1
|
Pant A, Moar K, Arora TK, Maurya PK. Implication of biosignatures in the progression of endometriosis. Pathol Res Pract 2024; 254:155103. [PMID: 38237401 DOI: 10.1016/j.prp.2024.155103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
Endometriosis is an estrogen-dependent chronic inflammatory disorder involving the placement and growth of endometrial tissue outside the uterine cavity. It is the most common multifactorial disease that affects the life quality of women in reproductive age. Due to its multicomponent nature, early diagnosis of the disease is challenging. Since many genetic, epigenetic alterations and non-genetic factors contribute to the pathology of endometriosis, devising a drug therapy that directly acts on the ectopic tissue is extremely difficult. Endometriosis is a hormone-driven disease with estrogen considered as a primary driver for the development of endometriotic lesions. This study aims to identify biosignatures involved in endometriosis with and without gonadotropin releasing hormone agonists (GnRHa). GnRHa is a short peptide analog of GnRH that causes inhibition of estrogen and androgen synthesis. Microarray based-gene expression profiling was performed on total RNA extracted from endometriotic tissue samples with and without GnRHa-treated patients already published in our previous paper. The untreated group were considered as the control. Genes were then selected for validation by quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR analysis confirmed significant downregulation in(p < 0.05) expression of DARC (p = 0.0042), CDH1 (p = 0.0027), CDH5 (p = 0.0283), ATP2A3 (p < 0.001), RGS5 (p = 0.0032), and CD36 (p = 0.0162) in endometriosis patients treated with GnRHa analogs. Although, CTNNAL1 (p = 0.0136) also showed significant results but there was upregulation in their expression levels after GnRHa treatment. Thus, an altered expression of these genes makes them a possible candidate determinant of endometriosis treated with GnRHa.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Taruna K Arora
- Reproductive Biology and Maternal Child Health Division, Indian Council of Medical Research, New Delhi 110029, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
2
|
Hajar CGN, Zefarina Z, Md. Riffin NS, Tuan Mohammad TH, Hassan MN, Poonachi P, Safuan S, ElGhazali G, Chambers GK, Edinur HA. Extended blood group profiles for Malays, Chinese, and Indians in Peninsular Malaysia. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00096-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Blood group antigens are immunogenic polymorphic molecules presented on the surface of RBCs. This study aimed to determine extended blood group profiles (ABO, Rhesus, Kell, Kidd, Duffy, MNS, Cartwright, Dombrock, Colton, Lutheran, and Vel) in Malays, Chinese, and Indians in Peninsular Malaysia.
Results
Here, ABO Type O, DCCee, MNs, and Fy (a+b−) were the most frequent major blood group phenotypes in all three ethnic groups. Other minor blood group systems distributed differently across these ethnic groups, except for the Kell, Lutheran, Cartwright, and Vel blood group systems, where only K−k+, Lu (8+14), Yt (a+b−), and Vel (+) phenotypes were observed. Exact tests of population differentiation generally showed no significant differences between Malays included in the present study vs. other ethnically similar datasets from previous surveys. However, many significant differences were recorded in comparison between blood group datasets from ethnically unrelated populations (Malays vs. Chinese vs. Indians) especially for Rhesus, Kidd, and Duffy blood group systems. A Principal component analysis (PCA) plot showed that population groups from the Peninsular Malaysia map closely together as compared with population groups from other geographical regions.
Conclusions
Overall, our present study has successfully provided an extended blood group profiles for Malays, Chinese, and Indians in Peninsular Malaysia. These new blood group datasets can be used as guidelines for donor recruitment and as reference standards for studying diseases associated with blood group systems.
Collapse
|
3
|
Identification of Key Genes and Long Noncoding RNA-Associated Competing Endogenous RNA (ceRNA) Networks in Early-Onset Preeclampsia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1673486. [PMID: 32566660 PMCID: PMC7293732 DOI: 10.1155/2020/1673486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 11/18/2022]
Abstract
Background Preeclampsia (PE) is a pregnancy-specific hypertension syndrome and is one of the leading causes of maternal and perinatal morbidity and mortality. Long noncoding RNAs (lncRNAs) have been reported to be abnormally expressed in many diseases, including preeclampsia. The present study is aimed at identifying the key genes and lncRNA-associated competing endogenous RNA (ceRNA) networks in early-onset preeclampsia (EOPE). Methods We investigated expression profiles of differentially expressed lncRNAs (DElncRNAs) and genes (DEGs) in placental tissues of EOPE and healthy controls with Human LncRNA Array v4. The potential functions of DEGs and DElncRNAs were predicted using the clusterProfiler package. The lncRNA-mRNA coexpression network was constructed via Pearson's correlation coefficient. The protein-protein interaction (PPI) network of DEGs was constructed, and the hub genes were obtained using the STRING database and Cytoscape. The ceRNA networks were constructed based on miRWalk and LncBase v2. qRT-PCR was performed to confirm the expression of lncRNA MIR193BHG, PROX1-AS1, and GATA3-AS1. ROC curves were performed to assess the clinical value of lncRNA MIR193BHG, PROX1-AS1, and GATA3-AS1 in the diagnosis of EOPE. Results We found 6 hub genes (SPP1, CCR2, KIT, ENG, ACKR1, and FLT1) altered in placental tissues of EOPE and constructed a ceRNA network, including 21 lncRNAs, 3 mRNAs, and 69 miRNAs. The expression of lncRNA MIR193BHG and GATA3-AS1 were elevated and showed good clinical values for diagnosing EOPE. Conclusion This study provides novel insights into the lncRNA-related ceRNA network in EOPE and identified two lncRNAs as potential prognostic biomarkers in EOPE.
