1
|
Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, Rahmani AH. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024; 14:697. [PMID: 38927099 PMCID: PMC11201554 DOI: 10.3390/biom14060697] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme's stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase's stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratory Technology, Mohan Institute of Nursing and Paramedical Sciences, Mohan Group of Institutions, Bareilly 243302, India;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Tarique Sarwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Sitrarasu Vijaya Prabhu
- Department of Biotechnology, Microbiology and Bioinformatics, National College (Autonomous), Tiruchirapalli 620001, India;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Su J, Wang Y, Xie J, Chen L, Lin X, Lin J, Xiao X. MicroRNA-30a inhibits cell proliferation in a sepsis-induced acute kidney injury model by targeting the YAP-TEAD complex. JOURNAL OF INTENSIVE MEDICINE 2024; 4:231-239. [PMID: 38681790 PMCID: PMC11043643 DOI: 10.1016/j.jointm.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 05/01/2024]
Abstract
Background Acute kidney injury (AKI) is a primary feature of renal complications in patients with sepsis. MicroRNA (miRNA/miR)-30a is an essential regulator of cardiovascular diseases, tumors, phagocytosis, and other physical processes, but whether it participates in sepsis-induced AKI (sepsis-AKI) is unknown. We aimed to elucidate the functions and molecular mechanism underlying miR-30a activity in sepsis-AKI. Methods The classical cecal ligation and puncture (CLP) method and lipopolysaccharide (LPS)-induced Human Kidney 2 (HK-2) cells were used to establish in vivo and in vitro sepsis-AKI models. Specific pathogen-free and mature male Sprague-Dawley (SD) rats, aged 6-8 weeks (weight 200-250 g), were randomly divided into five-time phase subgroups. Fluid resuscitation with 30 mL/kg 37 °C saline was administered after the operation, without antibiotics. Formalin-fixed, paraffin-embedded kidney sections were stained with hematoxylin and eosin. SD rat kidney tissue samples were collected for analysis by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. HK-2 cells were transfected with hsa-miR-30a-3p mimics or inhibitors, and compared with untreated normal controls. RNA, protein, and cell viability were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot, and cell counting kit-8 methods. A Dual-Luciferase Assay Kit (Promega) was used to measure luciferase activity 48 h after transfection with miR-30a-3p mimics. Results Expression levels of miR-30a-3p and miR-30a-5p in renal tissues of the sepsis group were significantly reduced at 12 h and 24 h (P <0.05). Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were significantly increased in renal tissue 3 h after the operation in rats (P <0.05), and gradually decreased 6 h, 12 h, and 24 h after CLP. Levels of miR-30a-5p and miR-30a-3p were significantly down-regulated at 3 h after LPS treatment (P <0.05), and gradually decreased in HK-2 cells. One hour after LPS (10 µg/mL) treatment, TNF-α and IL-1β levels in HK-2 cells were significantly up-regulated (P < 0.05), and they were markedly down-regulated after 3 h (P <0.05). IL-6 expression levels began to rise after LPS treatment of cells, peaked at 6 h (P <0.05), and then decreased to the initial level within a few hours. Stimulation with 10 µg/mL LPS promoted HK-2 cells proliferation, which was inhibited after miR-30a-3p-mimic transfection. Bioinformatics prediction identified 37 potential miR-30a-3p target genes, including transcriptional enhanced associate domain 1 (TEAD1). After transfection of HK-2 cells with miR-30a-3p mimics and miR-30a-3p inhibitor, TEAD1 transcript was significantly up- and down-regulated, respectively (both P <0.05). After LPS treatment (24 h), expression of TEAD1 in the inhibitors group was significantly increased (P <0.01), while that in the mimics group was significantly suppressed (P <0.01). In the dual luciferase reporter experiment, miR-30a-3p overexpression decreased fluorescence intensity (P <0.01) from TEAD1-wt-containing plasmids, but did not influence fluorescence intensity from TEAD1-muta-containing plasmids. LPS may promote HK-2 cells proliferation through the miR-30a-3p/TEAD1 pathway. Conclusion In a background of expression of inflammatory factors, including TNF-α, IL-1β, and IL-6, which were transiently increased in the sepsis-AKI model, miR-30a was down-regulated. Down-regulated miR-30a-3p may promote cell proliferation by targeting TEAD1 in LPS-induced HK-2 cells, demonstrating its potential as a biomarker for early sepsis-AKI diagnosis.
