1
|
Ma X, Wang X, Jia X, Hui JH, Shofaro JH, Tao R, Hui MM. Size-dependent aggregation of erythrocytes by low molecular weight hyaluronic acids of different sizes: bioactivity and quality control potential. Front Physiol 2025; 16:1527354. [PMID: 40236823 PMCID: PMC11996927 DOI: 10.3389/fphys.2025.1527354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/12/2025] [Indexed: 04/17/2025] Open
Abstract
Introduction Hyaluronic acid (HA) is a crucial biological molecule whose diverse functions are strongly influenced by its molecular weight. In particular, low molecular weight HA (LMW-HA) fragments-such as HA60 (average 60 kDa), HA35 (average 35 kDa), and HA24 (average 24 kDa)-exhibit enhanced tissue permeability and unique interactions with cell surfaces compared to high molecular weight HA (HMW-HA). This study investigates the size-dependent aggregation effects of LMW-HA on erythrocytes and examines the implications for bioactivity, quality control, and therapeutic applications. Methods We investigated the effects of LMW-HA fragments on erythrocyte aggregation across molecular sizes using erythrocyte sedimentation rate (ESR) assays, CD44 receptor blocking assays, and molecular weight assessment via gel electrophoresis and GPC-MALLS. LMW-HA samples were applied at varying concentrations to measure their binding affinity to erythrocytes, while CD44 antibodies were used to assess receptor involvement. Species-specificity of aggregation was examined by comparing erythrocytes from different animals. Results LMW-HA induced erythrocyte aggregation in a size-dependent manner, with HA60 exhibiting the strongest binding affinity, followed by HA35 and HA24. Aggregation was partially reversible and could be inhibited by CD44 antibodies, indicating a receptor-mediated interaction. Minimum effective concentrations for aggregation were inversely related to molecular weight, with lower molecular weight fragments requiring higher concentrations. Species-specific effects were also observed, highlighting variations in erythrocyte-HA interactions across different animals. Discussion The study suggests that LMW-HA facilitates erythrocyte aggregation through CD44-mediated binding, offering insights into HA's role in erythrocyte physiology and its effects on blood rheology. The findings support the potential of LMW-HA for therapeutic applications in pain and inflammation management, given its enhanced tissue permeability and reversible interaction with erythrocytes. Additionally, the size-dependent aggregation provides a valuable parameter for quality control, enabling consistency in LMW-HA products. These results underscore the importance of molecular weight in determining HA's physiological and pharmacological activity, paving the way for further clinical research to confirm species-specific effects and optimize safe therapeutic uses of LMW-HA.
Collapse
Affiliation(s)
- Xinyue Ma
- Biomedical Engineering, Brown University, Providence, RI, United States
| | - Xiao Wang
- Department of Hepatobiliary-Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - XiaoXiao Jia
- College of Animal Science and Technology, Qingdao Agriculture University, Qingdao, China
| | - Jessica H. Hui
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, United States
| | - Joshua H. Shofaro
- College of Letters and Science, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Ran Tao
- Department of Hepatobiliary-Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Mizhou Matthew Hui
- College of Animal Science and Technology, Qingdao Agriculture University, Qingdao, China
| |
Collapse
|
2
|
Watson N, Kuppuswamy S, Ledford WL, Sukumari-Ramesh S. The role of HDAC3 in inflammation: mechanisms and therapeutic implications. Front Immunol 2024; 15:1419685. [PMID: 39050859 PMCID: PMC11266039 DOI: 10.3389/fimmu.2024.1419685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Histone deacetylases (HDACs) are critical regulators of inflammatory gene expression, and the efficacy of pan-HDAC inhibitors has been implicated in various disease conditions. However, it remains largely unclear how HDACs precisely regulate inflammation. To this end, evaluating the isoform-specific function of HDACs is critical, and the isoform-specific targeting could also circumvent the off-target effects of pan-HDAC inhibitors. This review provides an overview of the roles of HDAC3, a class I HDAC isoform, in modulating inflammatory responses and discusses the molecular mechanisms by which HDAC3 regulates inflammation associated with brain pathology, arthritis, cardiovascular diseases, lung pathology, allergic conditions, and kidney disorders. The articles also identify knowledge gaps in the field for future studies. Despite some conflicting reports, the selective inhibition of HDAC3 has been demonstrated to play a beneficial role in various inflammatory pathologies. Exploring the potential of HDAC3 inhibition to improve disease prognosis is a promising avenue requiring further investigation.