Collapse
|
4
|
Gai PP, van Loon W, Siegert K, Wedam J, Kulkarni SS, Rasalkar R, Boloor A, Kumar A, Jain A, Mahabala C, Baliga S, Devi R, Shenoy D, Gai P, Mockenhaupt FP. Duffy antigen receptor for chemokines gene polymorphisms and malaria in Mangaluru, India. Malar J 2019; 18:328. [PMID: 31551092 PMCID: PMC6760058 DOI: 10.1186/s12936-019-2966-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
Background Duffy blood group antigens serve as receptors for Plasmodium vivax invasion into erythrocytes, and they are determined by polymorphisms of the Duffy antigen receptor for chemokines (DARC), also known as Fy glycoprotein (FY). Duffy negativity, i.e., absence of the antigens, protects against P. vivax infection and is rare among non-African populations. However, data on DARC polymorphisms and their impact on Plasmodium infection in India are scarce. Methods In a case–control study among 909 malaria patients and 909 healthy community controls in Mangaluru, southwestern India, DARC polymorphisms T-33C (rs2814778), G125A (rs12075), C265T (rs34599082), and G298A (rs13962) were genotyped. Associations of the polymorphisms with the odds of malaria, parasite species and manifestation were assessed. Results Among patients, vivax malaria (70%) predominated over falciparum malaria (9%) and mixed species infections (21%). DARC T-33C was absent and C265T was rare (1%). FYB carriage (deduced from DARC G125A) was not associated with the risk of malaria per se but it protected against severe falciparum malaria (P = 0.03), and hospitalization (P = 0.006) due to falciparum malaria. Vice versa, carriage of DARC 298A was associated with increased odds of malaria (aOR, 1.46 (1.07–1.99), P = 0.015) and vivax malaria (aOR, 1.60 (1.14–2.22), P = 0.006) and with several reported symptoms and findings of the patients. Conclusion This report from southern India is the first to show an independent effect of the DARC 298A polymorphism on the risk of malaria. Functional studies are required to understand the underlying mechanism. Moreover, FYB carriage appears to protect against severe falciparum malaria in southern India.
Collapse
Affiliation(s)
- Prabhanjan P Gai
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Tropical Medicine and International Health, Berlin, Germany.
| | - Welmoed van Loon
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Tropical Medicine and International Health, Berlin, Germany
| | - Konrad Siegert
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Tropical Medicine and International Health, Berlin, Germany
| | - Jakob Wedam
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Tropical Medicine and International Health, Berlin, Germany
| | | | - Rashmi Rasalkar
- Karnataka Institute for DNA Research, Dharwad, Karnataka, India
| | - Archith Boloor
- Kasturba Medical College, Mangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Arun Kumar
- District Vector Borne Disease Control Programme Office, Dakshina Kannada, Mangaluru, Karnataka, India
| | - Animesh Jain
- Kasturba Medical College, Mangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chakrapani Mahabala
- Kasturba Medical College, Mangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantaram Baliga
- Kasturba Medical College, Mangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Damodara Shenoy
- Kasturba Medical College, Mangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pramod Gai
- Karnataka Institute for DNA Research, Dharwad, Karnataka, India
| | - Frank P Mockenhaupt
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Tropical Medicine and International Health, Berlin, Germany
| |
Collapse
|
5
|
Maeda S, Kuboki S, Nojima H, Shimizu H, Yoshitomi H, Furukawa K, Miyazaki M, Ohtsuka M. Duffy antigen receptor for chemokines (DARC) expressing in cancer cells inhibits tumor progression by suppressing CXCR2 signaling in human pancreatic ductal adenocarcinoma. Cytokine 2017; 95:12-21. [PMID: 28214673 DOI: 10.1016/j.cyto.2017.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. Chemokines play important roles in the progression of many malignancies; however, the role of chemokine receptor expression in clinical cases of PDAC is unclear. Moreover, little is known about DARC, a decoy receptor of CXC chemokines, in the regulation of tumor progression. METHODS Functions of chemokine receptors were evaluated using surgical specimens collected from PDAC patients, and PDAC cell lines. RESULTS CXCR2 expression had no impacts on predicting prognosis, but low DARC expression in cancer cells was an independent risk factor for poor prognosis. In PDAC with low DARC expression, tumor sizes were larger and vascular invasion was increased. High CXCR2 expression was a significant predictor for poor prognosis, only in PDAC patients with low DARC expression. CXCR2 signaling induced STAT3 activation in PDAC, resulting in promoting cell cycle progression, inhibiting apoptosis, inducing angiogenesis, and enhancing invasiveness. DARC inhibited STAT3 activation by down-regulating CXCR2 signaling. These effects were confirmed by EMSA in vitro. DARC knockdown significantly increased cell proliferation in CFPAC-1 cells with high DARC expression, by activating STAT3. In contrast, CXCR2 knockdown inhibited the proliferative effects of IL-8 in MIA PaCa-2 cells with low DARC expression. Moreover, the inhibitory effect of CXCR2 antagonist on PDAC cell proliferation was more powerful in MIA PaCa-2 cells than CFPAC-1 cells. CONCLUSIONS DARC expressing in cancer cells inhibits PDAC progression by suppressing STAT3 activation through the inhibition of CXCR2 signaling. Therefore, DARC is a novel prognostic predictor and a potential therapeutic target for PDAC.
Collapse
MESH Headings
- Aged
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Disease Progression
- Duffy Blood-Group System/metabolism
- Female
- Humans
- Interleukin-8/pharmacology
- Male
- Middle Aged
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/metabolism
- Receptors, Interleukin-8A/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Shintaro Maeda
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan.