Collapse
Affiliation(s)
- Junfeng Su
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ying Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jing Xie
- Department of Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Long Chen
- Department of Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xinxin Lin
- Department of Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiandong Lin
- Department of Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiongjian Xiao
- Department of Critical Care Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Critical Care Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Manganese Porphyrin Promotes Post Cardiac Arrest Recovery in Mice and Rats. BIOLOGY 2022; 11:biology11070957. [PMID: 36101338 PMCID: PMC9312251 DOI: 10.3390/biology11070957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Introduction Cardiac arrest (CA) and resuscitation induces global cerebral ischemia and reperfusion, causing neurologic deficits or death. Manganese porphyrins, superoxide dismutase mimics, are reportedly able to effectively reduce ischemic injury in brain, kidney, and other tissues. This study evaluates the efficacy of a third generation lipophilic Mn porphyrin, MnTnBuOE-2-PyP5+, Mn(III) ortho meso-tetrakis (N-n-butoxyethylpyridinium-2-yl)porphyrin (MnBuOE, BMX-001), in both mouse and rat models of CA. Methods Forty-eight animals were subjected to 8 min of CA and resuscitated subsequently by chest compression and epinephrine infusion. Vehicle or MnBuOE was given immediately after resuscitation followed by daily subcutaneous injections. Body weight, spontaneous activity, neurologic deficits, rotarod performance, and neuronal death were assessed. Kidney tubular injury was assessed in CA mice. Data were collected by the investigators who were blinded to the treatment groups. Results Vehicle mice had a mortality of 20%, which was reduced by 50% by MnBuOE. All CA mice had body weight loss, spontaneous activity decline, neurologic deficits, and decreased rotarod performance that were significantly improved at three days post MnBuOE daily treatment. MnBuOE treatment reduced cortical neuronal death and kidney tubular injury in mice (p < 0.05) but not hippocampus neuronal death (23% MnBuOE vs. 34% vehicle group, p = 0.49). In rats, they had a better body-weight recovery and increased rotarod latency after MnBuOE treatment when compared to vehicle group (p < 0.01 vs. vehicle). MnBuOE-treated rats had a low percentage of hippocampus neuronal death (39% MnBuOE vs. 49% vehicle group, p = 0.21) and less tubular injury (p < 0.05) relative to vehicle group. Conclusions We demonstrated the ability of MnBuOE to improve post-CA survival, as well as functional outcomes in both mice and rats, which jointly account for the improvement not only of brain function but also of the overall wellbeing of the animals. While MnBuOE bears therapeutic potential for treating CA patients, the females and the animals with comorbidities must be further evaluated before advancing toward clinical trials.