Collapse
Affiliation(s)
| | | | | | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
Alhakamy NA, Hosny KM, Rizg WY, Eshmawi BA, Badr MY, Safhi AY, Murshid SSA. Development and Optimization of Hyaluronic Acid-Poloxamer In-Situ Gel Loaded with Voriconazole Cubosomes for Enhancement of Activity against Ocular Fungal Infection. Gels 2022; 8:gels8040241. [PMID: 35448142 PMCID: PMC9032757 DOI: 10.3390/gels8040241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Fungal eye infections are largely disseminated, especially in developing countries where they may leave over half a million people blind per year. The current study aims to boost the voriconazole antifungal efficiency via loading it as cubosomes (VZ-Cub) into hyaluronic acid and poloxamer-based ocular in situ gel. VZ-Cub were fabricated applying Box-Behnken design and employing phytantriol, poloxamer F127, and VZ amounts as independent variables. The produced nano vesicles were evaluated for the dependent variables of particle size (PS), entrapment efficiency (EE%), and transcorneal steady-state flux (Jss) of the VZ, and, the obtained optimal VZ-Cub was loaded into an in situ gel base to enhance its ocular residence time. The in situ gel formulation was tested for its gelation temperature, drug release behavior, transcorneal permeation effects, and antifungal activity. The optimized VZ-Cub consisted of 100 mg of phytantriol, 60 mg of poloxamer F127, and 21 mg of VZ. This formulation led to a minimum PS of 71 nm, an EE% of 66%, Jss value of 6.5 µg/(cm2·min), and stability index of 94 ± 2%. The optimized VZ-Cub-loaded in situ gel released 84% VZ after 12 h and yielded a 4.5-fold increase in drug permeation compared with the VZ aqueous dispersion. The antifungal activity, which was obtained by measuring the fungal growth inhibition zones, revealed that the VZ-Cub-loaded in situ gel formulation had a 3.89-fold increase in antifungal activity compared with the VZ dispersion. In summary, an ocular in situ gel loaded with VZ-Cub could be an effective novel nano-paradigm with enhanced transcorneal permeation and antifungal properties.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence:
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bayan A. Eshmawi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (B.A.E.)
| | - Moutaz Y. Badr
- Department of Pharmaceutics, Collage of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Awaji Y. Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia;
| | - Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
4
|
Caraballo L, Valenta R, Puerta L, Pomés A, Zakzuk J, Fernandez-Caldas E, Acevedo N, Sanchez-Borges M, Ansotegui I, Zhang L, van Hage M, Abel-Fernández E, Karla Arruda L, Vrtala S, Curin M, Gronlund H, Karsonova A, Kilimajer J, Riabova K, Trifonova D, Karaulov A. The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. World Allergy Organ J 2020; 13:100118. [PMID: 32373267 PMCID: PMC7195550 DOI: 10.1016/j.waojou.2020.100118] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of allergens have been discovered but we know little about their potential to induce inflammation (allergenic activity) and symptoms. Nowadays, the clinical importance of allergens is determined by the frequency and intensity of their IgE antibody binding (allergenicity). This is a rather limited parameter considering the development of experimental allergology in the last 20 years and the criteria that support personalized medicine. Now it is known that some allergens, in addition to their IgE antibody binding properties, can induce inflammation through non IgE mediated pathways, which can increase their allergenic activity. There are several ways to evaluate the allergenic activity, among them the provocation tests, the demonstration of non-IgE mediated pathways of inflammation, case control studies of IgE-binding frequencies, and animal models of respiratory allergy. In this review we have explored the current status of basic and clinical research on allergenic activity of indoor allergens and confirm that, for most of them, this important property has not been investigated. However, during recent years important advances have been made in the field, and we conclude that for at least the following, allergenic activity has been demonstrated: Der p 1, Der p 2, Der p 5 and Blo t 5 from HDMs; Per a 10 from P. americana; Asp f 1, Asp f 2, Asp f 3, Asp f 4 and Asp f 6 from A. fumigatus; Mala s 8 and Mala s 13 from M. sympodialis; Alt a 1 from A. alternata; Pen c 13 from P. chrysogenum; Fel d 1 from cats; Can f 1, Can f 2, Can f 3, Can f 4 and Can f 5 from dogs; Mus m 1 from mice and Bos d 2 from cows. Defining the allergenic activity of other indoor IgE antibody binding molecules is necessary for a precision-medicine-oriented management of allergic diseases.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- Corresponding author. Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia.
