz Oliveira Fagundes
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 500, 3rd Floor, São Paulo, SP, 05403-000, Brazil
| | - Isabella Siuffi Bergamasco
- Post Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, SP, 04829-300, Brazil
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 500, 3rd Floor, São Paulo, SP, 05403-000, Brazil
| | - Thamires Rodrigues de Sousa
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 500, 3rd Floor, São Paulo, SP, 05403-000, Brazil
| | - Lais Alves do Nascimento
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 500, 3rd Floor, São Paulo, SP, 05403-000, Brazil
| | | | - Marilia Garcia de-Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, SP, 04829-300, Brazil
| | - Jefferson Russo Victor
- Post Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, SP, 04829-300, Brazil.
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar, 500, 3rd Floor, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
3
|
Du J, Du Y, Chen L, Liu H. IL-17 promotes melanoma through TRAF2 as a scaffold protein recruiting PIAS2 and ELAVL1 to induce EPHA5. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119547. [PMID: 37481078 DOI: 10.1016/j.bbamcr.2023.119547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
An abnormal immune response induces melanoma development. IL-17 and the classical downstream signal STAT1 are associated with melanoma development. TRAF2 also mediates the downstream signaling of IL-17; however, its role in IL-17-stimulated melanoma remains unclear. Bioinformatic analysis revealed that TRAF2 can bind to PIAS2 (a SUMO E3 ligase), ELAVL1 (an RNA-binding protein), and EPHA5 (an ephrin receptor of the tyrosine kinase family). To elucidate the IL-17 downstream signal, the IL-17 receptor (R), STAT1, TRAF2, PIAS2, ELAVL1, and EPHA5 were knocked down before melanoma cells were treated with recombinant IL-17A protein. Co-immunoprecipitation and RNA immunoprecipitation were conducted to determine the interaction of TRAF2 with PIAS2, ELAVL1, and EPHA5 proteins, as well as the interaction of ELAVL1 protein with EPHA5 mRNA. STAT1 knockdown suppressed the proliferation and invasion triggered by IL-17A, but the suppressive effects were much weaker than those caused by IL-17R knockdown. This implies that another nonclassical signal mediates IL-17 effects. IL-17A induces TRAF2 recruitment of ELAVL1, PIAS2, and EPHA5 proteins. We speculated that ELAVL1 bound to the AU-rich elements in the 3' untranslated region of the EPHA5 mRNA, thereby enhancing mRNA stability. Furthermore, PIAS2 induced EPHA5 SUMOylation, which suppressed EPHA5 ubiquitination and degradation. Through pre- and post-translational regulation, IL-17A induced EPHA5 expression in melanoma, and EPHA5 knockdown markedly suppressed IL-17A-induced proliferation and invasion. This study revealed a non-classical signaling mechanism responsible for the effects of IL-17 in melanoma.