Collapse
|
4
|
Zhang Q, Wang L, Wu M, Liu X, Zhu Y, Zhu J, Xing C. Humanized anti‑TLR4 monoclonal antibody ameliorates lipopolysaccharide‑related acute kidney injury by inhibiting TLR4/NF‑κB signaling. Mol Med Rep 2021; 24:608. [PMID: 34184086 PMCID: PMC8240183 DOI: 10.3892/mmr.2021.12245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
A humanized anti‑Toll‑like receptor 4 (TLR4) monoclonal antibody (mAb) was previously produced using phage antibody library technology, and it was found that the mAb could effectively ameliorate lipopolysaccharide (LPS)‑induced damage in macrophages. The present study investigated the protective effects exerted by the humanized anti‑TLR4 mAb against LPS‑induced acute kidney injury (AKI), as well as the underlying mechanisms. Female C57BL/6 mice were randomly divided into four groups (n=8 per group): i) Control; ii) LPS; iii) LPS + humanized anti‑TLR4 mAb (1 µg/g); and iv) LPS + humanized anti‑TLR4 mAb (10 µg/g). Serum creatinine, blood urea nitrogen, IL‑6, TNFα and IL‑1β levels were then examined, followed by renal pathology assessment, immunohistochemical staining, reverse transcription‑quantitative PCR and western blotting to assess apoptosis/survival/inflammation‑related molecules and kidney injury molecule (KIM)‑1. The humanized anti‑TLR4 mAb successfully ameliorated LPS‑induced AKI and renal pathological damage. The humanized anti‑TLR4 mAb also dose‑dependently suppressed LPS‑induced elevations in serum IL‑6, TNFα and IL‑1β, and decreased the renal expression levels of myeloid differentiation primary response 88 (MyD88), IKKα/β, IκB, p65 and KIM‑1. Compared with the LPS group, renal Bax and KIM‑1 expression levels were significantly downregulated, and Bcl‑2 expression was notably upregulated by the humanized anti‑TLR4 mAb. Moreover, the humanized anti‑TLR4 mAb also significantly decreased the protein expression levels of MyD88, phosphorylated (p)‑IKKα/β, p‑IκB and p‑p65 in the renal tissues compared with the LPS group. Therefore, the present study indicated that the anti‑inflammatory effects of the humanized anti‑TLR4 mAb against LPS‑related AKI in mice were mediated via inhibition of the TLR4/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Nephrology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, P.R. China
| | - Liang Wang
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Mian Wu
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Xiaobin Liu
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Yushan Zhu
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jin Zhu
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210000, P.R. China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
5
|
Hong YA, Park CW. Catalytic Antioxidants in the Kidney. Antioxidants (Basel) 2021; 10:antiox10010130. [PMID: 33477607 PMCID: PMC7831323 DOI: 10.3390/antiox10010130] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species and reactive nitrogen species are highly implicated in kidney injuries that include acute kidney injury, chronic kidney disease, hypertensive nephropathy, and diabetic nephropathy. Therefore, antioxidant agents are promising therapeutic strategies for kidney diseases. Catalytic antioxidants are defined as small molecular mimics of antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, and some of them function as potent detoxifiers of lipid peroxides and peroxynitrite. Several catalytic antioxidants have been demonstrated to be effective in a variety of in vitro and in vivo disease models that are associated with oxidative stress, including kidney diseases. This review summarizes the evidence for the role of antioxidant enzymes in kidney diseases, the classifications of catalytic antioxidants, and their current applications to kidney diseases.
Collapse
Affiliation(s)
- Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6038
| |
Collapse
|
6
|
Das S, Neelamegam K, Peters WN, Periyasamy R, Pandey KN. Depletion of cyclic-GMP levels and inhibition of cGMP-dependent protein kinase activate p21 Cip1 /p27 Kip1 pathways and lead to renal fibrosis and dysfunction. FASEB J 2020; 34:11925-11943. [PMID: 32686172 PMCID: PMC7540536 DOI: 10.1096/fj.202000754r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022]
Abstract
Cell-cycle regulatory proteins (p21Cip1 /p27Kip1 ) inhibit cyclin and cyclin-dependent kinase (CDK) complex that promotes fibrosis and hypertrophy. The present study examined the role of CDK blockers, p21Cip1 /p27Kip1 in the progression of renal fibrosis and dysfunction using Npr1 (encoding guanylyl cyclase/natriuretic peptide receptor-A, GC-A/NPRA) gene-knockout (0-copy; Npr1-/- ), 2-copy (Npr1+/+ ), and 4-copy (Npr1++/++ ) mice treated with GC inhibitor, A71915 and cGMP-dependent protein kinase (cGK) inhibitor, (Rp-8-Br-cGMPS). A significant decrease in renal cGMP levels and cGK activity was observed in 0-copy mice and A71915- and Rp-treated 2-copy and 4-copy mice compared with controls. An increased phosphorylation of Erk1/2, p38, p21Cip1 , and p27Kip1 occurred in 0-copy and A71915-treated 2-copy and 4-copy mice, while Rp treatment caused minimal changes than controls. Pro-inflammatory (TNF-α, IL-6) and pro-fibrotic (TGF-β1) cytokines were significantly increased in plasma and kidneys of 0-copy and A71915-treated 2-copy mice, but to lesser extent in 4-copy mice. Progressive renal pathologies, including fibrosis, mesangial matrix expansion, and tubular hypertrophy were observed in 0-copy and A71915-treated 2-copy and 4-copy mice, but minimally occurred in Rp-treated mice compared with controls. These results indicate that Npr1 has pivotal roles in inhibiting renal fibrosis and hypertrophy and exerts protective effects involving cGMP/cGK axis by repressing CDK blockers p21Cip1 and p27Kip1 .
