1
|
Askarizadeh F, Butler AE, Kesharwani P, Sahebkar A. Regulatory effect of curcumin on CD40:CD40L interaction and therapeutic implications. Food Chem Toxicol 2025; 200:115369. [PMID: 40043936 DOI: 10.1016/j.fct.2025.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 03/02/2025] [Indexed: 04/21/2025]
Abstract
Natural compounds have garnered significant attention as potential therapeutic agents due to their inherent properties. Their notable qualities, including safety, efficacy, favorable pharmacokinetic properties, and heightened effectiveness against certain diseases, particularly inflammatory conditions, make them particularly appealing. Among these compounds, curcumin has attracted considerable interest for its unique therapeutic properties and has therefore been extensively studied as a potential therapeutic agent for treating various diseases. Curcumin exhibits diverse anti-inflammatory, antioxidant, and antimicrobial effects. Curcumin's immune system regulatory ability has made it a promising compound for treatment of various inflammatory diseases, such as psoriasis, atherosclerosis, asthma, colitis, IBD, and arthritis. Among the signaling pathways implicated in these conditions, the CD40 receptor together with its ligand, CD40L, are recognized as central players. Studies have demonstrated that the interaction between CD40 and CD40L interaction acts as the primary mediator of the immune response in inflammatory diseases. Numerous studies have explored the impact of curcumin on the CD40:CD40L pathway, highlighting its regulatory effects on this inflammatory pathway and its potential therapeutic use in related inflammatory conditions. In this review, we will consider the evidence concerning curcumin's modulatory effects in inflammatory disease and its potential therapeutic role in regulating the CD40:CD40L pathway.
Collapse
Affiliation(s)
- Fatemeh Askarizadeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Liu W, Tan Z, Geng M, Jiang X, Xin Y. Impact of the gut microbiota on angiotensin Ⅱ-related disorders and its mechanisms. Biochem Pharmacol 2023:115659. [PMID: 37330020 DOI: 10.1016/j.bcp.2023.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
The renin-angiotensin system (RAS) consists of multiple angiotensin peptides and performs various biological functions mediated by distinct receptors. Angiotensin II (Ang II) is the major effector of the RAS and affects the occurrence and development of inflammation, diabetes mellitus and its complications, hypertension, and end-organ damage via the Ang II type 1 receptor. Recently, considerable interest has been given to the association and interaction between the gut microbiota and host. Increasing evidence suggests that the gut microbiota may contribute to cardiovascular diseases, obesity, type 2 diabetes mellitus, chronic inflammatory diseases, and chronic kidney disease. Recent data have confirmed that Ang II can induce an imbalance in the intestinal flora and further aggravate disease progression. Furthermore, angiotensin converting enzyme 2 is another player in RAS, alleviates the deleterious effects of Ang II, modulates gut microbial dysbiosis, local and systemic immune responses associated with coronavirus disease 19. Due to the complicated etiology of pathologies, the precise mechanisms that link disease processes with specific characteristics of the gut microbiota remain obscure. This review aims to highlight the complex interactions between the gut microbiota and its metabolites in Ang II-related disease progression, and summarize the possible mechanisms. Deciphering these mechanisms will provide a theoretical basis for novel therapeutic strategies for disease prevention and treatment. Finally, we discuss therapies targeting the gut microbiota to treat Ang II-related disorders.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Zining Tan
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Mengrou Geng
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy and Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Mahmudpour M, Vahdat K, Keshavarz M, Nabipour I. The COVID-19-diabetes mellitus molecular tetrahedron. Mol Biol Rep 2022; 49:4013-4024. [PMID: 35067816 PMCID: PMC8784222 DOI: 10.1007/s11033-021-07109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023]
Abstract
Accumulating molecular evidence suggests that insulin resistance, rather than SARS-CoV-2- provoked beta-cell impairment, plays a major role in the observed rapid metabolic deterioration in diabetes, or new-onset hyperglycemia, during the COVID-19 clinical course. In order to clarify the underlying complexity of COVID-19 and diabetes mellitus interactions, we propose the imaginary diabetes-COVID-19 molecular tetrahedron with four lateral faces consisting of SARS-CoV-2 entry via ACE2 (lateral face 1), the viral hijacking and replication (lateral face 2), acute inflammatory responses (lateral face 3), and the resulting insulin resistance (lateral face 4). The entrance of SARS-CoV-2 using ACE2 receptor triggers an array of multiple molecular signaling beyond that of the angiotensin II/ACE2-Ang-(1-7) axis, such as down-regulation of PGC-1 α/irisin, increased SREBP-1c activity, upregulation of CD36 and Sirt1 inhibition leading to insulin resistance. In another arm of the molecular cascade, the SARS-CoV-2 hijacking and replication induces a series of molecular events in the host cell metabolic machinery, including upregulation of SREBP-2, decrement in Sirt1 expression, dysregulation in PPAR-ɣ, and LPI resulting in insulin resistance. The COVID-19-diabetes molecular tetrahedron may suggest novel targets for therapeutic interventions to overcome insulin resistance that underlies the pathophysiology of worsening metabolic control in patients with diabetes mellitus or the new-onset of hyperglycemia in COVID-19.
Collapse
Affiliation(s)
- Mehdi Mahmudpour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Katayoun Vahdat
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
4
|
Aghamiri SH, Komlakh K, Ghaffari M. The crosstalk among TLR2, TLR4 and pathogenic pathways; a treasure trove for treatment of diabetic neuropathy. Inflammopharmacology 2022; 30:51-60. [PMID: 35020096 DOI: 10.1007/s10787-021-00919-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/19/2021] [Indexed: 11/25/2022]
Abstract
Diabetes is correlated with organ failures as a consequence of microvascular diabetic complications, including neuropathy, nephropathy, and retinopathy. These difficulties come with serious clinical manifestations and high medical costs. Diabetic neuropathy (DN) is one of the most prevalent diabetes complications, affecting at least 50% of diabetic patients with long disease duration. DN has serious effects on patients' life since it interferes with their daily physical activities and causes psychological comorbidities. There are some potential risk factors for the development of neuropathic injuries. It has been shown that inflammatory mechanisms play a pivotal role in the progression of DN. Among inflammatory players, TLR2 and TLR4 have gained immense importance because of their ability in recognizing distinct molecular patterns of invading pathogens and also damage-associated molecular patterns (DAMPs) providing inflammatory context for the progression of a wide array of disorders. We, therefore, sought to explore the possible role of TLR2 and TLR4 in DN pathogenesis and if whether manipulating TLRs is likely to be successful in fighting off DN.