| | - Hiroyuki Nojima
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Hiroaki Shimizu
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba 260-0856, Japan
| |
Collapse
|
6
|
Zhu Q, Jiang L, Wang X. The expression of Duffy antigen receptor for chemokines by epithelial ovarian cancer decreases growth potential. Oncol Lett 2017; 13:4302-4306. [PMID: 28599431 PMCID: PMC5452942 DOI: 10.3892/ol.2017.5954] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the main causes of cancer-associated mortality in females with gynecological malignancies. Duffy antigen receptor for chemokines (DARC) has previously been reported to be involved in tumor growth and the inhibition of tumor metastasis. However, the association between DARC and EOC remains unknown. The aim of the present study was to investigate the expression of DARC in the SKOV3 human epithelial ovarian cancer cell line with the establishment of a subcutaneous model in nude mice. To investigate the effects of DARC on the tumorigenesis of human epithelial ovarian cancer cells, GV287-DARC-L.V lentiviral vectors containing a DARC overexpression construct were transfected into SKOV3 cells. The present study revealed that transfection with DARC reduced the viability of SKOV3 cells in vitro by performing an MTT assay. SKOV3-DARC and SKOV3-negative control (NC) cells cultured in vitro were injected into nude mice to establish a subcutaneous model. The ovarian tumor volumes and the tumor weights were observed. Immunohistochemistry to detect CD31 expression was used to determine the microvessel density (MVD) in SKOV3-DARC and SKOV3-NC tumors. The results of the present study revealed that DARC-induced inhibition of tumor growth was associated with MVD in xenograft tumors. This suggested that DARC was a negative regulator of tumor growth in EOC, primarily via the inhibition of tumor angiogenesis.
Collapse
Affiliation(s)
- Qinyi Zhu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Lu Jiang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Xipeng Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| |
Collapse
|
7
|
Molecular basis of the Duffy blood group system. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 16:93-100. [PMID: 28151395 DOI: 10.2450/2017.0119-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/21/2016] [Indexed: 11/21/2022]
Abstract
ACKR1, located on chromosome 1q23.2, is the gene that encodes a glycoprotein expressing the Duffy blood group antigens. This gene is transcribed in two mRNA variants yielding two isoforms, encoding proteins with 338 and 336 amino acids. This review provides a general overview of the Duffy blood group to characterise and elucidate the genetic basis of this system. The Fya and Fyb antigens are encoded by co-dominant FY*A (FY*01) and FY*B (FY*02) alleles, which differ by c.125G>A (rs12075), defining the Fy(a+b-), Fy(a-b+) and Fy(a+b+) phenotypes. The Fy(a-b-) phenotype that occurs in Africans provides an explanation for the apparent absence of Plasmodium vivax in this region: this phenotype arises from homozygosity for the FY*B allele carrying a point mutation c.1-67T>C (rs2814778), which prevents Fyb antigen expression only in red blood cells. The same mutation has also been found on the FY*A allele, but it is very rare. The Fy(a-b-) phenotype in Europeans and Asians arises from mutations in the coding region of the FY*A or FY*B allele, preventing Duffy antigen expression on any cell in the body and thus are true Duffy null phenotypes. According to the International Society for Blood Transfusion, ten alleles are associated with the null expression of the Fy antigens. Furthermore, different allelic forms of FY*B modify Fyb antigen expression, which may result in very weak or equivocal serology results. The mostly common found variants, c.265C>T (rs34599082) and c.298G>A (rs13962) -previously defined in combination only with the FY*B allele - have already been observed in the FY*A allele. Thus, six alleles have been recognised and associated with weak expression of the Fy antigens. Considering the importance of the Duffy blood group system in clinical medicine, additional studies via molecular biology approaches must be performed to resolve and clarify the discrepant results that are present in the erythrocyte phenotyping.
Collapse
|
8
|
Ntumngia FB, Thomson-Luque R, Pires CV, Adams JH. The role of the human Duffy antigen receptor for chemokines in malaria susceptibility: current opinions and future treatment prospects. JOURNAL OF RECEPTOR, LIGAND AND CHANNEL RESEARCH 2016; 9:1-11. [PMID: 28943755 PMCID: PMC5608092 DOI: 10.2147/jrlcr.s99725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Duffy antigen receptor for chemokine (DARC) is a nonspecific receptor for several proinflammatory cytokines. It is homologous to the G-protein chemokine receptor superfamily, which is suggested to function as a scavenger in many inflammatory-and proinflammatory-related diseases. G-protein chemokine receptors are also known to play a critical role in infectious diseases; they are commonly used as entry vehicles by infectious agents. A typical example is the chemokine receptor CCR5 or CXCR4 used by HIV for infecting target cells. In malaria, DARC is considered an essential receptor that mediates the entry of the human and zoonotic malaria parasites Plasmodium vivax and Plasmodium knowlesi into human reticulocytes and erythrocytes, respectively. This process is mediated through interaction with the parasite ligand known as the Duffy binding protein (DBP). Most therapeutic strategies have been focused on blocking the interaction between DBP and DARC by targeting the parasite ligand, while strategies targeting the receptor, DARC, have not been intensively investigated. The rapid increase in drug resistance and the lack of new effective drugs or a vaccine for malaria constitute a major threat and a need for novel therapeutics to combat disease. This review explores strategies that can be used to target the receptor. Inhibitors of DARC, which block DBP-DARC interaction, can potentially provide an effective strategy for preventing malaria caused by P. vivax.
Collapse
Affiliation(s)
- Francis B Ntumngia
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Richard Thomson-Luque
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Camilla V Pires
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John H Adams
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Wang XG, Ju ZH, Hou MH, Jiang Q, Yang CH, Zhang Y, Sun Y, Li RL, Wang CF, Zhong JF, Huang JM. Deciphering Transcriptome and Complex Alternative Splicing Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus aureus Mastitis. PLoS One 2016; 11:e0159719. [PMID: 27459697 PMCID: PMC4961362 DOI: 10.1371/journal.pone.0159719] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing (AS) contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A) and mastitic (HS8A) cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs) with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine–cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5′ splicing and alternative 3ʹ splicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A) and 5.4% (HS8A) novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis.