Collapse
Affiliation(s)
- Subhankar Das
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Kandasamy Neelamegam
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Whitney N Peters
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Ramu Periyasamy
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| |
Collapse
|
7
|
Protopine Protects Mice against LPS-Induced Acute Kidney Injury by Inhibiting Apoptosis and Inflammation via the TLR4 Signaling Pathway. Molecules 2019; 25:molecules25010015. [PMID: 31861525 PMCID: PMC6982873 DOI: 10.3390/molecules25010015] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Corydalis humosa Migo is a traditional Chinese medicine that clears away damp heat, relieves sore. Protopine (PRO) is an alkaloid component isolated from C. humosa Migo. However, the role of protopine in acute kidney injury (AKI) has not yet been reported. This study aims to investigate the effect and mechanism of protopine isolated from C. humosa Migo on lipopolysaccharide (LPS)-induced AKI in mice. Inflammation accumulation was assessed by small animal living imaging. The blood urea nitrogen (BUN), and serum creatinine (Scr) were measured to assess the effects of protopine on renal function in LPS-induced AKI. The levels of tumor necrosis factor (TNF), interleukin-2 (IL-2), interferon-γ (IFN-γ), and (interleukin-10) IL-10 in serum were detected by cytometric bead array. Flow cytometry was used to detect the levels of reactive oxygen species (ROS) in primary kidney cells. The proportions of granulocytes, neutrophils, and macrophages in peripheral blood were examined to evaluate the effect of protopine on immune cells in mice with AKI. Toll-like receptor (TLR4) and apoptotic signaling pathway were detected by Western blot analysis. The results showed that protopine markedly improved the renal function, relieve inflammation, reversed inflammatory cytokines, transformed apoptosis markers, and regulated the TLR4 signaling pathway in mice with AKI induced by LPS. The protopine isolated from C.humosa Migo protected mice against LPS-induced AKI by inhibiting apoptosis and inflammation via the TLR4 signaling pathway, thus providing a molecular basis for a novel medical treatment of AKI.
