1
|
Lippert AH, Paluch C, Gaglioni M, Vuong MT, McColl J, Jenkins E, Fellermeyer M, Clarke J, Sharma S, Moreira da Silva S, Akkaya B, Anzilotti C, Morgan SH, Jessup CF, Körbel M, Gileadi U, Leitner J, Knox R, Chirifu M, Huo J, Yu S, Ashman N, Lui Y, Wilkinson I, Attfield KE, Fugger L, Robertson NJ, Lynch CJ, Murray L, Steinberger P, Santos AM, Lee SF, Cornall RJ, Klenerman D, Davis SJ. Antibody agonists trigger immune receptor signaling through local exclusion of receptor-type protein tyrosine phosphatases. Immunity 2024; 57:256-270.e10. [PMID: 38354703 DOI: 10.1016/j.immuni.2024.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.
Collapse
Affiliation(s)
- Anna H Lippert
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Christopher Paluch
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK; MiroBio Ltd, Winchester House, Oxford Science Park, Oxford, UK
| | - Meike Gaglioni
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mai T Vuong
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Edward Jenkins
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Martin Fellermeyer
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Joseph Clarke
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sumana Sharma
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Billur Akkaya
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Consuelo Anzilotti
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sara H Morgan
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Claire F Jessup
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Markus Körbel
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Judith Leitner
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Rachel Knox
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mami Chirifu
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jiandong Huo
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Susan Yu
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Nicole Ashman
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yuan Lui
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Kathrine E Attfield
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lars Fugger
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | - Lynne Murray
- MiroBio Ltd, Winchester House, Oxford Science Park, Oxford, UK
| | - Peter Steinberger
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ana Mafalda Santos
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Richard J Cornall
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Simon J Davis
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Choi JP, Woo YD, Losol P, Kim SH, Chang YS. Thymic stromal lymphopoietin production in DN32.D3 invariant natural killer T (iNKT) cell line and primary mouse liver iNKT cells. Asia Pac Allergy 2021; 11:e10. [PMID: 33604280 PMCID: PMC7870374 DOI: 10.5415/apallergy.2021.11.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/24/2021] [Indexed: 11/04/2022] Open
Abstract
Background Invariant natural killer T (iNKT) cells are known as the fast responder in allergic inflammation and the source of interleukin (IL)-4, IL-13, and interferon-gamma. Absence of iNKT cells down-regulated thymic stromal lymphopoietin (TSLP) production at the early stage of type 2 immune responses in the airway. However, it has not been reported whether iNKT cells are able to produce TSLP via stimulation of T-cell receptor (TCR). Objective We aimed to evaluate TSLP production from iNKT cells by TCR specific stimulations with anti-CD3/CD28 antibodies and α-galactoceramide (α-GalCer). Methods DN32.D3 iNKT cell line was stimulated with anti-CD3/CD28 antibodies, and TSLP production was measured in culture supernatants. Next, to confirm the TSLP production in primary mouse iNKT cells, the cells were sorted using α-GalCer-CD1d tetramer from mouse liver, and stimulated with anti-CD3/CD28 antibodies and α-GalCer. Then, cytokine productions were evaluated by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. Results TCR specific stimulation in DN32.D3 cells induced TSLP production as well as signature cytokines of iNKT cells. On the other hand, isolated primary mouse iNKT cells from liver did not show any induction of TSLP by TCR specific stimulations including anti-CD3/CD28 antibodies and α-GalCer, on the contrary to other cytokines. Conclusion This study suggested the possibility of TSLP production in iNKT cells, especially from DN32.D3 although primary mouse liver iNKT cells showed a different result.
Collapse
Affiliation(s)
- Jun-Pyo Choi
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yeon Duk Woo
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Purevsuren Losol
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Sae-Hoon Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon-Seok Chang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|