Collapse
Affiliation(s)
- Xiu Ge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Zhi Hua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Ming Hai Hou
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Chun Hong Yang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Yan Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Yan Sun
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Rong Ling Li
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Chang Fa Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Ji Feng Zhong
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
| | - Jin Ming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, P.R. China
- * E-mail:
| |
Collapse
|
10
|
Understanding the Role of the Immune System in the Development of Cancer: New Opportunities for Population-Based Research. Cancer Epidemiol Biomarkers Prev 2015; 24:1811-9. [DOI: 10.1158/1055-9965.epi-15-0681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/16/2015] [Indexed: 11/16/2022] Open
|
11
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Zhou S, Liu M, Hu Y, An W, Liang X, Yu W, Piao F. Expression of Duffy antigen receptor for chemokines (DARC) is down-regulated in colorectal cancer. J Recept Signal Transduct Res 2015; 35:462-7. [DOI: 10.3109/10799893.2015.1009113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Nemesure B, Wu SY, Hennis A, Leske MC. Distribution of Duffy Antigen Receptor for Chemokines (DARC) and Risk of Prostate Cancer in Barbados, West Indies. J Immigr Minor Health 2015; 17:679-83. [PMID: 24399209 PMCID: PMC4087101 DOI: 10.1007/s10903-013-9970-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood typing across different racial groups has revealed that Caucasians predominantly test positive for the Duffy antigen/receptor for chemokines (DARC), while 70-95% of African-origin populations lack expression of DARC on their erythrocytes. Since men of African descent are known to have higher rates of prostate cancer (PC) and some animal studies have indicated anti-angiogenic effects associated with Duffy-positive mice, DARC-negativity may help to explain some of the racial differences in prostate tumorigenesis. The Prostate Cancer in a Black Population (PCBP) Study, a large case-control investigation including 1,007 incident PC cases and 1,005 controls, performed DARC testing on a subset of 1,295 participants (641 cases, 654 controls). The relationship between DARC expressivity and PC risk was evaluated using logistic regression models and findings are presented as odds ratios and 95% confidence intervals. More than three-quarters (76.5%) of African-Barbadian men lacked DARC expression, whereas almost three-fifths (59.3%) of White participants tested positive for the Duffy a and b alleles. DARC-negativity was not found to be associated with PC risk in the present investigation [OR 1.04, 95% CI (0.78, 1.37)], regardless of tumor grade. Findings from the PCBP study indicate that the majority of African-Barbadian men do not express DARC on their erythrocytes, yet absence of expression does not appear to be associated with PC development in this population.
Collapse
Affiliation(s)
- Barbara Nemesure
- Department of Preventive Medicine, Stony Brook Medicine, Stony Brook, NY, 11794-8036, USA,
| | | | | | | |
Collapse
|
14
|
Wan W, Liu Q, Lionakis MS, Marino APMP, Anderson SA, Swamydas M, Murphy PM. Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice. Cardiovasc Res 2015; 106:478-87. [PMID: 25858253 PMCID: PMC4447808 DOI: 10.1093/cvr/cvv124] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Atypical chemokine receptor 1 (Ackr1; previously known as the Duffy antigen receptor for chemokines or Darc) is thought to regulate acute inflammatory responses in part by scavenging inflammatory CC and CXC chemokines; however, evidence for a role in chronic inflammation has been lacking. Here we investigated the role of Ackr1 in chronic inflammation, in particular in the setting of atherogenesis, using the apolipoprotein E-deficient (ApoE(-/-)) mouse model. METHODS AND RESULTS Ackr1(-/-)ApoE(-/-) and Ackr1(+/+)ApoE(-/-) littermates were obtained by crossing ApoE(-/-) mice and Ackr1(-/-) mice on a C57BL/6J background. Ackr1 (+/+)ApoE(-/-)mice fed a Western diet up-regulated Ackr1 expression in the aorta and had markedly increased atherosclerotic lesion size compared with Ackr1(-/-)ApoE(-/-) mice. This difference was observed in both the whole aorta and the aortic root in both early and late stages of the model. Ackr1 deficiency did not affect serum cholesterol levels or macrophage, collagen or smooth muscle cell content in atherosclerotic plaques, but significantly reduced the expression of Ccl2 and Cxcl1 in the whole aorta of ApoE(-/-) mice. In addition, Ackr1 deficiency resulted in a modest decrease in T cell subset frequency and inflammatory mononuclear phagocyte content in aorta and blood in the model. CONCLUSIONS Ackr1 deficiency appears to be protective in the ApoE knockout model of atherogenesis, but it is associated with only modest changes in cytokine and chemokine expression as well as T-cell subset frequency and inflammatory macrophage content.
Collapse
Affiliation(s)
- Wuzhou Wan
- Molecular Signaling Section, Laboratory of Molecular Immunology (LMI), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Qian Liu
- Molecular Signaling Section, Laboratory of Molecular Immunology (LMI), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Ana Paula M P Marino
- Molecular Signaling Section, Laboratory of Molecular Immunology (LMI), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stasia A Anderson
- National Heart, Lung and Blood Institute (NHLBI) Animal MRI Core, NIH, Bethesda, MD, USA
| | - Muthulekha Swamydas
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology (LMI), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
15
|
Craveur P, Joseph AP, Esque J, Narwani TJ, Noël F, Shinada N, Goguet M, Leonard S, Poulain P, Bertrand O, Faure G, Rebehmed J, Ghozlane A, Swapna LS, Bhaskara RM, Barnoud J, Téletchéa S, Jallu V, Cerny J, Schneider B, Etchebest C, Srinivasan N, Gelly JC, de Brevern AG. Protein flexibility in the light of structural alphabets. Front Mol Biosci 2015; 2:20. [PMID: 26075209 PMCID: PMC4445325 DOI: 10.3389/fmolb.2015.00020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/30/2015] [Indexed: 01/01/2023] Open
Abstract
Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.e., the classical secondary structures. More precise and complete description of protein backbone conformation can be obtained using libraries of small protein fragments that are able to approximate every part of protein structures. These libraries, called structural alphabets (SAs), have been widely used in structure analysis field, from definition of ligand binding sites to superimposition of protein structures. SAs are also well suited to analyze the dynamics of protein structures. Here, we review innovative approaches that investigate protein flexibility based on SAs description. Coupled to various sources of experimental data (e.g., B-factor) and computational methodology (e.g., Molecular Dynamic simulation), SAs turn out to be powerful tools to analyze protein dynamics, e.g., to examine allosteric mechanisms in large set of structures in complexes, to identify order/disorder transition. SAs were also shown to be quite efficient to predict protein flexibility from amino-acid sequence. Finally, in this review, we exemplify the interest of SAs for studying flexibility with different cases of proteins implicated in pathologies and diseases.