Collapse
|
8
|
Ye HY, Jin J, Jin LW, Chen Y, Zhou ZH, Li ZY. Chlorogenic Acid Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting TLR4/NF-κB Signal Pathway. Inflammation 2017; 40:523-529. [PMID: 28028753 DOI: 10.1007/s10753-016-0498-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chlorogenic acid (CGA), a polyphenolic compound, exists widely in medicinal herbs, which has been shown a strong antioxidant and anti-inflammatory effect. This study investigated the protective effects and mechanism of CGA on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Treatment of CGA successfully ameliorates LPS-induced renal function and pathological damage. Moreover, CGA dose-dependently suppressed LPS-induced blood urea nitrogen (BUN), creatinine levels, and inflammatory cytokines TNF-α, IL-6, and IL-1β in serum and tissue. The relative proteins' expression of TLR4/NF-κB signal pathway was assessed by western blot analysis. Our results showed that CGA dose-dependently attenuated LPS-induced kidney histopathologic changes, serum BUN, and creatinine levels. CGA also suppressed LPS-induced TNF-α, IL-6, and IL-1β production both in serum and kidney tissues. Furthermore, our results showed that CGA significantly inhibited the LPS-induced expression of phosphorylated NF-κB p65 and IκB as well as the expression of TLR4 signal. In conclusion, our results provide a mechanistic explanation for the anti-inflammatory effects of CGA in LPS-induced AKI mice through inhibiting TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Han-Yang Ye
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jian Jin
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ling-Wei Jin
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi-Hong Zhou
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhan-Yuan Li
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
9
|
Han SJ, Jang HS, Noh MR, Kim J, Kong MJ, Kim JI, Park JW, Park KM. Mitochondrial NADP +-Dependent Isocitrate Dehydrogenase Deficiency Exacerbates Mitochondrial and Cell Damage after Kidney Ischemia-Reperfusion Injury. J Am Soc Nephrol 2016; 28:1200-1215. [PMID: 27821630 DOI: 10.1681/asn.2016030349] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate, synthesizing NADPH, which is essential for mitochondrial redox balance. Ischemia-reperfusion (I/R) is one of most common causes of AKI. I/R disrupts the mitochondrial redox balance, resulting in oxidative damage to mitochondria and cells. Here, we investigated the role of IDH2 in I/R-induced AKI. I/R injury in mice led to the inactivation of IDH2 in kidney tubule cells. Idh2 gene deletion exacerbated the I/R-induced increase in plasma creatinine and BUN levels and the histologic evidence of tubule injury, and augmented the reduction of NADPH levels and the increase in oxidative stress observed in the kidney after I/R. Furthermore, Idh2 gene deletion exacerbated I/R-induced mitochondrial dysfunction and morphologic fragmentation, resulting in severe apoptosis in kidney tubule cells. In cultured mouse kidney proximal tubule cells, Idh2 gene downregulation enhanced the mitochondrial damage and apoptosis induced by treatment with hydrogen peroxide. This study demonstrates that Idh2 gene deletion exacerbates mitochondrial damage and tubular cell death via increased oxidative stress, suggesting that IDH2 is an important mitochondrial antioxidant enzyme that protects cells from I/R insult.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anatomy, Cardiovascular Research Institute and Brain Korea 21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hee-Seong Jang
- Department of Anatomy, Cardiovascular Research Institute and Brain Korea 21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Mi Ra Noh
- Department of Anatomy, Cardiovascular Research Institute and Brain Korea 21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jinu Kim
- Department of Anatomy, Jeju National University School of Medicine, Jeju-Do, Republic of Korea
| | - Min Jung Kong
- Department of Anatomy, Cardiovascular Research Institute and Brain Korea 21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine and Medical Research Center, College of Medicine, Keimyung University, Daegu, Republic of Korea; and
| | - Jeen-Woo Park
- Department of Biochemistry, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, Cardiovascular Research Institute and Brain Korea 21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea;
| |
Collapse
|
10
|
Costa NA, Gut AL, Azevedo PS, Tanni SE, Cunha NB, Magalhães ES, Silva GB, Polegato BF, Zornoff LAM, de Paiva SAR, Balbi AL, Ponce D, Minicucci MF. Erythrocyte superoxide dismutase as a biomarker of septic acute kidney injury. Ann Intensive Care 2016; 6:95. [PMID: 27709557 PMCID: PMC5052240 DOI: 10.1186/s13613-016-0198-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/29/2016] [Indexed: 12/29/2022] Open
Abstract