Collapse
Affiliation(s)
- Junfeng Du
- Department of Plastic Surgery, the first affiliated hospital of Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou 510630, China
| | - Yujia Du
- Medical college of Jianghan University, No. 8, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Wuhan 430014, China
| | - Lang Chen
- Department of Burns and Plastic, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hongwei Liu
- Department of Plastic Surgery, the first affiliated hospital of Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou 510630, China; Innovative Technology Research Institute of Plastic Surgery, Guangzhou 510630, People's Republic of China; Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
4
|
Machado NR, Fagundes BO, Fernandes LA, de Oliveira ACP, Nukui Y, Casseb J, Cunha FRM, Nali LHDS, Sanabani SS, Victor JR. Differential modulation of IL-4, IL-10, IL-17, and IFN-γ production mediated by IgG from Human T-lymphotropic virus-1 (HTLV-1) infected patients on healthy peripheral T (CD4+, CD8+, and γδ) and B cells. Front Med (Lausanne) 2023; 10:1239706. [PMID: 37711742 PMCID: PMC10498471 DOI: 10.3389/fmed.2023.1239706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
Human T-lymphotropic virus 1 (HTLV-1) infected individuals remain as asymptomatic carriers (ACs) or can develop the chronic neurological disorder HTLV-1-associated myelopathy/Tropical Spastic Paraparesis (HAM/TSP) or the adult T-cell leukemia/lymphoma (ATLL), and the immunological mechanisms involved in this pathologies need to be elucidated. Recently, it has been demonstrated that induced or naturally developed IgG repertoires obtained from different groups of donors, grouped by immune status, can modulate human T and B cell functions. Here we aimed to evaluate if the IgG obtained from HTLV-1-infected ACs, HAM/TSP, and ATLL patients can differentially modulate the production of cytokines by human T and B cells. With this purpose, we cultured PBMCs with IgG purified from ACs, HAM/TSP, or ATLL donors and evaluated the frequency and intracellular cytokine production by flow cytometry. Our results indicate that IgG from HAM/TSP patients could induce an augment of IL-17-producing CD4+ T cells, reduce the frequency of IL-4-producing CD4+ T cells, increase IFN-γ-producing CD8+ T cells, and reduce IL-4-producing CD8+ T cells. IgG from ATLL could reduce the frequency of IL-4-producing CD4+ T cells, similarly to IgG from HAM/TSP /TSP, and could reduce the frequency of IFN-γ-producing γδT cells without influence on IL-17- and IL4-producing γδT and could reduce the frequency of IL-10- producing B cells. Finally, IgG from both HAM/TSP and ATLL patients could reduce the frequency of IFN-γ producing B cells. In conclusion, these results suggest that these preparations are active, partly overlapping in their effects, and able to elicit distinct effects on target populations.
Collapse
Affiliation(s)
- Nicolle Rakanidis Machado
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, University of São Paulo, Medical School, São Paulo, Brazil
| | - Beatriz Oliveira Fagundes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, University of São Paulo, Medical School, São Paulo, Brazil
| | - Lorena Abreu Fernandes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, University of São Paulo, Medical School, São Paulo, Brazil
| | | | - Youko Nukui
- Clinics Hospital, Medical School, São Paulo, Brazil
| | - Jorge Casseb
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, University of São Paulo, Medical School, São Paulo, Brazil
| | | | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-03, Clinics Hospital, University of São Paulo, Medical School, São Paulo, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, University of São Paulo, Medical School, São Paulo, Brazil
- Post Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, Brazil
| |
Collapse
|
5
|
de Sousa TR, Fagundes BO, Nascimento A, Fernandes LA, Sgnotto FDR, Orfali RL, Aoki V, Duarte AJDS, Sanabani SS, Victor JR. IgG from Adult Atopic Dermatitis (AD) Patients Induces Thymic IL-22 Production and CLA Expression on CD4+ T Cells: Possible Epigenetic Implications Mediated by miRNA. Int J Mol Sci 2022; 23:6867. [PMID: 35743308 PMCID: PMC9224968 DOI: 10.3390/ijms23126867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022] Open
Abstract
Atopic dermatitis (AD) is a common relapsing inflammatory skin disorder characterized by immune-mediated inflammation and epidermal barrier dysfunction. The pathogenesis of AD is multifactorial and has not been fully elucidated to date. This study aimed to evaluate whether serum IgG from adult AD patients could modulate the thymic maturation of IL-22-producing T cells and CLA+ T cells of non-atopic infants. Given that miRNAs regulate immune response genes, we evaluated whether miRNA expression is also altered in cultured thymocytes. Thymocytes were cultured with purified IgG from AD patients or control conditions (mock, Intravenous-IgG (IVIg), non-atopic IgG, or atopic non-AD IgG). Using flow cytometry analysis, we assessed the expression of CLA and intracellular levels of IL-4, IFN-γ, and IL-22 on double-positive T cells (DP T), CD4 T cells, or CD8 T cells. We also investigated the frequency of IgG isotypes and their direct interaction with the thymic T cells membrane. The miRNA profiles were evaluated by the Illumina small RNA-seq approach. MiRNA target gene prediction and enrichment analyses were performed using bioinformatics. Increased frequencies of IL-22 and CLA+ producing CD4+ T cells cultured with IgG of AD patients was seen in non-atopic infant thymocytes compared to all control conditions. No alterations were observed in the frequency of IgG isotypes among evaluated IgG pools. Evidence for a direct interaction between IgG and thymic DP T, CD4 T, and CD8 T cells is presented. The small RNA-seq analysis identified ten mature miRNAs that were modulated by AD IgG compared to mock condition (miR-181b-5p, hsa-miR-130b-3p, hsa-miR-26a-5p, hsa-miR-4497, has-miR-146a, hsa-let-7i-5p, hsa-miR-342-3p, has-miR-148a-3p, has-miR-92a and has-miR-4492). The prediction of the targetome of the seven dysregulated miRNAs between AD and mock control revealed 122 putative targets, and functional and pathway enrichment analyses were performed. Our results enhance our understanding of the mechanism by which IgG can collaborate in thymic T cells in the setting of infant AD.