Collapse
Affiliation(s)
- Seyed Hossein Aghamiri
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khalil Komlakh
- Department of Neurosurgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehran Ghaffari
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Chong ZZ, Souayah N. SARS-CoV-2 Induced Neurological Manifestations Entangles Cytokine Storm That Implicates For Therapeutic Strategies. Curr Med Chem 2021; 29:2051-2074. [PMID: 33970839 DOI: 10.2174/0929867328666210506161543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
The new coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can present with neurological symptoms and induce neurological complications. The involvement in both the central and peripheral nervous systems in COVID-19 patients has been associated with direct invasion of the virus and the induction of cytokine storm. This review discussed the pathways for the virus invasion into the nervous system and characterized the SARS-CoV-2 induced cytokine storm. In addition, the mechanisms underlying the immune responses and cytokine storm induction after SARS-CoV-2 infection were also discussed. Although some neurological symptoms are mild and disappear after recovery from infection, some severe neurological complications contribute to the mortality of COVID-19 patients. Therefore, the insight into the cause of SARS-CoV-2 induced cytokine storm in context with neurological complications will formulate the novel management of the disease and further identify new therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Zhao-Zhong Chong
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Nizar Souayah
- Department of Neurology, Rutgers New Jersey Medical School, 90 Bergen Street Room Suite 8100, Newark, NJ 07101, United States
| |
Collapse
|
6
|
Iwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Inflammation 2021; 44:13-34. [PMID: 33029758 PMCID: PMC7541099 DOI: 10.1007/s10753-020-01337-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
Abstract
The widespread occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a pandemic of coronavirus disease 2019 (COVID-19). The S spike protein of SARS-CoV-2 binds with angiotensin-converting enzyme 2 (ACE2) as a functional "receptor" and then enters into host cells to replicate and damage host cells and organs. ACE2 plays a pivotal role in the inflammation, and its downregulation may aggravate COVID-19 via the renin-angiotensin system, including by promoting pathological changes in lung injury and involving inflammatory responses. Severe patients of COVID-19 often develop acute respiratory distress syndrome and multiple organ dysfunction/failure with high mortality that may be closely related to the hyper-proinflammatory status called the "cytokine storm." Massive cytokines including interleukin-6, nuclear factor kappa B (NFκB), and tumor necrosis factor alpha (TNFα) released from SARS-CoV-2-infected macrophages and monocytes lead inflammation-derived injurious cascades causing multi-organ injury/failure. This review summarizes the current evidence and understanding of the underlying mechanisms of SARS-CoV-2, ACE2 and inflammation co-mediated multi-organ injury or failure in COVID-19 patients.
Collapse
Affiliation(s)
- Masae Iwasaki
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Junichi Saito
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| |
Collapse
|
7
|
The Interplay of Renin-Angiotensin System and Toll-Like Receptor 4 in the Inflammation of Diabetic Nephropathy. J Immunol Res 2020; 2020:6193407. [PMID: 32411800 PMCID: PMC7210546 DOI: 10.1155/2020/6193407] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/12/2020] [Indexed: 01/11/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious chronic kidney diseases and the major cause of end-stage renal failure worldwide. The underlying mechanisms of DN are complex and required to be further investigated. Both innate immunity and renin-angiotensin system (RAS) play critical roles in the pathogenesis of DN. Except for traditional functions, abnormally regulated RAS has been proved to be involved in the inflammatory process of DN. Toll-like receptor 4 (TLR4) is the most deeply studied pattern recognition receptor in the innate immune system, and its activation has been reported to mediate the development of DN. In this review, we aim at discussing how dysregulated RAS affects TLR4 activation in the kidney that contributes to the exploration of the pathogenesis of DN. Understanding the interplay of RAS and TLR4 in inducing the progression of DN may provide new insights to develop effective treatments.
Collapse
|
8
|
miR-19a and miR-20a and Tissue Factor Expression in Activated Human Peripheral Blood Mononuclear Cells. THROMBOSIS 2017; 2017:1076397. [PMID: 29214079 PMCID: PMC5682915 DOI: 10.1155/2017/1076397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/10/2017] [Accepted: 09/24/2017] [Indexed: 11/17/2022]
Abstract
Background and Aims To investigate the behaviour of miR-19a and miR-20a, two microRNAs involved in posttranscriptional modulation of TF expression in peripheral blood mononuclear cells (PBMCs) exposed to high glucose (HG) and lipopolysaccharide (LPS), and to evaluate the involvement of angiotensin II in that process. Methods TF Procoagulant Activity (PCA, one-stage clotting assay), antigen (Ag, ELISA), and miR-19a and miR-20a levels (specific TaqMan® MicroRNA Assays) were evaluated in PBMCs exposed to high glucose (HG, 50 mM), LPS (100 ng/mL), and Olmesartan (OLM, 10−6 M), an angiotensin II type 1 receptor antagonist. Results HG increased TF expression and decreased both miRs as compared to control glucose conditions (11.1 mM). In HG-activated PBMCs, LPS stimulated TF expression and downregulated miR-20a, an effect reverted by OLM (10−6 M); miR-19a expression was unchanged by LPS in both CG and HG conditions. Conclusions miR-19a and miR-20a are inhibited by inflammatory stimuli active on TF expression and their response differs by the stimulus under investigation; angiotensin II may participate in that mechanism.
Collapse
|
9
|
Biancardi VC, Bomfim GF, Reis WL, Al-Gassimi S, Nunes KP. The interplay between Angiotensin II, TLR4 and hypertension. Pharmacol Res 2017; 120:88-96. [PMID: 28330785 DOI: 10.1016/j.phrs.2017.03.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/13/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022]
Abstract
Hypertension is a multifactorial disease. Although a number of different underlying mechanisms have been learned from the various experimental models of the disease, hypertension still poses challenges for treatment. Angiotensin II plays an unquestionable role in blood pressure regulation acting through central and peripheral mechanisms. During hypertension, dysregulation of the Renin-Angiotensin System is associated with increased expression of pro-inflammatory cytokines and reactive oxygen species causing kidney damage, endothelial dysfunction, and increase in sympathetic activity, among other damages, eventually leading to decline in organ function. Recent studies have shown that these effects involve both the innate and the adaptive immune response. The contribution of adaptive immune responses involving different lymphocyte populations in various models of hypertension has been extensively studied. However, the involvement of the innate immunity mediating inflammation in hypertension is still not well understood. The innate and adaptive immune systems intimately interact with one another and are essential to an effectively functioning of the immune response; hence, the importance of a better understanding of the underlying mechanisms mediating innate immune system during hypertension. In this review, we aim to discuss mechanisms linking Angiotensin II and the innate immune system, in the pathogenesis of hypertension. The newest research investigating Angiotensin II triggering toll like receptor 4 activation in the kidney, vasculature and central nervous system contributing to hypertension will be discussed. Understanding the role of the innate immune system in the development of hypertension may bring to light new insights necessary to improve hypertension management.