Background Oxidative stress is a key feature of sepsis and could be a common pathophysiological pathway between septic shock and acute kidney injury (AKI) Our objective was to evaluate the erythrocyte superoxide dismutase (SOD1) activity as predictor of AKI in patients with septic shock. Methods This is a prospective observational study that evaluated 175 consecutive patients over the age of 18 years with septic shock upon intensive care unit (ICU) admission. However, 43 patients were excluded (27 due to AKI at ICU admission). Thus, 132 patients were enrolled in the study. At the time of the patients’ enrollment, demographic information was recorded. Blood samples were taken within the first 24 h of the patient’s admission to determine the erythrocyte SOD1 activity. All patients were followed throughout the ICU stay, and the development of AKI was evaluated. In addition, we also evaluated 17 control subjects. Results The mean age of patients with septic shock was 63.2 ± 15.7 years, 53 % were male and the median ICU stay was 8 days (4–16). Approximately 50.7 % developed AKI during the ICU stay. The median erythrocyte SOD1 activity was 2.92 (2.19–3.92) U/mg Hb. When compared to control subjects, septic shock patients had a higher serum malondialdehyde concentration and lower erythrocyte SOD1 activity. In univariate analysis, erythrocyte SOD1 activity was lower in patients who developed AKI. The ROC curve analysis revealed that lower erythrocyte SOD1 activity was associated with AKI development (AUC 0.686; CI 95 % 0.595–0.777; p < 0.001) at the cutoff of <3.32 U/mg Hb. In the logistic regression models, SOD1 activity higher than 3.32 U/mg Hb was associated with protection of AKI development when adjusted by hemoglobin, phosphorus and APACHE II score (OR 0.309; CI 95 % 0.137–0.695; p = 0.005) and when adjusted by age, gender, chronic kidney disease, admission category (medical or surgery) and APACHE II score (OR 0.129; CI 95 % 0.033–0.508; p = 0.003). Conclusions In conclusion, our data suggest that erythrocyte SOD1 activity could play a role as an early marker of septic AKI and could be seen as a new research avenue in the field of biomarker in AKI. However, our study did not show a strong correlation between SOD activity and AKI. Nevertheless, these original data do warrant further research in order to confirm or not this hypothesis.
Collapse
Affiliation(s)
- Nara Aline Costa
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Ana Lúcia Gut
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Paula Schmidt Azevedo
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Suzana Erico Tanni
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Natália Baraldi Cunha
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Eloá Siqueira Magalhães
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Graziela Biude Silva
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Bertha Furlan Polegato
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Leonardo Antonio Mamede Zornoff
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Sergio Alberto Rupp de Paiva
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - André Luís Balbi
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Daniela Ponce
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Marcos Ferreira Minicucci
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil.
| |
Collapse
|
11
|
Oxidative Damage and Mitochondrial Injuries Are Induced by Various Irrigation Pressures in Rabbit Models of Mild and Severe Hydronephrosis. PLoS One 2015; 10:e0127143. [PMID: 26090815 PMCID: PMC4474913 DOI: 10.1371/journal.pone.0127143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 04/12/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE We aimed to study whether tolerance to irrigation pressure could be modified by evaluating the oxidative damage of obstructed kidneys based on rabbit models experiencing different degrees of hydronephrosis. METHODS A total of 66 rabbits were randomly divided into two experimental groups and a control group. In the experimental groups, the rabbits underwent a surgical procedure inducing mild (group M, n=24) or severe (group S, n=24) hydronephrosis. In each experimental group, the rabbits were then randomly divided into 4 subgroups (M0-M3 and S0-S3) consisting of 6 rabbits each. Group 0 received no perfusion. Groups 1 through 3 were perfused with 20, 60 and 100 mmHg fluid, respectively. For the control group, after a sham operation was performed, the rabbits were divided into 4 subgroups and were perfused with fluid at 0, 20, 60 or 100 mmHg of pressure. Kidney injuries was evaluated by neutrophil gelatinase associated lipocalin (NGAL). Oxidative damage was assessed by analyzing superoxide dismutase (Mn-SOD) activity, malondialdehyde (MDA) levels, glutathione reductase (GR), catalase (CAT) and peroxide (H2O2) levels, mitochondrial injuries was assessed by mitochondrial membrane potential (MMP), the mitochondrial ultrastructure and tubular cell apoptosis. RESULTS In the experimental groups, all results were similar for groups 0 and 1. In group 2, abnormalities were observed in the S group only, and the kidneys of rabbits in group 3 suffered oxidative damage and mitochondrial injuries with increased NGAL, decreased Mn-SOD, GR and CAT,increased MDA and H2O2, lower levels of MMP, mitochondrial vacuolization and an increased apoptotic index. CONCLUSION In rabbits, severely obstructed kidneys were more susceptible to oxidative damage and mitochondrial injury than mildly obstructed kidneys when subjected to higher degrees of kidney perfusion pressure.