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, Moscow, Russian Federation
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Anna Pomés
- Indoor Biotechnologies, Inc. Charlottesville, VA, USA
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Mario Sanchez-Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad, Caracas, Venezuela
| | - Ignacio Ansotegui
- Department of Allergy & Immunology Hospital Quironsalud Bizkaia, Bilbao, Spain
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Abel-Fernández
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - L. Karla Arruda
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans Gronlund
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jonathan Kilimajer
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - Ksenja Riabova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Daria Trifonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
5
|
Kids, Difficult Asthma and Fungus. J Fungi (Basel) 2020; 6:jof6020055. [PMID: 32349347 PMCID: PMC7345103 DOI: 10.3390/jof6020055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/28/2022] Open
Abstract
Fungi have many potential roles in paediatric asthma, predominantly by being a source of allergens (severe asthma with fungal sensitization, SAFS), and also directly damaging the epithelial barrier and underlying tissue by releasing proteolytic enzymes (fungal bronchitis). The umbrella term ‘fungal asthma’ is proposed for these manifestations. Allergic bronchopulmonary aspergillosis (ABPA) is not a feature of childhood asthma, for unclear reasons. Diagnostic criteria for SAFS are based on sensitivity to fungal allergen(s) demonstrated either by skin prick test or specific IgE. In children, there are no exclusion criteria on total IgE levels or IgG precipitins because of the rarity of ABPA. Diagnostic criteria for fungal bronchitis are much less well established. Data in adults and children suggest SAFS is associated with worse asthma control and greater susceptibility to asthma attacks than non-sensitized patients. The data on whether anti-fungal therapy is beneficial are conflicting. The pathophysiology of SAFS is unclear, but the epithelial alarmin interleukin-33 is implicated. However, whether individual fungi have different pathobiologies is unclear. There are many unanswered questions needing further research, including how fungi interact with other allergens, bacteria, and viruses, and what optimal therapy should be, including whether anti-neutrophilic strategies, such as macrolides, should be used. Considerable further research is needed to unravel the complex roles of different fungi in severe asthma.
Collapse
|
6
|
Zhu Z, Guo Y, Shi H, Liu CL, Panganiban RA, Chung W, O'Connor LJ, Himes BE, Gazal S, Hasegawa K, Camargo CA, Qi L, Moffatt MF, Hu FB, Lu Q, Cookson WOC, Liang L. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J Allergy Clin Immunol 2020; 145:537-549. [PMID: 31669095 PMCID: PMC7010560 DOI: 10.1016/j.jaci.2019.09.035] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clinical and epidemiologic studies have shown that obesity is associated with asthma and that these associations differ by asthma subtype. Little is known about the shared genetic components between obesity and asthma. OBJECTIVE We sought to identify shared genetic associations between obesity-related traits and asthma subtypes in adults. METHODS A cross-trait genome-wide association study (GWAS) was performed using 457,822 subjects of European ancestry from the UK Biobank. Experimental evidence to support the role of genes significantly associated with both obesity-related traits and asthma through a GWAS was sought by using results from obese versus lean mouse RNA sequencing and RT-PCR experiments. RESULTS We found a substantial positive genetic correlation between body mass index and later-onset asthma defined by asthma age of onset at 16 years or greater (Rg = 0.25, P = 9.56 × 10-22). Mendelian randomization analysis provided strong evidence in support of body mass index causally increasing asthma risk. Cross-trait meta-analysis identified 34 shared loci among 3 obesity-related traits and 2 asthma subtypes. GWAS functional analyses identified potential causal relationships between the shared loci and Genotype-Tissue Expression (GTEx) quantitative trait loci and shared immune- and cell differentiation-related pathways between obesity and asthma. Finally, RNA sequencing data from lungs of obese versus control mice found that 2 genes (acyl-coenzyme A oxidase-like [ACOXL] and myosin light chain 6 [MYL6]) from the cross-trait meta-analysis were differentially expressed, and these findings were validated by using RT-PCR in an independent set of mice. CONCLUSIONS Our work identified shared genetic components between obesity-related traits and specific asthma subtypes, reinforcing the hypothesis that obesity causally increases the risk of asthma and identifying molecular pathways that might underlie both obesity and asthma.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Yanjun Guo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huwenbo Shi
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass
| | - Cong-Lin Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Ronald Allan Panganiban
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Wonil Chung
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass
| | - Luke J O'Connor
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pa
| | - Steven Gazal
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Carlos A Camargo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, La
| | - Miriam F Moffatt
- Section of Genomic Medicine, National Heart and Lung Institute, London, United Kingdom
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - William O C Cookson
- Section of Genomic Medicine, National Heart and Lung Institute, London, United Kingdom
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Boston, Mass; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Mass.