Collapse
Affiliation(s)
- Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States
| | | | - Wagner Luis Reis
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, SP, Brazil
| | - Sarah Al-Gassimi
- Department of Biological Sciences, Florida Institute of Technology, FL, United States
| | - Kenia Pedrosa Nunes
- Department of Biological Sciences, Florida Institute of Technology, FL, United States.
| |
Collapse
|
10
|
Ge P, Jiang R, Yao X, Li J, Dai J, Zhang L, Ye B. The angiotensin-converting enzyme inhibitor captopril rescues mice from endotoxin-induced lethal hepatitis. Innate Immun 2016; 23:128-135. [DOI: 10.1177/1753425916680037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The renin–angiotensin system is classically regarded as a crucial regulator of circulatory homeostasis, but recent studies also revealed its pro-inflammatory roles. The beneficial effects of the angiotensin-converting enzyme inhibitor (ACEI) in severe inflammatory injury in the lung and heart have been previously reported, but its potential effects on lethal hepatitis were unknown. In this study, a mouse model with LPS/d-galactosamine (GalN)-induced fulminant hepatitis were used to test the protective potential of captopril, a representative ACEI. The results indicated that treatment with captopril significantly decreased the plasma level of alanine aminotransferase and aspartate aminotransferase, alleviated the histopathological damage of the liver tissue and improve the survival rate of LPS/GalN-challenged mice. These effects were accompanied by reduced mRNA levels of TNF-α and IL-6 in the liver, and decreased protein level of TNF-α and IL-6 in the plasma. In addition, the activation of caspases 3, 8 and 9, and the presence of TUNEL-positive apoptotic cells, were also suppressed by captopril treatment. The above evidence suggested that the renin–angiotensin system might be involved in the development of LPS/GalN-induced fulminant hepatitis and ACEI might have potential value in lethal hepatitis.
Collapse
Affiliation(s)
- Pu Ge
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Xin Yao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jing Li
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jie Dai
- Hospital of Chongqing University of Arts and Sciences, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Bin Ye
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Anti-inflammatory activities of fenoterol through β-arrestin-2 and inhibition of AMPK and NF-κB activation in AICAR-induced THP-1 cells. Biomed Pharmacother 2016; 84:185-190. [PMID: 27657826 DOI: 10.1016/j.biopha.2016.09.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 02/03/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) pathway has been shown to be able to regulate inflammation in several cell lines. We reported that fenoterol, a β2-adrenergic receptor (β2-AR) agonist, inhibited lipopolysaccharide (LPS)-induced AMPK activation and inflammatory cytokine production in THP-1 cells, a monocytic cell line in previous studies. 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an agonist of AMPK. Whether AICAR induced AMPK activation and inflammatory cytokine production in THP-1 cells can be inhibited by fenoterol is unknown. In this study, we explored the mechanism of β2-AR stimulation with fenoterol in AICAR-induced inflammatory cytokine secretion in THP-1 cells. We studied AMPK activation using p-AMPK and AMPK antibodies, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion in THP-1 cells stimulated by β2-AR in the presence or absence of AICAR and small interfering RNA (siRNA)-mediated knockdown of β-arrestin-2 or AMPKα1 subunit. AICAR-induced AMPK activation, NF-κB activation and tumor necrosis factor (TNF)-α release were reduced by fenoterol. In addition, siRNA-mediated knockdown of β-arrestin-2 abolished fenoterol's inhibition of AICAR-induced AMPK activation and TNF-α release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol in AICAR-treated THP-1 cells. Furthermore, siRNA-mediated knockdown of AMPKα1 significantly attenuated AICAR-induced NF-κB activation and TNF-α release, so AMPKα1 was a key signaling molecule involved in AICAR-induced inflammatory cytokine production. These data suggested that fenoterol inhibited AICAR-induced AMPK activation and TNF-α release through β-arrestin-2 in THP-1 cells. Management especially inhibition of AMPK signaling may provide new approaches and strategies for the treatments of immune diseases including inflammatory diseases and other critical illness.
Collapse
|
12
|
Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis. Inflammation 2016; 38:2105-15. [PMID: 26047949 DOI: 10.1007/s10753-015-0193-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague-Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis.
Collapse
|
13
|
Balia C, Scalise V, Cianchetti S, Faita F, Neri T, Carnicelli V, Zucchi R, Celi A, Pedrinelli R. The effect of high glucose on the inhibitory action of C21, a selective AT2R agonist, of LPS-stimulated tissue factor expression in human mononuclear cells. JOURNAL OF INFLAMMATION-LONDON 2016; 13:14. [PMID: 27152091 PMCID: PMC4857424 DOI: 10.1186/s12950-016-0123-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
Abstract
Background Intimate links connect tissue factor (TF), the principal initiator of the clotting cascade, to inflammation, a cross-talk amplified by locally generated Angiotensin (AT) II, the effector arm of the Renin Angiotensin System (RAS). C21, a selective AT2R agonist, downregulates the transcriptional expression of TF in LPS-activated peripheral blood mononuclear cell(PBMC)s implying the existence of ATII type 2 receptor (AT2R)s whose stimulation attenuates inflammation-mediated procoagulant responses. High glucose, by activating key signalling pathways and increasing the cellular content of RAS components, augments TF expression and potentiates the inhibitory effect of AT1R antagonists. It is unknown, however, the impact of that stimulus on AT2R-mediated TF inhibition, an information useful to understand more precisely the role of that signal transduction pathway in the inflammation-mediated coagulation process. TF antigen (ELISA), procoagulant activity (PCA, 1-stage clotting assay) and TF-mRNA (real-time polymerase chain reaction) were assessed in PBMCs activated by LPS, a pro-inflammatory and procoagulant stimulus, exposed to either normal (N) or HG concentrations (5.5 and 50 mM respectively). Results HG upregulated TF expression, an effect abolished by BAY 11-7082, a NFκB inhibitor. C21 inhibited LPS-stimulated PCA, TFAg and mRNA to an extent independent of glucose concentration but the response to Olmesartan, an AT1R antagonist, was quite evidently potentiated by HG. Conclusions HG stimulates LPS-induced TF expression through mechanisms completely dependent upon NFkB activation. Both AT2R-stimulation and AT1R-blockade downregulate inflammation-mediated procoagulant response in PBMCs but HG impacts differently on the two different signal transduction pathways.