Collapse
Affiliation(s)
- Thamires Rodrigues de Sousa
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Beatriz Oliveira Fagundes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Andrezza Nascimento
- Post-Graduation Program in Translational Medicine, Federal University of São Paulo, Sao Paulo 04039-002, Brazil; (A.N.); (L.A.F.)
| | - Lorena Abreu Fernandes
- Post-Graduation Program in Translational Medicine, Federal University of São Paulo, Sao Paulo 04039-002, Brazil; (A.N.); (L.A.F.)
| | | | - Raquel Leão Orfali
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Valéria Aoki
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
- Division of Pathology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
- Laboratory of Medical Investigation LIM-03, Division of Pathology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Av. Dr. Enéas Carvalho de Aguiar 500, Sao Paulo 05403-000, Brazil; (T.R.d.S.); (B.O.F.); (R.L.O.); (V.A.); (A.J.d.S.D.)
- Faculdades Metropolitanas Unidas (FMU), Health Sciences School, Sao Paulo 04505-002, Brazil
- Medical School, Universidade Santo Amaro (UNISA), Sao Paulo 04829-300, Brazil
| |
Collapse
|
6
|
Fagundes BO, de Sousa TR, Nascimento A, Fernandes LA, Sgnotto FDR, Orfali RL, Aoki V, Duarte AJDS, Sanabani SS, Victor JR. IgG from Adult Atopic Dermatitis (AD) Patients Induces Nonatopic Neonatal Thymic Gamma-Delta T Cells (γδT) to Acquire IL-22/IL-17 Secretion Profile with Skin-Homing Properties and Epigenetic Implications Mediated by miRNA. Int J Mol Sci 2022; 23:6872. [PMID: 35743310 PMCID: PMC9224404 DOI: 10.3390/ijms23126872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
γδT cells mature in the human thymus, and mainly produce IL-17A or IFN-γ, but can also produce IL-22 and modulate a variety of immune responses. Here, we aimed to evaluate whether IgG from AD patients (AD IgG) can functionally modulate thymic nonatopic γδT cells. Thymic tissues were obtained from 12 infants who had not had an atopic history. Thymocytes were cultured in mock condition, or in the presence of either AD IgG or therapeutic intravenous IgG (IVIg). Following these treatments, intracellular cytokine production, phenotype, and microRNA expression profiles were investigated. AD IgG could downregulate α4β7, upregulate CLA, and induce the production of IFN-γ, IL-17, and IL-22 in γδT cells. Although both AD IgG and IVIg could directly interact with γδT cell membranes, AD IgG could reduce γδT cell apoptosis. AD IgG could upregulate nine miRNAs compared to IVIg, and six when compared to the mock condition. In parallel, some miRNAs were downregulated. Target gene prediction and functional analysis indicated that some target genes were enriched in the negative regulation of cellular transcription. This study shows that AD IgG influences the production of IL-17 and IL-22 by intrathymic nonatopic γδT cells, and demonstrates epigenetic implications mediated by miRNAs.