| |
Collapse
|
7
|
Morán G, Uberti B, Ortloff A, Folch H. Aspergillus fumigatus-sensitive IgE is associated with bronchial hypersensitivity in a murine model of neutrophilic airway inflammation. J Mycol Med 2017; 28:128-136. [PMID: 29233467 DOI: 10.1016/j.mycmed.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 11/29/2022]
Abstract
Neutrophils are the predominant inflammatory cells that infiltrate airways during acute exacerbation of asthma. The importance of A. fumigatus sensitization, and IgE response in the airways in patients with acute asthma is unclear. Rockefeller (RK) mice were sensitized with A. fumigatus extract protein. The animals were subsequently challenged with different degrees of A. fumigatus contamination in the cage bedding. All groups of mice were euthanized to obtain bronchoalveolar lavage fluid (BALF) for cytological and Elisa assays, and lung tissue for histological analysis. Moreover, several bioassays were conducted to determine whether BALF IgE antibodies can activate mast cells. In this study, we demonstrated that exposure of sensitized mice to a known concentration of A. fumigatus conidia produces bronchial hyperreactivity with marked neutrophilic bronchial infiltration and increased BALF IgE, capable of triggering mast cell degranulation. This study suggests that IgE may play a role in bronchial hyperreactivity associated to A. fumigatus exposure in mice. Mice sensitized and challenged with this fungus showed characteristics of severe asthma, with an increase of BALF neutrophils, histological changes consistent with severe asthma and an increase of IgE capable of triggering type I hypersensitivity.
Collapse
Affiliation(s)
- G Morán
- Department of pharmacology, faculty of veterinary science, universidad Austral de Chile, Valdivia, Chile.
| | - B Uberti
- Department of clinical veterinary sciences, faculty of veterinary sciences, universidad Austral de Chile, Valdivia, Chile
| | - A Ortloff
- College of veterinary medicine, universidad Católica de Temuco, Temuco, Chile
| | - H Folch
- Department of immunology, faculty of medicine, universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
8
|
Goldstein BD, Lauer ME, Caplan AI, Bonfield TL. Chronic asthma and Mesenchymal stem cells: Hyaluronan and airway remodeling. J Inflamm (Lond) 2017; 14:18. [PMID: 28860944 PMCID: PMC5577750 DOI: 10.1186/s12950-017-0165-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/03/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that ovalbumin sensitization promotes chronic asthma phenotype in murine asthma model. Human mesenchymal stem cells (hMSCs) are multipotent cells in vitro that have been shown to decrease inflammation and can reverse airway remodeling when infused into an in vivo chronic asthma model. However, the mechanism by which hMSCs reverse remodeling is still unclear. In this study, we hypothesized that hMSCs influence remodeling by decreasing extracellular matrix (ECM) deposition, more specifically by decreasing collagen I, collagen III, and hyaluronan synthesis. METHODS Chronic asthma phenotype was produced in an in vitro model with 3 T3 murine airway fibroblast cells by stimulating with GM-CSF. Collagen I and collagen III gene expression was investigated using RT-PCR and Taqman techniques. Hyaluronan was evaluated using FACE and Western Blots. The chronic asthma phenotype was produced in vivo in murine model using sensitization with ovalbumin with and without hMSC infusion therapy. ECM deposition (specifically trichrome staining, soluble and insoluble collagen deposition, and hyaluronan production) was evaluated. Image quantification was used to monitor trichrome staining changes. RESULTS GM-CSF which induced collagen I and collagen III production was down-regulated with hMSC using co-culture. In the in vivo model, Ovalbumin induced enhanced ECM deposition, soluble and insoluble collagen production, and lung elastance. hMSC infusions decreased ECM deposition as evidenced by decreases in soluble and insoluble collagen production. CONCLUSION hMSCs participate in improved outcomes of remodeling by reversing excess collagen deposition and changing hyaluronan levels.