Collapse
Affiliation(s)
- Pierrick Craveur
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Agnel P Joseph
- Rutherford Appleton Laboratory, Science and Technology Facilities Council Didcot, UK
| | - Jeremy Esque
- Institut National de la Santé et de la Recherche Médicale U964,7 UMR Centre National de la Recherche Scientifique 7104, IGBMC, Université de Strasbourg Illkirch, France
| | - Tarun J Narwani
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Floriane Noël
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Nicolas Shinada
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Matthieu Goguet
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Sylvain Leonard
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Pierre Poulain
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France ; Ets Poulain Pointe-Noire, Congo
| | - Olivier Bertrand
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Guilhem Faure
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health Bethesda, MD, USA
| | - Joseph Rebehmed
- Centre National de la Recherche Scientifique UMR7590, Sorbonne Universités, Université Pierre et Marie Curie - MNHN - IRD - IUC Paris, France
| | | | - Lakshmipuram S Swapna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore Bangalore, India ; Hospital for Sick Children, and Departments of Biochemistry and Molecular Genetics, University of Toronto Toronto, ON, Canada
| | - Ramachandra M Bhaskara
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore Bangalore, India ; Department of Theoretical Biophysics, Max Planck Institute of Biophysics Frankfurt, Germany
| | - Jonathan Barnoud
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France ; Laboratoire de Physique, École Normale Supérieure de Lyon, Université de Lyon, Centre National de la Recherche Scientifique UMR 5672 Lyon, France
| | - Stéphane Téletchéa
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France ; Faculté des Sciences et Techniques, Université de Nantes, Unité Fonctionnalité et Ingénierie des Protéines, Centre National de la Recherche Scientifique UMR 6286, Université Nantes Nantes, France
| | - Vincent Jallu
- Platelet Unit, Institut National de la Transfusion Sanguine Paris, France
| | - Jiri Cerny
- Institute of Biotechnology, The Czech Academy of Sciences Prague, Czech Republic
| | - Bohdan Schneider
- Institute of Biotechnology, The Czech Academy of Sciences Prague, Czech Republic
| | - Catherine Etchebest
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | | | - Jean-Christophe Gelly
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| | - Alexandre G de Brevern
- Institut National de la Santé et de la Recherche Médicale U 1134 Paris, France ; UMR_S 1134, DSIMB, Université Paris Diderot, Sorbonne Paris Cite Paris, France ; Institut National de la Transfusion Sanguine, DSIMB Paris, France ; UMR_S 1134, DSIMB, Laboratory of Excellence GR-Ex Paris, France
| |
Collapse
|
16
|
Moreno Velásquez I, Kumar J, Björkbacka H, Nilsson J, Silveira A, Leander K, Berglund A, Strawbridge RJ, Ärnlöv J, Melander O, Almgren P, Lind L, Hamsten A, de Faire U, Gigante B. Duffy antigen receptor genetic variant and the association with Interleukin 8 levels. Cytokine 2015; 72:178-84. [PMID: 25647274 DOI: 10.1016/j.cyto.2014.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/10/2014] [Accepted: 12/17/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED The aim of this study is to identify loci associated with circulating levels of Interleukin 8 (IL8). We investigated the associations of 121,445 single nucleotide polymorphisms (SNPs) from the Illumina 200K CardioMetabochip with IL8 levels in 1077 controls from the Stockholm Heart Epidemiology Program (SHEEP) study, using linear regression under an additive model of inheritance. Five SNPs (rs12075A/G, rs13179413C/T, rs6907989T/A, rs9352745A/C, rs1779553T/C) reached the pre-defined threshold of genome-wide significance (p<1.0×10(-5)) and were tested for in silico replication in three independent populations, derived from the PIVUS, MDC-CC and SCARF studies. IL8 was measured in serum (SHEEP, PIVUS) and plasma (MDC-CC, SCARF). The strongest association was found with the SNP rs12075 A/G, Asp42Gly (p=1.6×10(-6)), mapping to the Duffy antigen receptor for chemokines (DARC) gene on chromosome 1. The minor allele G was associated with 15.6% and 10.4% reduction in serum IL8 per copy of the allele in SHEEP and PIVUS studies respectively. No association was observed between rs12075 and plasma IL8. CONCLUSION rs12075 was associated with serum levels but not with plasma levels of IL8. It is likely that serum IL8 represents the combination of levels of circulating plasma IL8 and additional chemokine liberated from the erythrocyte DARC reservoir due to clotting. These findings highlight the importance of understanding IL8 as a biomarker in cardiometabolic diseases.
Collapse
Affiliation(s)
- Ilais Moreno Velásquez
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Jitender Kumar
- Dept of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Harry Björkbacka
- Experimental Cardiovascular Research Unit, Dept of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Jan Nilsson
- Experimental Cardiovascular Research Unit, Dept of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Angela Silveira
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anita Berglund
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rona J Strawbridge
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Johan Ärnlöv
- Dept of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Olle Melander
- Hypertension and Cardiovascular Disease, Dept of Clinical Sciences, Lund University, Malmö, Sweden; Centre of Emergency Medicine, Skåne University Hospital, Malmö, Sweden
| | - Peter Almgren
- Hypertension and Cardiovascular Disease, Dept of Clinical Sciences, Lund University, Malmö, Sweden
| | - Lars Lind
- Dept of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Anders Hamsten
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ulf de Faire
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Dept of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Bruna Gigante
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Division of Cardiovascular Medicine, Dept of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Tashfeen S, Salamat N, Ahmed S. Frequencies of Duffy blood group alleles in Northern Pakistani donors. Transfus Apher Sci 2014; 51:39-41. [PMID: 24929836 DOI: 10.1016/j.transci.2014.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/18/2014] [Accepted: 02/24/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Find the allele frequencies of Duffy blood group antigens in donor population from northern Pakistan. DESIGN Cross sectional study. PLACE AND DURATION OF STUDY Armed Forces Institute of Transfusion (AFIT), Rawalpindi in year 2012. PATIENTS AND METHODS A total of 1000 healthy, adult blood donors were included in the study. Blood samples were collected in ethylenediamine tetra aceticacid (EDTA) tube and then tested with anti sera Fy(a) and Fy(b) by the tube method. RESULTS The allele frequencies of Duffy blood group antigens were calculated. The most common phenotype was Fy(a+b+) which was present in 552 (55.2%) donors followed by the Fy(a+b-) phenotype in 228 (22.8%) donors, while 178 (17.8%) were Fy(a-b+) and the least prevalent phenotype was Fy(a-b-) which was present in 42 (4.2%) of donors. CONCLUSION The majority of our population is heterozygous for Duffy antigens a and b.