Collapse
Affiliation(s)
- Cristina Balia
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Valentina Scalise
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Silvana Cianchetti
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Francesca Faita
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Tommaso Neri
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Vittoria Carnicelli
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Riccardo Zucchi
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Alessandro Celi
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Roberto Pedrinelli
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
14
|
Ju KD, Kim HJ, Tsogbadrakh B, Lee J, Ryu H, Cho EJ, Hwang YH, Kim K, Yang J, Ahn C, Oh KH. HL156A, a novel AMP-activated protein kinase activator, is protective against peritoneal fibrosis in an in vivo and in vitro model of peritoneal fibrosis. Am J Physiol Renal Physiol 2016; 310:F342-50. [DOI: 10.1152/ajprenal.00204.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
Abstract
HL156A is a novel AMP-activated protein kinase (AMPK) activator. We aimed to investigate the protective mechanism of HL156A against peritoneal fibrosis (PF) in in vivo and in vitro models. The rat PF model was induced by daily intraperitoneally injection of chlorhexidine (CHX) solution containing 0.1% CHX gluconate and 15% ethanol for 4 wk. The rats in the treatment group were treated with HL156A (1 mg·kg−1·day−1). Control rats were injected with vehicle alone. In vitro, cultured rat peritoneal mesothelial cells (RPMCs) were treated with either high glucose (HG; 50 mM), normal glucose (NG; 5 mM), NG+HL156A, or HG+HL156A. HL156A in supplemented rats ameliorated peritoneal calcification, cocoon formation, bowel obstruction, and PF. Immunohistochemistry showed reduced fibronectin accumulation in the peritoneum of HL156A-treated rats compared with those injected with CHX alone. HL156A treatment of RPMCs inhibited HG-induced myofibroblast transdifferentiation and markers of epithelial-mesenchymal transition (EMT). Moreover, HL156A ameliorated HG-induced transforming growth factor-β1, Smad3, Snail, and fibronectin expression in the RPMCs via AMPK upregulation. These results suggest that HL156A exhibits a protective effect in PF progression. Further research is warranted to seek the therapeutic potential of HL156A as an antifibrotic agent in peritoneal dialysis patients.
Collapse
Affiliation(s)
- Kyung Don Ju
- Institute of Biomedical Research, Seoul National University Hospital, Seoul, Korea
| | - Hyo Jin Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | | | - Jinho Lee
- Institute of Biomedical Research, Seoul National University Hospital, Seoul, Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Eun Jin Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young-Hwan Hwang
- Department of Internal Medicine, Eulji University, Seoul, Korea; and
| | - Kiwon Kim
- Nephrology Clinic, National Cancer Center, Goyang, Korea
| | - Jaeseok Yang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Institute of Transplantation Research, Seoul National University Hospital, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Institute of Transplantation Research, Seoul National University Hospital, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
15
|
Biancardi VC, Stranahan AM, Krause EG, de Kloet AD, Stern JE. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol 2016; 310:H404-15. [PMID: 26637556 PMCID: PMC4796625 DOI: 10.1152/ajpheart.00247.2015] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 11/14/2015] [Indexed: 02/07/2023]
Abstract
ANG II is thought to increase sympathetic outflow by increasing oxidative stress and promoting local inflammation in the paraventricular nucleus (PVN) of the hypothalamus. However, the relative contributions of inflammation and oxidative stress to sympathetic drive remain poorly understood, and the underlying cellular and molecular targets have yet to be examined. ANG II has been shown to enhance Toll-like receptor (TLR)4-mediated signaling on microglia. Thus, in the present study, we aimed to determine whether ANG II-mediated activation of microglial TLR4 signaling is a key molecular target initiating local oxidative stress in the PVN. We found TLR4 and ANG II type 1 (AT1) receptor mRNA expression in hypothalamic microglia, providing molecular evidence for the potential interaction between these two receptors. In hypothalamic slices, ANG II induced microglial activation within the PVN (∼65% increase, P < 0.001), an effect that was blunted in the absence of functional TLR4. ANG II increased ROS production, as indicated by dihydroethidium fluorescence, within the PVN of rats and mice (P < 0.0001 in both cases), effects that were also dependent on the presence of functional TLR4. The microglial inhibitor minocycline attenuated ANG II-mediated ROS production, yet ANG II effects persisted in PVN single-minded 1-AT1a knockout mice, supporting the contribution of a non-neuronal source (likely microglia) to ANG II-driven ROS production in the PVN. Taken together, these results support functional interactions between AT1 receptors and TLR4 in mediating ANG II-dependent microglial activation and oxidative stress within the PVN. More broadly, our results support a functional interaction between the central renin-angiotensin system and innate immunity in the regulation of neurohumoral outflows from the PVN.
Collapse
Affiliation(s)
| | - Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Annette D de Kloet
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
16
|
Yu X, Yang X, Huang N. Management of a rapidly growing peritoneal dialysis population at the First Affiliated Hospital of Sun Yat-sen University. Perit Dial Int 2015; 34 Suppl 2:S31-4. [PMID: 24962960 DOI: 10.3747/pdi.2013.00122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Managing a rapidly growing peritoneal dialysis program with more than 1000 patients involves multiple challenges, labor constraints, logistics, and excessive geographic distance. This paper describes how Sun Yat-sen University, Guangzhou, China, manages those issues, while simultaneously improving quality of the care and, subsequently, clinical outcomes.