Collapse
Affiliation(s)
- Beatriz Oliveira Fagundes
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Thamires Rodrigues de Sousa
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Andrezza Nascimento
- Post-Graduation Program in Translational Medicine, Federal University of Sao Paulo, Sao Paulo 04039-002, Brazil; (A.N.); (L.A.F.)
| | - Lorena Abreu Fernandes
- Post-Graduation Program in Translational Medicine, Federal University of Sao Paulo, Sao Paulo 04039-002, Brazil; (A.N.); (L.A.F.)
| | | | - Raquel Leão Orfali
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Valéria Aoki
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
- Division of Pathology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
- Laboratory of Medical Investigation LIM-03, Division of Pathology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of Sao Paulo, Sao Paulo 05403-000, Brazil; (B.O.F.); (T.R.d.S.); (R.L.O.); (V.A.); (A.J.d.S.D.)
- Faculdades Metropolitanas Unidas (FMU), Health Sciences School, Sao Paulo 04505-002, Brazil
- Medical School, Universidade Santo Amaro (UNISA), Sao Paulo 04829-300, Brazil
| |
Collapse
|
7
|
de Sousa TR, Sgnotto FDR, Fagundes BO, Duarte AJDS, Victor JR. Non-atopic Neonatal Thymic Innate Lymphoid Cell Subsets (ILC1, ILC2, and ILC3) Identification and the Modulatory Effect of IgG From Dermatophagoides Pteronyssinus (Derp)-Atopic Individuals. FRONTIERS IN ALLERGY 2022; 2:650235. [PMID: 35387031 PMCID: PMC8974683 DOI: 10.3389/falgy.2021.650235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Innate lymphoid cells (ILCs) are classified into distinct subsets termed ILC1, ILC2, and ILC3 cells. The existing literature lacks evidence identifying ILCs and their subsets in the human thymus but already demonstrates that they can exert several functions in regulating immune responses. Furthermore, it was already described that IgG's repertoires could modulate lymphocytes' maturation in the human thymus. Here we aimed to identify ILCs subsets in the human thymus and provide insight into the possible modulatory effect of purified IgG on these cells. Thymic tissues were obtained from 12 infants without an allergic background (non-atopic), and a literature-based peripheral ILCs staining protocol was used. Purified IgG was obtained from non-atopic individuals (n-At), atopic individuals reactive to allergens non-related to dust mites (nr-At), and atopic individuals reactive to the mite Dermatophagoides pteronyssinus (Derp-At). As with all tissues in which they have already been detected, thymic ILCs are rare, but we could detect viable ILCs in all tested tissues, which did not occur with the ILC1 subset. ILC2 and ILC3 NKp44+ subsets could be detected in all evaluated thymus, but ILC3 NKp44- subset could not. Next, we observed that Derp-At IgG could induce the expression of ILC2 phenotype, higher levels of IL-13, and lower levels of IL-4 when compared to IgG purified from non-atopic or non-related atopic (atopic to allergens excluding dust mites) individuals. These results contribute to the elucidation of human thymic ILCs and corroborate emerging evidence about IgG's premature effect on allergy development-related human lymphocytes' modulation.