Collapse
|
12
|
Igoillo-Esteve M, Gurgul-Convey E, Hu A, Romagueira Bichara Dos Santos L, Abdulkarim B, Chintawar S, Marselli L, Marchetti P, Jonas JC, Eizirik DL, Pandolfo M, Cnop M. Unveiling a common mechanism of apoptosis in β-cells and neurons in Friedreich's ataxia. Hum Mol Genet 2015; 24:2274-86. [PMID: 25552656 DOI: 10.1093/hmg/ddu745] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disorder associated with cardiomyopathy and diabetes. Effective therapies for FRDA are an urgent unmet need; there are currently no options to prevent or treat this orphan disease. FRDA is caused by reduced expression of the mitochondrial protein frataxin. We have previously demonstrated that pancreatic β-cell dysfunction and death cause diabetes in FRDA. This is secondary to mitochondrial dysfunction and apoptosis but the underlying molecular mechanisms are not known. Here we show that β-cell demise in frataxin deficiency is the consequence of oxidative stress-mediated activation of the intrinsic pathway of apoptosis. The pro-apoptotic Bcl-2 family members Bad, DP5 and Bim are the key mediators of frataxin deficiency-induced β-cell death. Importantly, the intrinsic pathway of apoptosis is also activated in FRDA patients' induced pluripotent stem cell-derived neurons. Interestingly, cAMP induction normalizes mitochondrial oxidative status and fully prevents activation of the intrinsic pathway of apoptosis in frataxin-deficient β-cells and neurons. This preclinical study suggests that incretin analogs hold potential to prevent/delay both diabetes and neurodegeneration in FRDA.
Collapse
Affiliation(s)
| | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover 30625, Germany
| | - Amélie Hu
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Laila Romagueira Bichara Dos Santos
- Institut de Recherche Expérimentale et Clinique, Pôle d' Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | - Satyan Chintawar
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Lorella Marselli
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy and
| | - Piero Marchetti
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy and
| | - Jean-Christophe Jonas
- Institut de Recherche Expérimentale et Clinique, Pôle d' Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | - Massimo Pandolfo
- Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research and, Division of Endocrinology, Erasmus Hospital, 1070, Brussels, Belgium
| |
Collapse
|
13
|
Abstract
Acute kidney injury (AKI) is a serious clinical condition with no effective treatment. Tubular cells are key targets in AKI. Tubular cells and, specifically, proximal tubular cells are extremely rich in mitochondria and mitochondrial changes had long been known to be a feature of AKI. However, only recent advances in understanding the molecules involved in mitochondria biogenesis and dynamics and the availability of mitochondria-targeted drugs has allowed the exploration of the specific role of mitochondria in AKI. We now review the morphological and functional mitochondrial changes during AKI, as well as changes in the expression of mitochondrial genes and proteins. Finally, we summarise the current status of novel therapeutic strategies specifically targeting mitochondria such as mitochondrial permeability transition pore (MPTP) opening inhibitors (cyclosporine A (CsA)), quinone analogues (MitoQ, SkQ1 and SkQR1), superoxide dismutase (SOD) mimetics (Mito-CP), Szeto-Schiller (SS) peptides (Bendavia) and mitochondrial division inhibitors (mdivi-1). MitoQ, SkQ1, SkQR1, Mito-CP, Bendavia and mdivi-1 have improved the course of diverse experimental models of AKI. Evidence for a beneficial effect of CsA on human cardiac ischaemia-reperfusion injury derives from a clinical trial; however, CsA is nephrotoxic. MitoQ and Bendavia have been shown to be safe for humans. Ongoing clinical trials are testing the efficacy of Bendavia in AKI prevention following renal artery percutaneous transluminal angioplasty.