Collapse
Affiliation(s)
- Benjamin D. Goldstein
- Department of Pediatric Pulmonology, Rainbow Babies and Children’s Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - Mark E. Lauer
- Cleveland Clinic Foundation, Department of Biomedical Engineering, Cleveland, OH USA
| | - Arnold I. Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH USA
| | - Tracey L. Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Sleep Medicine, 10900 Euclid Avenue, Biomedical Research Building #822, Cleveland, OH 44106-4948 USA
| |
Collapse
|
9
|
Samarasinghe AE, Melo RCN, Duan S, LeMessurier KS, Liedmann S, Surman SL, Lee JJ, Hurwitz JL, Thomas PG, McCullers JA. Eosinophils Promote Antiviral Immunity in Mice Infected with Influenza A Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3214-3226. [PMID: 28283567 PMCID: PMC5384374 DOI: 10.4049/jimmunol.1600787] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 02/11/2017] [Indexed: 12/26/2022]
Abstract
Eosinophils are multifunctional cells of the innate immune system linked to allergic inflammation. Asthmatics were more likely to be hospitalized but less likely to suffer severe morbidity and mortality during the 2009 influenza pandemic. These epidemiologic findings were recapitulated in a mouse model of fungal asthma wherein infection during heightened allergic inflammation was protective against influenza A virus (IAV) infection and disease. Our goal was to delineate a mechanism(s) by which allergic asthma may alleviate influenza disease outcome, focused on the hypothesis that pulmonary eosinophilia linked with allergic respiratory disease is able to promote antiviral host defenses against the influenza virus. The transfer of eosinophils from the lungs of allergen-sensitized and challenged mice into influenza virus-infected mice resulted in reduced morbidity and viral burden, improved lung compliance, and increased CD8+ T cell numbers in the airways. In vitro assays with primary or bone marrow-derived eosinophils were used to determine eosinophil responses to the virus using the laboratory strain (A/PR/08/1934) or the pandemic strain (A/CA/04/2009) of IAV. Eosinophils were susceptible to IAV infection and responded by activation, piecemeal degranulation, and upregulation of Ag presentation markers. Virus- or viral peptide-exposed eosinophils induced CD8+ T cell proliferation, activation, and effector functions. Our data suggest that eosinophils promote host cellular immunity to reduce influenza virus replication in lungs, thereby providing a novel mechanism by which hosts with allergic asthma may be protected from influenza morbidity.
Collapse
Affiliation(s)
- Amali E Samarasinghe
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103;
- Children's Foundation Research Institute, Memphis, TN 38103
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Federal University of Juiz de Fora, Juiz de Fora, MG 36036, Brazil
| | - Susu Duan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Kim S LeMessurier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
- Children's Foundation Research Institute, Memphis, TN 38103
| | - Swantje Liedmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - James J Lee
- Department of Biochemistry, Mayo Clinic, Scottsdale, AZ 85259
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Jonathan A McCullers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
- Children's Foundation Research Institute, Memphis, TN 38103
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
10
|
Allergic Inflammation in Aspergillus fumigatus-Induced Fungal Asthma. Curr Allergy Asthma Rep 2015; 15:59. [PMID: 26288940 DOI: 10.1007/s11882-015-0561-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although fungi are pervasive in many environments, few cause disease in humans. Of these, Aspergillus fumigatus is particularly well suited to be a pathogen of the human lung. Its physical and biological characteristics combine to provide an organism that can cause tremendous morbidity and high mortality if left unchecked. Luckily, that is rarely the case. However, repeated exposure to inhaled A. fumigatus spores often results in an immune response that carries significant immunopathology, exacerbating asthma and changing the structure of the lung with chronic impacts to pulmonary function. This review focuses on the current understanding of the mechanisms that are associated with fungal exposure, sensitization, and infection in asthmatics, as well as the function of various inflammatory cells associated with severe asthma with fungal sensitization.