Collapse
Affiliation(s)
- Thamires Rodrigues de Sousa
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Beatriz Oliveira Fagundes
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo, Brazil.,Division of Pathology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo, Brazil.,Medical School, Universidade Santo Amaro (Unisa), São Paulo, Brazil.,Faculdades Metropolitanas Unidas (FMU), São Paulo, Brazil
| |
Collapse
|
8
|
Zhang X, Wang S, Zhu Y, Zhang M, Zhao Y, Yan Z, Wang Q, Li X. Double-edged effects of interferons on the regulation of cancer-immunity cycle. Oncoimmunology 2021; 10:1929005. [PMID: 34262796 PMCID: PMC8253121 DOI: 10.1080/2162402x.2021.1929005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are a large family of pleiotropic cytokines that regulate both innate and adaptive immunity and show anti-cancer effects in various cancer types. Moreover, it was revealed that IFN signaling plays critical roles in the success of cancer therapy strategies, thereby enhancing their therapeutic effects. However, IFNs have minimal or even adverse effects on cancer eradication, and mediate cancer immune escape in some instances. Thus, IFNs have a double-edged effect on the cancer immune response. Recent studies suggest that IFNs regulate each step of the cancer immunity-cycle, consisting of cancer antigen release, presentation of antigens and activation of T cells, trafficking and infiltration of effector T cells into the tumor microenvironment, and recognition and killing of cancer cells, which contributes to our understanding of the mechanisms of IFNs in regulating cancer immunity. In this review, we focus on IFNs and cancer immunity and elaborate on the roles of IFNs in regulating the cancer-immunity cycle.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pathology, Harbin Medical University, Harbin, China
| | - Song Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yuanyuan Zhu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Yan Zhao
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Zhengbin Yan
- Department of Stomatology, the PeopIe's Hospital of Longhua, Shenzhen, China
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Stomatology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaobo Li
- Department of Stomatology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
de-Sousa TR, Pessôa R, Nascimento A, Fagundes BO, Sgnotto FDR, Duarte AJDS, Sanabani SS, Victor JR. Preconceptional Immunization Can Modulate Offspring Intrathymic IL-17-Producing γδT Cells with Epigenetic Implications Mediated by microRNAs. Int J Mol Sci 2021; 22:6633. [PMID: 34205753 PMCID: PMC8234718 DOI: 10.3390/ijms22126633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 01/02/2023] Open
Abstract
The mechanisms through which maternal immunization can modulate offspring thymic maturation of lymphocytes are not fully understood. Here, we aimed to evaluate whether maternal OVA-immunization can inhibit the maturation of IL-17-producing γδT cells in offspring thymus, and if this mechanism has epigenetic implications mediated by microRNAs (miRNAs) expression. Wild-type (WT) C57BL/6 females were immunized with OVA in Alum or Alum alone and were mated with normal WT males. Evaluating their offspring thymus at 3 or 20 days old (d.o.), we observed that maternal OVA immunization could inhibit the thymic frequency of offspring CD27- and IL-17+ γδT cells at the neonatal and until 20 days old. Furthermore, we evaluated the expression of function-related γ and δ variable γδTCR chains (Vγ1, Vγ2, Vγ3, Vδ4, and Vδ6.3), observing that maternal OVA-immunization inhibits Vγ2 chains expression. The small RNAs (sRNAs), particularly miRNAs, and messenger RNAs (mRNA) expression profiles by pools of thymus tissue samples (from 9 to 11 mice) from offspring OVA-immunized or Alum-immunized mothers were analyzed via Illumina sequencing platform and bioinformatics approaches. Using a fold change >4, our results showed that seven miRNAs (mmu-miR-126a-3p, 101a-3p, 744-3p,142-5p, 15a-5p, 532-5p, and 98-5p) were differentially expressed between both groups. Ten target genes were predicted to interact with the seven selected miRNAs. There were no enriched categories of gene ontology functional annotation and pathway enrichment analysis for the target genes. Interestingly, four of the identified miRNAs (mmu-miR-15a, mmu-miR-101 mmu-miR-126, and mmu-miR-142) are related to IL-17 production. Our data is of significance because we demonstrate that maternal immunization can modulate offspring thymic maturation of IL-17-producing γδT cells possibly by an epigenetic mechanism mediated by miRNAs.