Collapse
Affiliation(s)
- Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, and Key Laboratory of Nephrology, Ministry of Health, Guangzhou, PR ChinaDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, and Key Laboratory of Nephrology, Ministry of Health, Guangzhou, PR China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, and Key Laboratory of Nephrology, Ministry of Health, Guangzhou, PR ChinaDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, and Key Laboratory of Nephrology, Ministry of Health, Guangzhou, PR China
| | - Naya Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, and Key Laboratory of Nephrology, Ministry of Health, Guangzhou, PR ChinaDepartment of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, and Key Laboratory of Nephrology, Ministry of Health, Guangzhou, PR China
| |
Collapse
|
17
|
Dhande I, Ma W, Hussain T. Angiotensin AT2 receptor stimulation is anti-inflammatory in lipopolysaccharide-activated THP-1 macrophages via increased interleukin-10 production. Hypertens Res 2014; 38:21-9. [PMID: 25209104 DOI: 10.1038/hr.2014.132] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/19/2014] [Accepted: 07/06/2014] [Indexed: 12/31/2022]
Abstract
Macrophages have an important role in the pathogenesis of hypertension and associated end-organ damage via the activation of the Toll-like receptors, such as Toll-like receptor-4 (TLR4). Accumulating evidence suggests that the angiotensin AT2 receptor (AT2R) has a protective role in pathological conditions involving inflammation and tissue injury. We have recently shown that AT(2)R stimulation is renoprotective, which occurs in part via increased levels of anti-inflammatory interleukin-10 (IL-10) production in renal epithelial cells; however, the role of AT(2)R in the inflammatory activity of macrophages is not known. The present study was designed to investigate whether AT(2)R activation stimulates an anti-inflammatory response in TLR4-induced inflammation. The effects of the anti-inflammatory mechanisms that occurred following pre-treatment with the AT(2)R agonist Compound 21 (C21) (1 μmol ml(-1)) on the cytokine profiles of THP-1 macrophages after activation by lipopolysaccharide (LPS) (1 μg ml(-1)) were studied. The AT(2)R agonist dose-dependently attenuated LPS-induced tumor necrosis factor-α (TNF-α) and IL-6 production but increased IL-10 production. IL-10 was critical for the anti-inflammatory effects of AT(2)R stimulation because the IL-10-neutralizing antibody dose-dependently abolished the AT(2)R-mediated decrease in TNF-α levels. Further, enhanced IL-10 levels were associated with a sustained, selective increase in the phosphorylation of extracellular signal-regulated kinase (ERK1/2) but not p38 mitogen-activated protein kinase (MAPK). Blocking the activation of ERK1/2 before C21 pre-treatment completely abrogated this increased IL-10 production in response to the AT(2)R agonist C21, while there was a partial reduction in IL-10 levels following the inhibition of p38. We conclude that AT(2)R stimulation exerts a novel anti-inflammatory response in THP-1 macrophages via enhanced IL-10 production as a result of sustained, selective ERK1/2 phosphorylation, which may have protective roles in hypertension and associated tissue injury.
Collapse
Affiliation(s)
- Isha Dhande
- 1] Department of Pharmacological and Pharmaceutical Sciences, Heart and Kidney Institute, University of Houston, Houston, TX, USA [2] Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Wanshu Ma
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Tahir Hussain
- 1] Department of Pharmacological and Pharmaceutical Sciences, Heart and Kidney Institute, University of Houston, Houston, TX, USA [2] Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| |
Collapse
|
18
|
De Batista PR, Palacios R, Martín A, Hernanz R, Médici CT, Silva MASC, Rossi EM, Aguado A, Vassallo DV, Salaices M, Alonso MJ. Toll-like receptor 4 upregulation by angiotensin II contributes to hypertension and vascular dysfunction through reactive oxygen species production. PLoS One 2014; 9:e104020. [PMID: 25093580 PMCID: PMC4122400 DOI: 10.1371/journal.pone.0104020] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/06/2014] [Indexed: 12/16/2022] Open
Abstract
Hypertension is considered as a low-grade inflammatory disease, with adaptive immunity being an important mediator of this pathology. TLR4 may have a role in the development of several cardiovascular diseases; however, little is known about its participation in hypertension. We aimed to investigate whether TLR4 activation due to increased activity of the renin-angiotensin system (RAS) contributes to hypertension and its associated endothelial dysfunction. For this, we used aortic segments from Wistar rats treated with a non-specific IgG (1 µg/day) and SHRs treated with losartan (15 mg/kg·day), the non-specific IgG or the neutralizing antibody anti-TLR4 (1 µg/day), as well as cultured vascular smooth muscle cells (VSMC) from Wistar and SHRs. TLR4 mRNA levels were greater in the VSMC and aortas from SHRs compared with Wistar rats; losartan treatment reduced those levels in the SHRs. Treatment of the SHRs with the anti-TLR4 antibody: 1) reduced the increased blood pressure, heart rate and phenylephrine-induced contraction while it improved the impaired acetylcholine-induced relaxation; 2) increased the potentiation of phenylephrine contraction after endothelium removal; and 3) abolished the inhibitory effects of tiron, apocynin and catalase on the phenylephrine-induced response as well as its enhancing effect of acetylcholine-induced relaxation. In SHR VSMCs, angiotensin II increased TLR4 mRNA levels, and losartan reduced that increase. CLI-095, a TLR4 inhibitor, mitigated the increases in NAD(P)H oxidase activity, superoxide anion production, migration and proliferation that were induced by angiotensin II. In conclusion, TLR4 pathway activation due to increased RAS activity is involved in hypertension, and by inducing oxidative stress, this pathway contributes to the endothelial dysfunction associated with this pathology. These results suggest that TLR4 and innate immunity may play a role in hypertension and its associated end-organ damage.
Collapse
Affiliation(s)
- Priscila R. De Batista
- Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón, Spain
- Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Roberto Palacios
- Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Angela Martín
- Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Raquel Hernanz
- Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Cindy T. Médici
- Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Marito A. S. C. Silva
- Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Emilly M. Rossi
- Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Andrea Aguado
- Dept. of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Dalton V. Vassallo
- Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Mercedes Salaices
- Dept. of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (MJA); (MS)
| | - María J. Alonso
- Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón, Spain
- * E-mail: (MJA); (MS)
| |
Collapse
|
19
|
Zou XL, Pei DA, Yan JZ, Xu G, Wu P. A20 overexpression inhibits lipopolysaccharide-induced NF-κB activation, TRAF6 and CD40 expression in rat peritoneal mesothelial cells. Int J Mol Sci 2014; 15:6592-608. [PMID: 24747594 PMCID: PMC4013649 DOI: 10.3390/ijms15046592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/04/2014] [Accepted: 03/24/2014] [Indexed: 12/31/2022] Open
Abstract
Zinc finger protein A20 is a key negative regulator of inflammation. However, whether A20 may affect inflammation during peritoneal dialysis (PD)-associated peritonitis is still unclear. This study was aimed to investigate the effect of A20 overexpression on lipopolysaccharide (LPS)-induced inflammatory response in rat peritoneal mesothelial cells (RPMCs). Isolated and cultured RPMCs in vitro. Plasmid pGEM-T easy-A20 was transfected into RPMCs by Lipofectamine™2000. The protein expression of A20, phospho-IκBα, IκBα, TNF receptor-associated factor (TRAF) 6 and CD40 were analyzed by Western blot. The mRNA expression of TRAF6, CD40, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined by real time-PCR. NF-κB p65 DNA binding activity, IL-6 and TNF-α levels in cells culture supernatant were determined by ELISA. Our results revealed that RPMCs overexpression of A20 lead to significant decrease of LPS-induced IκBα phosphorylation and NF-κB DNA binding activity (all p<0.01). In addition, A20 also attenuated the expression of TRAF6, CD40, IL-6 and TNF-α as well as levels of IL-6 and TNF-α in cells culture supernatant (all p<0.05). However, A20 only partly inhibited CD40 expression. Our study indicated that A20 overexpression may depress the inflammatory response induced by LPS in cultured RPMCs through negatively regulated the relevant function of adaptors in LPS signaling pathway.