Collapse
|
14
|
Yang H, Li H, Wang Z, Shi Y, Jiang G, Zeng F. Exendin-4 ameliorates renal ischemia-reperfusion injury in the rat. J Surg Res 2013; 185:825-32. [DOI: 10.1016/j.jss.2013.06.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 12/25/2022]
|
15
|
Abstract
Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
16
|
Li Y, Tong X, Maimaitiyiming H, Clemons K, Cao JM, Wang S. Overexpression of cGMP-dependent protein kinase I (PKG-I) attenuates ischemia-reperfusion-induced kidney injury. Am J Physiol Renal Physiol 2011; 302:F561-70. [PMID: 22160771 DOI: 10.1152/ajprenal.00355.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
cGMP-dependent protein kinase (PKG) is a multifunctional protein. Whether PKG plays a role in ischemia-reperfusion-induced kidney injury (IRI) is unknown. In this study, using an in vivo mouse model of renal IRI, we determined the effect of renal IRI on kidney PKG-I levels and also evaluated whether overexpression of PKG-I attenuates renal IRI. Our studies demonstrated that PKG-I levels (mRNA and protein) were significantly decreased in the kidney from mice undergoing renal IRI. Moreover, PKG-I transgenic mice had less renal IRI, showing improved renal function and less tubular damage compared with their wild-type littermates. Transgenic mice in the renal IRI group had decreased tubular cell apoptosis accompanied by decreased caspase 3 levels/activity and increased Bcl-2 and Bag-1 levels. In addition, transgenic mice undergoing renal IRI demonstrated reduced macrophage infiltration into the kidney and reduced production of inflammatory cytokines. In vitro studies showed that peritoneal macrophages isolated from transgenic mice had decreased migration compared with control macrophages. Taken together, these results suggest that PKG-I protects against renal IRI, at least in part through inhibiting inflammatory cell infiltration into the kidney, reducing kidney inflammation, and inhibiting tubular cell apoptosis.
Collapse
Affiliation(s)
- Yanzhang Li
- Graduate Center for Nutritional Sciences, Univ. of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
17
|
Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:505-16. [PMID: 22119717 DOI: 10.1016/j.ajpath.2011.10.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/30/2011] [Accepted: 10/17/2011] [Indexed: 11/23/2022]
Abstract
Acute kidney injury is a frequent and serious complication of sepsis. To better understand the development of sepsis-induced acute kidney injury, we performed the first time-dependent studies to document changes in renal hemodynamics and oxidant generation in the peritubular microenvironment using the murine cecal ligation and puncture (CLP) model of sepsis. CLP caused an increase in renal capillary permeability at 2 hours, followed by decreases in mean arterial pressure, renal blood flow (RBF), and renal capillary perfusion at 4 hours, which were sustained through 18 hours. The decline in hemodynamic parameters was associated with hypoxia and oxidant generation in the peritubular microenvironment and a decrease in glomerular filtration rate. The role of oxidants was assessed using the superoxide dismutase mimetic/peroxynitrite scavenger MnTMPyP [Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin]. At 10 mg/kg administered 6 hours after CLP, MnTMPyP did not alter blood pressure, but blocked superoxide and peroxynitrite generation, reversed the decline in RBF, capillary perfusion, and glomerular filtration rate, preserved tubular architecture, and increased 48-hour survival. However, MnTMPyP administered at CLP did not prevent capillary permeability or the decrease in RBF and capillary perfusion, which suggests that these early events are not mediated by oxidants. These data demonstrate that renal hemodynamic changes occur early after sepsis and that targeting the later oxidant generation can break the cycle of injury and enable the microcirculation and renal function to recover.
Collapse
|