Collapse
Affiliation(s)
| | - Nuzhat Salamat
- Armed Forces Institute of Transfusion, Rawalpindi, Pakistan
| | - Saleem Ahmed
- Armed Forces Institute of Transfusion, Rawalpindi, Pakistan
| |
Collapse
|
18
|
Manteniotis S, Lehmann R, Flegel C, Vogel F, Hofreuter A, Schreiner BSP, Altmüller J, Becker C, Schöbel N, Hatt H, Gisselmann G. Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in Trigeminal ganglia. PLoS One 2013; 8:e79523. [PMID: 24260241 PMCID: PMC3832644 DOI: 10.1371/journal.pone.0079523] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/02/2013] [Indexed: 12/14/2022] Open
Abstract
The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain.
Collapse
|
19
|
Rundle CH, Mohan S, Edderkaoui B. Duffy antigen receptor for chemokines regulates post-fracture inflammation. PLoS One 2013; 8:e77362. [PMID: 24146983 PMCID: PMC3798395 DOI: 10.1371/journal.pone.0077362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 09/02/2013] [Indexed: 12/14/2022] Open
Abstract
There is now considerable experimental data to suggest that inflammatory cells collaborate in the healing of skeletal fractures. In terms of mechanisms that contribute to the recruitment of inflammatory cells to the fracture site, chemokines and their receptors have received considerable attention. Our previous findings have shown that Duffy antigen receptor for chemokines (Darc), the non-classical chemokine receptor that does not signal, but rather acts as a scavenger of chemokines that regulate cell migration, is a negative regulator of peak bone density in mice. Furthermore, because Darc is expressed by inflammatory and endothelial cells, we hypothesized that disruption of Darc action will affect post-fracture inflammation and consequently will affect fracture healing. To test this hypothesis, we evaluated fracture healing in mice with targeted disruption of Darc and corresponding wild type (WT) control mice. We found that fracture callus cartilage formation was significantly greater (33%) at 7 days post-surgery in Darc-KO compared to WT mice. The increased cartilage was associated with greater Collagen (Col) II expression at 3 days post-fracture and Col-X at 7 days post-fracture compared to WT mice, suggesting that Darc deficiency led to early fracture cartilage formation and differentiation. We then compared the expression of cytokine and chemokine genes known to be induced during inflammation. Interleukin (Il)-1β, Il-6, and monocyte chemotactic protein 1 were all down regulated in the fractures derived from Darc-KO mice at one day post-fracture, consistent with an altered inflammatory response. Furthermore, the number of macrophages was significantly reduced around the fractures in Darc-KO compared to WT mice. Based on these data, we concluded that Darc plays a role in modulating the early inflammatory response to bone fracture and subsequent cartilage formation. However, the early cartilage formation was not translated with an early bone formation at the fracture site in Darc-KO compared to WT mice.
Collapse
Affiliation(s)
- Charles H. Rundle
- Musculoskeletal Disease Center, Research Service, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Research Service, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Department of Biochemistry, Loma Linda University, Loma Linda, California, United States of America
- Department of Physiology, Loma Linda University, Loma Linda, California, United States of America
| | - Bouchra Edderkaoui
- Musculoskeletal Disease Center, Research Service, Jerry L Pettis Memorial Veterans Administration Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University, Loma Linda, California, United States of America
| |
Collapse
|
20
|
Saleh SM, Parhar RS, Al-Hejailan RS, Bakheet RH, Khaleel HS, Khalak HG, Halees AS, Zaidi MZ, Meyer BF, Yung GP, Seebach JD, Conca W, Khabar KS, Collison KS, Al-Mohanna FA. Identification of the tetraspanin CD82 as a new barrier to xenotransplantation. THE JOURNAL OF IMMUNOLOGY 2013; 191:2796-805. [PMID: 23872050 DOI: 10.4049/jimmunol.1300601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant immunological obstacles are to be negotiated before xenotransplantation becomes a clinical reality. An initial rejection of transplanted vascularized xenograft is attributed to Galα1,3Galβ1,4GlcNAc-R (Galα1,3-Gal)-dependent and -independent mechanisms. Hitherto, no receptor molecule has been identified that could account for Galα1,3-Gal-independent rejection. In this study, we identify the tetraspanin CD82 as a receptor molecule for the Galα1,3-Gal-independent mechanism. We demonstrate that, in contrast to human undifferentiated myeloid cell lines, differentiated cell lines are capable of recognizing xenogeneic porcine aortic endothelial cells in a calcium-dependent manner. Transcriptome-wide analysis to identify the differentially expressed transcripts in these cells revealed that the most likely candidate of the Galα1,3-Gal-independent recognition moiety is the tetraspanin CD82. Abs to CD82 inhibited the calcium response and the subsequent activation invoked by xenogeneic encounter. Our data identify CD82 on innate immune cells as a major "xenogenicity sensor" and open new avenues of intervention to making xenotransplantation a clinical reality.