Collapse
Affiliation(s)
- Xun-Liang Zou
- Department of Nephrology, the Affiliated Hospital, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China.
| | - De-An Pei
- Division of Cardiology, Hangzhou Red Cross Hospital, Hangzhou 310003, Zhejiang, China.
| | - Ju-Zhen Yan
- Department of Nephrology, the Affiliated Hospital, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China.
| | - Gang Xu
- Department of Nephrology, the Affiliated Hospital, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China.
| | - Ping Wu
- Department of Nephrology, the Affiliated Hospital, Hangzhou Normal University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
20
|
Angiotensin II facilitates fibrogenic effect of TGF-β1 through enhancing the down-regulation of BAMBI caused by LPS: a new pro-fibrotic mechanism of angiotensin II. PLoS One 2013; 8:e76289. [PMID: 24155898 PMCID: PMC3796560 DOI: 10.1371/journal.pone.0076289] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 08/22/2013] [Indexed: 02/06/2023] Open
Abstract
Angiotensin II has progressively been considered to play an important role in the development of liver fibrosis, although the mechanism isn't fully understood. The aim of this study was to investigate a possible pro-fibrotic mechanism, by which angiotensin II would enhance the pro-fibrotic effect of transforming growth factor beta 1 (TGF-β1) through up-regulation of toll-like receptor 4 (TLR4) and enhancing down-regulation of TGF-β1 inhibitory pseudo-receptor-BAMBI caused by LPS in hepatic stellate cells (HSCs). Firstly, the synergistic effects of angiotensin II, TGF-β1 and LPS on collagen 1α production were confirmed in vitro by ELISA, in which angiotensin II, LPS and TGF-β1 were treated sequentially, and in vivo by immunofluorescence, in the experiments single or multiple intra-peritoneally implanted osmotic mini-pumps administrating angiotensin II or LPS combined with intra-peritoneal injections of TGF-β1 were used. We also found that only LPS and TGF-β1 weren't enough to induce obvious fibrogenesis without angiotensin II. Secondly, to identify the reason of why angiotensin II is so important, the minute level of TLR4 in activated HSCs - T6 and primary quiescent HSCs of rat, up-regulation of TLR4 by angiotensin II and blockage by different angiotensin II receptor type 1 (AT1) blockers in HSCs were assayed by western blotting in vitro and immunofluorescence in vivo. Finally, BAMBI expression level, which is regulated by LPS-TLR4 pathway, was detected by qRT-PCR and results showed angiotensin II enhanced the down-regulation of BAMBI mRNA caused by LPS in vitro and in vivo, and TLR4 neutralization antibody blocked this interactive effect. These data demonstrated that angiotensin II enhances LPS-TLR4 pathway signaling and further down-regulates expression of BAMBI through up-regulation of TLR4, which results in facilitation of pro-fibrotic activity of TGF-β1. Angiotensin II, LPS and TGF-β1 act synergistically during hepatic fibrogenesis, showing crosstalks between angiotensin II-AT1, LPS-TLR4 and TGF-β1-BAMBI signal pathways in rat HSCs.
Collapse
|
21
|
Shirai Y, Yoshiji H, Noguchi R, Kaji K, Aihara Y, Douhara A, Moriya K, Namisaki T, Kawaratani H, Fukui H. Cross talk between toll-like receptor-4 signaling and angiotensin-II in liver fibrosis development in the rat model of non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2013; 28:723-30. [PMID: 23301938 DOI: 10.1111/jgh.12112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM The innate immune system, including toll-like receptor-4 (TLR4) signaling cascade and angiotensin-II (AT-II) play important roles in the progression of liver fibrosis development; the cross talk between TLR4 and AT-II has not been elucidated yet. The aim of the current study was to elucidate the effect of AT-II type 1 receptor blocker (ARB), on the liver fibrosis development, especially in conjunction with the interaction of TLR4 and AT-II in the rat model of non-alcoholic steatohepatitis. METHODS Fischer 344 rats were fed a choline-deficient, L-amino-acid-defined diet for 8 weeks and the effects of losartan were elucidated in conjunction with activated hepatic stellate cells (Ac-HSC) activation, TLR4, nuclear factor-κB (NF-κB), and transforming growth factor-β (TGF-β) expressions. In vitro study was carried out to elucidate the effect of AT-II on several indices including TLR4, myeloid differentiation factor 88, NF-κB, and TGF-β expressions in the rat HSC. RESULTS ARB markedly inhibited liver fibrosis development along with suppression of the number of Ac-HSC and TGF-β. These inhibitory effects of ARB were almost in parallel with suppression of the hepatic TLR4 and NF-κB expressions. This in vitro study showed that AT-II significantly augmented the TLR4 expression in a dose- and time-dependent manner via AT-II type 1 receptor in the Ac-HSC. AT-II also augmented the lipopolysaccharide-induced myeloid differentiation factor 88 (MyD88), NF-κB, and TGF-β and these increments were attenuated by treatment with ARB. CONCLUSIONS These studies indicated that the cross talk between TLR4 signaling cascade and AT-II plays a pivotal role in liver fibrosis development in non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Yusaku Shirai
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Immunity and malignant mesothelioma: From mesothelial cell damage to tumor development and immune response-based therapies. Cancer Lett 2012; 322:18-34. [DOI: 10.1016/j.canlet.2012.02.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 11/22/2022]
|
23
|
Sadek KH, Cagampang FR, Bruce KD, Macklon N, Cheong Y. Variation in stability of housekeeping genes in healthy and adhesion-related mesothelium. Fertil Steril 2012; 98:1023-7. [PMID: 22795637 DOI: 10.1016/j.fertnstert.2012.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the stability of various housekeeping genes (HKG) within healthy versus scarred peritoneal mesothelium. The use of HKG as internal controls for quantitative real-time polymerase chain reaction (qRT-PCR) studies is based on the assumption of their inherent stability. However, recent evidence suggests that this is not true for all HKG and that stability may be tissue specific and affected by certain pathologies. DESIGN Paired mesothelial (n = 10) and adhesion tissue samples (n = 10) were taken during laparoscopic surgery. The stability of 12 candidate reference genes in the mesothelial tissues were evaluated; these include ATP5b, SDHA, CYC1, 18S rRNA, RPL13A, ACTB, YWHAZ, TOP1, UBC, EIF4A2, GAPDH, and B2M. SETTING Hospital. PATIENT(S) Female patients undergoing laparoscopic gynecological surgery were recruited from the Princess Anne Hospital, United Kingdom. INTERVENTION(S) Assessment of HKG expression stability using geNorm algorithm software. MAIN OUTCOME MEASURE(S) Stability measure (M) generated by geometric averaging of multiple target genes and mean pairwise variation of genes. RESULT(S) The most stable HKGs observed across both healthy and adhesion-related mesothelium were found to be ACTB, YWHAZ, and CYC1. ACTB had a higher expression in healthy mesothelium compared with in peritoneal adhesion tissue. CONCLUSION(S) This study indicates that ACTB, YWHAZ, and CYC1 are the appropriate internal controls for qRT-PCR analysis in mesothelial gene expression studies. Published discrepancies in gene expression studies using the mesothelium may therefore be due in part to inappropriate HKG selection.