Collapse
Affiliation(s)
- Thamires Rodrigues de-Sousa
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil; (T.R.d.-S.); (R.P.); (A.N.); (B.O.F.)
| | - Rodrigo Pessôa
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil; (T.R.d.-S.); (R.P.); (A.N.); (B.O.F.)
| | - Andrezza Nascimento
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil; (T.R.d.-S.); (R.P.); (A.N.); (B.O.F.)
| | - Beatriz Oliveira Fagundes
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil; (T.R.d.-S.); (R.P.); (A.N.); (B.O.F.)
| | | | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil; (T.R.d.-S.); (R.P.); (A.N.); (B.O.F.)
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil; (T.R.d.-S.); (R.P.); (A.N.); (B.O.F.)
- Faculdades Metropolitanas Unidas (FMU), School of Health Sciences, São Paulo 04505-002, Brazil
- Medical School, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| |
Collapse
|
10
|
The Potential of IgG to Induce Murine and Human Thymic Maturation of IL-10+ B Cells (B10) Revealed in a Pilot Study. Cells 2020; 9:cells9102239. [PMID: 33027887 PMCID: PMC7600151 DOI: 10.3390/cells9102239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022] Open
Abstract
Regulatory B (B10) cells can control several inflammatory diseases, including allergies; however, the origin of peripheral B10 cells is not fully understood, and the involvement of primary lymphoid organs (PLOs) as a primary site of maturation is not known. Here, using a murine model of allergy inhibition mediated by maternal immunization with ovalbumin (OVA), we aimed to evaluate whether B10 cells can mature in the thymus and whether IgG can mediate this process. Female mice were immunized with OVA, and offspring thymus, bone marrow, spleen, lung, and serum samples were evaluated at different times and after passive transfer of purified IgG or thymocytes. A translational approach was implemented using human nonatopic thymus samples, nonatopic peripheral blood mononuclear cells (PBMCs), and IgG from atopic or nonatopic individuals. Based on the expression of CD1d on B cells during maturation stages, we suggest that B10 cells can also mature in the murine thymus. Murine thymic B10 cells can be induced in vitro and in vivo by IgG and be detected in the spleen and lungs in response to an allergen challenge. Like IgG from atopic individuals, human IgG from nonatopic individuals can induce B10 cells in the infant thymus and adult PBMCs. Our observations suggest that B10 cells may mature in the thymus and that this mechanism may be mediated by IgG in both humans and mice. These observations may support the future development of IgG-based immunoregulatory therapeutic strategies.
Collapse
|
11
|
Natural Self-Ligand Gamma Delta T Cell Receptors (γδTCRs) Insight: The Potential of Induced IgG. Vaccines (Basel) 2020; 8:vaccines8030436. [PMID: 32759782 PMCID: PMC7564284 DOI: 10.3390/vaccines8030436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A γδ T cell acquires functional properties in response to the gamma delta T cell receptor γδTCR signal strength during its development in the thymus. The elucidation of the potential ligands of γδ T cell receptors are of extreme importance; however, they are still not understood. Here we revise the actual state of the art of candidates to exert the function of γδTCR ligands, and propose a theoretical contribution about new potential ligands of γδTCRs, based on biological and hypothetical pieces of evidence in the literature. In conclusion, we hypothetically suggest a possible role of induced antibodies according to the individual’s immune status, mainly of the IgG subclass, acting as γδTCR ligands. Considering that IgG production is involved in some essential immunotherapy protocols, and almost all vaccination protocols, our discussion opens a new and broad field to further exploration.
Collapse
|
12
|
Victor JR. Do different IgG repertoires play a role in B- and T-cell functional modulation during ontogeny? The "hooks without bait" theory. Immunol Cell Biol 2020; 98:540-548. [PMID: 32342552 DOI: 10.1111/imcb.12335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/04/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
The mechanisms by which immunoglobulin (Ig)G can modulate immunity have been investigated over the past few decades. In the past three years, some studies have demonstrated that IgG can play a pivotal role in mediating complex interactions that result in functional lymphocyte modulation during maturation in self or offspring primary lymphoid organs. This effect appears to be dependent on the IgG repertoire in the absence of the influence of antigens and the functionality of diverse cell populations, including B, αβT (CD4 T and CD8 T), invariant natural killer T and γδT cells, in mice and humans. Based on the literature, especially on findings resulting from the therapeutic use of purified IgG (intravenous Ig) and recent pieces of evidence obtained by my group, the "hooks without bait" theory is described here to guide the future development of therapies for specific immune regulation.