Collapse
Affiliation(s)
- Soad M Saleh
- Department of Cell Biology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
IL-2 stimulated but not unstimulated NK cells induce selective disappearance of peripheral blood cells: concomitant results to a phase I/II study. PLoS One 2011; 6:e27351. [PMID: 22096557 PMCID: PMC3212563 DOI: 10.1371/journal.pone.0027351] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/14/2011] [Indexed: 01/11/2023] Open
Abstract
In an ongoing clinical phase I/II study, 16 pediatric patients suffering from high risk leukemia/tumors received highly purified donor natural killer (NK) cell immunotherapy (NK-DLI) at day (+3) +40 and +100 post haploidentical stem cell transplantation. However, literature about the influence of NK-DLI on recipient's immune system is scarce. Here we present concomitant results of a noninvasive in vivo monitoring approach of recipient's peripheral blood (PB) cells after transfer of either unstimulated (NK-DLI(unstim)) or IL-2 (1000 U/ml, 9-14 days) activated NK cells (NK-DLI(IL-2 stim)) along with their ex vivo secreted cytokine/chemokines. We performed phenotypical and functional characterizations of the NK-DLIs, detailed flow cytometric analyses of various PB cells and comprehensive cytokine/chemokine arrays before and after NK-DLI. Patients of both groups were comparable with regard to remission status, immune reconstitution, donor chimerism, KIR mismatching, stem cell and NK-DLI dose. Only after NK-DLI(IL-2 stim) was a rapid, almost complete loss of CD56(bright)CD16(dim/-) immune regulatory and CD56(dim)CD16(+) cytotoxic NK cells, monocytes, dendritic cells and eosinophils from PB circulation seen 10 min after infusion, while neutrophils significantly increased. The reduction of NK cells was due to both, a decrease in patients' own CD69(-) NCR(low)CD62L(+) NK cells as well as to a diminishing of the transferred cells from the NK-DLI(IL-2 stim) with the CD56(bright)CD16(+/-)CD69(+)NCR(high)CD62L(-) phenotype. All cell counts recovered within the next 24 h. Transfer of NK-DLI(IL-2 stim) translated into significantly increased levels of various cytokines/chemokines (i.e. IFN-γ, IL-6, MIP-1β) in patients' PB. Those remained stable for at least 1 h, presumably leading to endothelial activation, leukocyte adhesion and/or extravasation. In contrast, NK-DLI(unstim) did not cause any of the observed effects. In conclusion, we assume that the adoptive transfer of NK-DLI(IL-2 stim) under the influence of ex vivo and in vivo secreted cytokines/chemokines may promote NK cell trafficking and therefore might enhance efficacy of immunotherapy.
Collapse
|
22
|
O'Boyle G, Ali S, Kirby J. Chemokines in transplantation: what can atypical receptors teach us about anti-inflammatory therapy? Transplant Rev (Orlando) 2011; 25:136-44. [DOI: 10.1016/j.trre.2010.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 10/07/2010] [Indexed: 01/08/2023]
|
23
|
Sellami MH, Chaabane M, Kaabi H, Torjemane L, Ladeb S, Othmane TB, Hmida S. Evidence that erythrocyte DARC-positive phenotype can affect the GVHD occurrence after HLA-identical sibling HSCT. Transpl Immunol 2011; 25:148-52. [PMID: 21784153 DOI: 10.1016/j.trim.2011.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 06/24/2011] [Accepted: 07/08/2011] [Indexed: 11/24/2022]
Abstract
Chemokine receptors are very important players in the pathogenesis of GVHD. The aim of this study is to test the hypothesis that the lack of expression of the DARC receptor on erythrocytes can affect the GVHD incidence. A total of 105 recipients and their 105 respective sibling donors of HSCs were enrolled in this study. All patients were evaluated for acute and chronic GVHD. The DARC genotyping assay was performed using the SSP-PCR method. The case-control analyses showed that the donor DARC 146G allele and T(-46)G(146) haplotype, coding for the FY2 version of DARC, are very significant in the GVHD paradigm because they are associated with the incidence of acute effects of this outcome in recipients (p=0.007, χ²=7.200). It seems that this version of DARC receptor is a powerful facilitator of chemokine transcytosis and subsequently leukocyte migration into GVHD target organs.
Collapse
Affiliation(s)
- Mohamed Hichem Sellami
- The "Immunogenetic Applied to Cells Therapy" Research Unit, The Immunohaematology and HLA-Typing Department, National Blood Transfusion Centre of Tunis, 1006 Tunis, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
24
|
Howes RE, Patil AP, Piel FB, Nyangiri OA, Kabaria CW, Gething PW, Zimmerman PA, Barnadas C, Beall CM, Gebremedhin A, Ménard D, Williams TN, Weatherall DJ, Hay SI. The global distribution of the Duffy blood group. Nat Commun 2011; 2:266. [PMID: 21468018 PMCID: PMC3074097 DOI: 10.1038/ncomms1265] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 03/03/2011] [Indexed: 12/15/2022] Open
Abstract
Blood group variants are characteristic of population groups, and can show conspicuous geographic patterns. Interest in the global prevalence of the Duffy blood group variants is multidisciplinary, but of particular importance to malariologists due to the resistance generally conferred by the Duffy-negative phenotype against Plasmodium vivax infection. Here we collate an extensive geo-database of surveys, forming the evidence-base for a multi-locus Bayesian geostatistical model to generate global frequency maps of the common Duffy alleles to refine the global cartography of the common Duffy variants. We show that the most prevalent allele globally was FY*A, while across sub-Saharan Africa the predominant allele was the silent FY*B(ES) variant, commonly reaching fixation across stretches of the continent. The maps presented not only represent the first spatially and genetically comprehensive description of variation at this locus, but also constitute an advance towards understanding the transmission patterns of the neglected P. vivax malaria parasite.