Collapse
Affiliation(s)
- Khaled Hassan Sadek
- Human Development and Health Unit, University of Southampton Faculty of Medicine, Southampton, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Die L, Yan P, Jun Jiang Z, Min Hua T, Cai W, Xing L. Glycogen synthase kinase-3 beta inhibitor suppresses Porphyromonas gingivalis lipopolysaccharide-induced CD40 expression by inhibiting nuclear factor-kappa B activation in mouse osteoblasts. Mol Immunol 2012; 52:38-49. [PMID: 22580404 DOI: 10.1016/j.molimm.2012.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/28/2012] [Accepted: 04/16/2012] [Indexed: 12/25/2022]
Abstract
Bone-forming osteoblasts have been recently reported capable of expressing the critical co-stimulatory molecule CD40 upon exposure to bacterial infection, which supports the unappreciated role of osteoblasts in modulating bone inflammation. Recent studies highlight the anti-inflammatory potential of glycogen synthase kinase-3β (GSK-3β) inhibitors; however, their effect on osteoblasts remains largely unclear. In the present study, we showed that treatment with SB216763, a highly specific GSK-3β inhibitor, resulted in a dose-dependent decrease in the mRNA and protein expression of CD40, as well as production of pro-inflammatory cytokines IL-6, TNF-α and IL-1β, in the Porphyromonas gingivalis-lipopolysaccharide (LPS)-stimulated murine osteoblastic-like MC3T3-E1 cells. Furthermore, inhibition of GSK-3β remarkably represses the LPS-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway by suppressing IκBα phosphorylation, NF-κBp65 nuclear translocation, and NF-κBp65 DNA binding activity. Closer investigation by immunoprecipitation assay revealed that β-catenin can physically interact with NF-κBp65. The negative regulation effect of GSK-3β inhibitor on CD40 expression is mediated through β-catenin, for siRNA of β-catenin attenuated the GSK-3β inhibitor-induced repression of NF-κB activation and, consequently, the expression of CD40 and production of pro-inflammatory cytokines in LPS-stimulated MC3T3-E1 cells. Thus our results elucidate the molecular mechanisms whereby GSK-3β inhibitor prevents the LPS-induced CD40 expression on osteoblasts and provide supportive evidence of the potential role of GSK-3β inhibitors in suppressing the immune function of osteoblasts in inflammatory bone diseases.
Collapse
Affiliation(s)
- Liu Die
- Sichuan University, State Key Laboratory of Oral Disease, West China College of Stomatology, 14 Renminnan Road, Chengdu 610041, Sichuan, China.
| | | | | | | | | | | |
Collapse
|
25
|
Brain AT1 Receptor Activates the Sympathetic Nervous System Through Toll-like Receptor 4 in Mice With Heart Failure. J Cardiovasc Pharmacol 2011; 58:543-9. [DOI: 10.1097/fjc.0b013e31822e6b40] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Ng KY, Wong YH, Wise H. Glial cells isolated from dorsal root ganglia express prostaglandin E2 (EP4) and prostacyclin (IP) receptors. Eur J Pharmacol 2011; 661:42-8. [DOI: 10.1016/j.ejphar.2011.04.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/04/2011] [Accepted: 04/14/2011] [Indexed: 01/31/2023]
|
27
|
Spin JM, Hsu M, Azuma J, Tedesco MM, Deng A, Dyer JS, Maegdefessel L, Dalman RL, Tsao PS. Transcriptional profiling and network analysis of the murine angiotensin II-induced abdominal aortic aneurysm. Physiol Genomics 2011; 43:993-1003. [PMID: 21712436 DOI: 10.1152/physiolgenomics.00044.2011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We sought to characterize temporal gene expression changes in the murine angiotensin II (ANG II)-ApoE-/- model of abdominal aortic aneurysm (AAA). Aortic ultrasound measurements were obtained over the 28-day time-course. Harvested suprarenal aortic segments were evaluated with whole genome expression profiling at 7, 14, and 28 days using the Agilent Whole Mouse Genome microarray platform and Statistical Analysis of Microarrays at a false discovery rate of <1%. A group of angiotensin-treated mice experienced contained rupture (CR) within 7 days and were analyzed separately. Progressive aortic dilatation occurred throughout the treatment period. However, the numerous early expression differences between ANG II-treated and control were not sustained over time. Ontologic analysis revealed widespread upregulation of inflammatory, immune, and matrix remodeling genes with ANG II treatment, among other pathways such as apoptosis, cell cycling, angiogenesis, and p53 signaling. CR aneurysms displayed significant decreases in TGF-β/BMP-pathway signaling, MAPK signaling, and ErbB signaling genes vs. non-CR/ANG II-treated samples. We also performed literature-based network analysis, extracting numerous highly interconnected genes associated with aneurysm development such as Spp1, Myd88, Adam17 and Lox. 1) ANG II treatment induces extensive early differential expression changes involving abundant signaling pathways in the suprarenal abdominal aorta, particularly wide-ranging increases in inflammatory genes with aneurysm development. 2) These gene expression changes appear to dissipate with time despite continued growth, suggesting that early changes in gene expression influence disease progression in this AAA model, and that the aortic tissue adapts to prolonged ANG II infusion. 3) Network analysis identified nexus genes that may constitute aneurysm biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University Medical Center, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hao XQ, Zhang HG, Li SH, Jia Y, Liu Y, Zhou JZ, Wei YL, Hao LY, Tang Y, Su M, Li XH. Prenatal exposure to inflammation induced by zymosan results in activation of intrarenal renin-angiotensin system in adult offspring rats. Inflammation 2011; 33:408-14. [PMID: 20229032 DOI: 10.1007/s10753-010-9199-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prenatal exposure to inflammation produces offspring that are hypertensive in adulthood. The present study was to explore the role of intrarenal renin-angiotensin (Ang) system in the development of hypertension programmed by prenatal exposure to zymosan. Pregnant rats were randomly divided into control group and zymosan group (n = 6). Rats in these two groups were administered intraperitoneally with 0.5 ml vehicle and 2.37 mg/kg zymosan, respectively, on the eighth, tenth, and 12th day during gestation. The results showed the glomerular number and creatinine clearance rate decreased significantly in offspring of zymosan-treated rats. The renal cortex renin mRNA expression, Ang II-positive cells in renal cortex, and Ang II expression in renal medulla increased significantly in offspring of zymosan-treated rats at 7, 16, and 25 weeks of age. The plasma renin activity and Ang II concentration were unchanged. In conclusion, prenatal exposure to zymosan resulted in the activation of intrarenal renin-Ang system in adult offspring rats.