Collapse
Affiliation(s)
- Jefferson R Victor
- Laboratory of Medical Investigation LIM 56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Division of Environmental Health, FMU, Laureate International Universities, Sao Paulo, Brazil
| |
Collapse
|
13
|
da Ressureição Sgnotto F, Souza Santos L, Rodrigues de Sousa T, Feitosa de Lima J, Mara da Silva Oliveira L, Sanabani SS, José da Silva Duarte A, Russo Victor J. IgG From HIV-1-Exposed Seronegative and HIV-1-Infected Subjects Differently Modulates IFN-γ Production by Thymic T and B Cells. J Acquir Immune Defic Syndr 2019; 82:e56-e60. [PMID: 31714433 DOI: 10.1097/qai.0000000000002182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Ludimila Souza Santos
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Environmental Health, Faculdades Metropolitanas Unidas (FMU), Laureate International Universities, São Paulo, Brazil
| | - Thamires Rodrigues de Sousa
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Josenilson Feitosa de Lima
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luanda Mara da Silva Oliveira
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-03, Hospital das Clínicas (HCFMUSP), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Environmental Health, Faculdades Metropolitanas Unidas (FMU), Laureate International Universities, São Paulo, Brazil
| |
Collapse
|
14
|
Santos LS, Sgnotto FDR, Sousa TR, Orfali RL, Aoki V, Duarte AJDS, Victor JR. IgG from atopic dermatitis patients induces non-atopic infant thymic invariant natural killer T (iNKT) cells to produce IL-4, IL-17, and IL-10. Int J Dermatol 2019; 59:359-364. [PMID: 31631342 DOI: 10.1111/ijd.14688] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/18/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) pathogenesis still needs to be elucidated, but invariant natural killer T (iNKT) cell involvement was already described by several groups. Our group has demonstrated that IgG antibodies purified from AD patients can modulate cytokine production by thymic T cells. Here we aimed to investigate if IgG from AD patients can modulate infant non-atopic thymic iNKT cells cytokine production in order to collaborate with the elucidation of AD development in infancy. METHODS Thymic tissues were obtained from children from non-atopic mothers, and IgG was purified from AD patients diagnosed as moderate or severe and, as controls, from subjects clinically classified as non-atopic individuals. PBMCs from non-atopic individuals were also used in this study. RESULTS Our results demonstrated that IgG from AD patients could induce non-atopic children thymic iNKT cells to produce higher levels of intracellular IL-4, IL-10, and IL-17 when compared to all control conditions. No effect was observed in non-atopic adults peripheral iNKT. We also observed that IgG from AD patients induces an increase in the expression of CD4 and Rorγt transcription factor in non-atopic children thymic iNKT cells compared to the condition of all controls. CONCLUSIONS These observations suggest that IgG from AD patients can induce a cytokine profile by thymic iNKT cells from non-atopic infants compatible with the observations in AD development, which can collaborate with the elucidation of AD pathogenesis.
Collapse
Affiliation(s)
- Ludimila S Santos
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo, Brazil.,Division of Environmental Health, Faculdades Metropolitanas Unidas (FMU), Laureate International Universities, São Paulo, Brazil
| | | | - Thamires R Sousa
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Raquel L Orfali
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Valéria Aoki
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo, Brazil.,Division of Pathology, Medical School, University of São Paulo, São Paulo, Brazil
| | - Jefferson R Victor
- Laboratory of Medical Investigation LIM-56, Division of Clinical Dermatology, Medical School, University of São Paulo, São Paulo, Brazil.,Division of Environmental Health, Faculdades Metropolitanas Unidas (FMU), Laureate International Universities, São Paulo, Brazil
| |
Collapse
|