Collapse
Affiliation(s)
- Rosalind E. Howes
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Anand P. Patil
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Frédéric B. Piel
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Oscar A. Nyangiri
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Programme, Centre for Geographic Medicine Research, Coast, PO Box 230, Kilifi District Hospital, Kilifi 80108, Kenya
| | - Caroline W. Kabaria
- Malaria Public Health and Epidemiology Group, Centre for Geographic Medicine, KEMRI—University of Oxford—Wellcome Trust Collaborative Programme, Kenyatta National Hospital Grounds (behind NASCOP), PO Box 43640-00100, Nairobi, Kenya
| | - Peter W. Gething
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, Ohio 44106-7286, USA
| | - Céline Barnadas
- Vector Borne Diseases Unit, Papua New Guinea Institute for Medical Research, PO BOX 60, Goroka, EHP 441, Papua New Guinea
| | - Cynthia M. Beall
- Anthropology Department, Case Western Reserve University, 238 Mather Memorial Building, 11220 Bellflower Road, Cleveland, Ohio 44106-7125, USA
| | - Amha Gebremedhin
- Department of Internal Medicine, PO Box 14227, Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Didier Ménard
- Molecular Epidemiology Unit, Pasteur Institute of Cambodia, 5 Boulevard Monivong, PO Box 983, Phnom Penh, Cambodia
| | - Thomas N. Williams
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Programme, Centre for Geographic Medicine Research, Coast, PO Box 230, Kilifi District Hospital, Kilifi 80108, Kenya
| | - David J. Weatherall
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Simon I. Hay
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
25
|
Yung SC, Parenti D, Murphy PM. Host chemokines bind to Staphylococcus aureus and stimulate protein A release. J Biol Chem 2010; 286:5069-77. [PMID: 21138841 DOI: 10.1074/jbc.m110.195180] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
There are few examples of host signals that are beneficial to bacteria during infection. Here we found that 31 out of 42 host immunoregulatory chemokines were able to induce release of the virulence factor protein A (SPA) from a strain of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Detailed study of chemokine CXCL9 revealed that SPA release occurred through a post-translational mechanism and was inversely proportional to bacterial density. CXCL9 bound specifically to the cell membrane of CA-MRSA, and the related SPA-releasing chemokine CXCL10 bound to both cell wall and cell membrane. Clinical samples from patients infected with S. aureus and samples from a mouse model of CA-MRSA skin abscess all contained extracellular SPA. Further, SPA-releasing chemokines were present in mouse skin lesions infected with CA-MRSA. Our data identify a potential new mode of immune evasion, in which the pathogen exploits a host defense factor to release a virulence factor; moreover, chemokine binding may serve a scavenging function in immune evasion by S. aureus.
Collapse
Affiliation(s)
- Sunny C Yung
- Molecular Signaling Section, Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
26
|
Mei J, Liu Y, Dai N, Favara M, Greene T, Jeyaseelan S, Poncz M, Lee JS, Worthen GS. CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity 2010; 33:106-17. [PMID: 20643340 PMCID: PMC3748840 DOI: 10.1016/j.immuni.2010.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 05/13/2010] [Accepted: 07/07/2010] [Indexed: 12/14/2022]
Abstract
The chemokine sink hypothesis pertaining to erythrocyte Duffy Antigen Receptor for Chemokines (DARC) during inflammation has received considerable attention, but lacks direct in vivo evidence. Here we demonstrate, using mice with a targeted deletion in CXCL5, that CXCL5 bound erythrocyte DARC and impaired its chemokine scavenging in blood. CXCL5 increased the plasma concentrations of CXCL1 and CXCL2 in part through inhibiting chemokine scavenging, impairing chemokine gradients and desensitizing CXCR2, which led to decreased neutrophil influx to the lung, increased lung bacterial burden and mortality in an Escherichia coli pneumonia model. In contrast, CXCL5 exerted a predominant role in mediating neutrophil influx to the lung during inflammation after LPS inhalation. Platelets and lung resident cells were the sources of homeostatic CXCL5 in blood and inflammatory CXCL5 in the lung respectively. This study presents a paradigm whereby platelets and red cells alter chemokine scavenging and neutrophil-chemokine interaction during inflammation.
Collapse
Affiliation(s)
- Junjie Mei
- Division of Neonatology, Philadelphia, Pennsylvania, USA
| | - Yuhong Liu
- Division of Neonatology, Philadelphia, Pennsylvania, USA
| | - Ning Dai
- Division of Neonatology, Philadelphia, Pennsylvania, USA
| | - Michael Favara
- Division of Neonatology, Philadelphia, Pennsylvania, USA
| | - Teshell Greene
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samithamby Jeyaseelan
- Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, Laboratory of Lung Biology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Mortimer Poncz
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Janet S. Lee
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - G. Scott Worthen
- Division of Neonatology, Philadelphia, Pennsylvania, USA
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Maestre A, Muskus C, Duque V, Agudelo O, Liu P, Takagi A, Ntumngia FB, Adams JH, Sim KL, Hoffman SL, Corradin G, Velez ID, Wang R. Acquired antibody responses against Plasmodium vivax infection vary with host genotype for duffy antigen receptor for chemokines (DARC). PLoS One 2010; 5:e11437. [PMID: 20664684 PMCID: PMC2896388 DOI: 10.1371/journal.pone.0011437] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 04/04/2010] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC) is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are 'resistant' to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens. METHODOLOGY/FINDINGS We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1) and Duffy binding protein (PvDBP) varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull) were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B). The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion. CONCLUSION/SIGNIFICANCE Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the primary mechanisms by which P. vivax evades host immunity is through DARC indirectly down-regulating humoral responses against erythrocytic invasion and development.
Collapse
Affiliation(s)
- Amanda Maestre
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Victoria Duque
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Olga Agudelo
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Pu Liu
- Seattle Biomedical Research Institute (SBRI), Seattle, Washington, United States of America
| | - Akihide Takagi
- Seattle Biomedical Research Institute (SBRI), Seattle, Washington, United States of America
| | | | - John H. Adams
- University of South Florida, Tampa, Florida, United States of America
| | - Kim Lee Sim
- Protein Potential LLC., Rockville, Maryland, United States of America
| | | | | | - Ivan D. Velez
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Ruobing Wang
- Seattle Biomedical Research Institute (SBRI), Seattle, Washington, United States of America
| |
Collapse
|