Collapse
Affiliation(s)
- Xue-Qin Hao
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Crosswhite P, Sun Z. Ribonucleic acid interference knockdown of interleukin 6 attenuates cold-induced hypertension. Hypertension 2010; 55:1484-91. [PMID: 20385973 DOI: 10.1161/hypertensionaha.109.146902] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to determine the role of the proinflammatory cytokine interleukin (IL) 6 in cold-induced hypertension. Four groups of male Sprague-Dawley rats were used (6 rats per group). After blood pressure was stabilized, 3 groups received intravenous delivery of adenoassociated virus carrying IL-6 small hairpin RNA (shRNA), adenoassociated virus carrying scrambled shRNA, and PBS, respectively, before exposure to a cold environment (5 degrees C). The last group received PBS and was kept at room temperature (25 degrees C, warm) as a control. Adenoassociated virus delivery of IL-6 shRNA significantly attenuated cold-induced elevation of systolic blood pressure and kept it at the control level for < or =7 weeks (length of the study). Chronic exposure to cold upregulated IL-6 expression in aorta, heart, and kidneys and increased macrophage and T-cell infiltration in kidneys, suggesting that cold exposure increases inflammation. IL-6 shRNA delivery abolished the cold-induced upregulation of IL-6, indicating effective silence of IL-6. Interestingly, RNA interference knockdown of IL-6 prevented cold-induced inflammation, as evidenced by a complete inhibition of tumor necrosis factor-alpha expression and leukocyte infiltration by IL-6 shRNA. RNA interference knockdown of IL-6 significantly decreased the cold-induced increase in vascular superoxide production. It is noted that IL-6 shRNA abolished the cold-induced increase in collagen deposition in the heart, suggesting that inflammation is involved in cold-induced cardiac remodeling. Cold exposure caused glomerular collapses, which could be prevented by knockdown of IL-6, suggesting an important role of inflammation in cold-induced renal damage. In conclusion, cold exposure increased IL-6 expression and inflammation, which play critical roles in the pathogenesis of cold-induced hypertension and cardiac and renal damage.
Collapse
Affiliation(s)
- Patrick Crosswhite
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126-0901, USA
| | | |
Collapse
|
30
|
Glucose-based peritoneal dialysis fluids downregulate toll-like receptors and trigger hyporesponsiveness to pathogen-associated molecular patterns in human peritoneal mesothelial cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:757-63. [PMID: 20200188 DOI: 10.1128/cvi.00453-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of this study was to investigate the effects of glucose-based peritoneal dialysis (PD) fluids and icodextrin-based PD fluids on the expression of Toll-like receptor 2 (TLR2)/TLR4 and subsequent ligand-induced mitogen-activated protein kinase (MAPK) and NF-kappaB signaling and tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta) mRNA expression in human peritoneal mesothelial cells (HPMCs). A human peritoneal mesothelial cell line (HMrSV5) was stimulated with glucose-based and icodextrin-based peritoneal dialysis fluids. Cell viability was assessed using MTT [3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide]. TLR2/TLR4 expression was determined by real-time PCR, Western blotting, and an immunofluorescence assay. In addition, cells were pretreated with different PD solutions and then incubated with Pam3CSK4 or lipopolysaccharide (LPS), and the degrees of MAPK and NF-kappaB activation were reflected by detecting the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38, and p65, using a Western blot method. TNF-alpha and IL-1beta mRNA expression was measured by real-time PCR. Glucose-based peritoneal dialysis fluids suppressed the expression of TLR2 and TLR4 proteins in HPMCs. Challenge of cells with either Pam3CSK4 or LPS resulted in impaired TNF-alpha and IL-1beta production. Moreover, reduced TLR2 and TLR4 levels in glucose-based peritoneal dialysis solution-treated mesothelial cells were accompanied by reduced p42/44 (ERK1/2), JNK, p38 MAPK, and NF-kappaB p65 phosphorylation upon TLR ligand engagement. No significant changes in MAPK and NF-kappaB signaling and TNF-alpha and IL-1beta mRNA expression were observed in icodextrin-based PD solution-treated mesothelial cells. Glucose-based PD solution, but not icodextrin-based PD solution, downregulates expression of TLR2/TLR4 by human peritoneal mesothelial cells and triggers hyporesponsiveness to pathogen-associated molecular patterns.
Collapse
|
31
|
Prenatal exposure to lipopolysaccharide alters the intrarenal renin–angiotensin system and renal damage in offspring rats. Hypertens Res 2009; 33:76-82. [DOI: 10.1038/hr.2009.185] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|