Collapse
|
11
|
The Rise and Fall of Hyaluronan in Respiratory Diseases. Int J Cell Biol 2015; 2015:712507. [PMID: 26448757 PMCID: PMC4581576 DOI: 10.1155/2015/712507] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 05/03/2015] [Indexed: 12/24/2022] Open
Abstract
In normal airways, hyaluronan (HA) matrices are primarily located within the airway submucosa, pulmonary vasculature walls, and, to a lesser extent, the alveoli. Following pulmonary injury, elevated levels of HA matrices accumulate in these regions, and in respiratory secretions, correlating with the extent of injury. Animal models have provided important insight into the role of HA in the onset of pulmonary injury and repair, generally indicating that the induction of HA synthesis is an early event typically preceding fibrosis. The HA that accumulates in inflamed airways is of a high molecular weight (>1600 kDa) but can be broken down into smaller fragments (<150 kDa) by inflammatory and disease-related mechanisms that have profound effects on HA pathobiology. During inflammation in the airways, HA is often covalently modified with heavy chains from inter-alpha-inhibitor via the enzyme tumor-necrosis-factor-stimulated-gene-6 (TSG-6) and this modification promotes the interaction of leukocytes with HA matrices at sites of inflammation. The clearance of HA and its return to normal levels is essential for the proper resolution of inflammation. These data portray HA matrices as an important component of normal airway physiology and illustrate its integral roles during tissue injury and repair among a variety of respiratory diseases.
Collapse
|
12
|
Kim Y, Eom S, Park D, Kim H, Jeoung D. The Hyaluronic Acid-HDAC3-miRNA Network in Allergic Inflammation. Front Immunol 2015; 6:210. [PMID: 25983734 PMCID: PMC4415435 DOI: 10.3389/fimmu.2015.00210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/17/2015] [Indexed: 12/19/2022] Open
Abstract
We previously reported the anti-allergic effect of high molecular weight form of hyaluronic acid (HMW-HA). In doing so, HA targets CD44 and inhibits FcεRI signaling and cross-talk between epidermal growth factor receptor (EGFR) and FcεRI. We previously reported the role of histone deacetylases (HDACs) in allergic inflammation and allergic inflammation-promoted enhanced tumorigenic potential. We reported regulatory role of HA in the expression of HDAC3. In this review, we will discuss molecular mechanisms associated with anti-allergic effect of HA in relation with HDACs. The role of microRNAs (miRNAs) in allergic inflammation has been reported. We will also discuss the role of miRNAs in allergic inflammation in relation with HA-mediated anti-allergic effects.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University , Chuncheon , South Korea
| | - Sangkyung Eom
- Department of Biochemistry, College of Natural Sciences, Kangwon National University , Chuncheon , South Korea
| | - Deokbum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University , Chuncheon , South Korea
| | - Hyuna Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University , Chuncheon , South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University , Chuncheon , South Korea
| |
Collapse
|
13
|
Ghosh S, Hoselton SA, Wanjara SB, Carlson J, McCarthy JB, Dorsam GP, Schuh JM. Hyaluronan stimulates ex vivo B lymphocyte chemotaxis and cytokine production in a murine model of fungal allergic asthma. Immunobiology 2015; 220:899-909. [PMID: 25698348 DOI: 10.1016/j.imbio.2015.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/24/2015] [Indexed: 12/19/2022]
Abstract
Allergic asthma is a chronic inflammatory disease of the airways characterized by excessive eosinophilic and lymphocytic inflammation with associated changes in the extracellular matrix (ECM) resulting in airway wall remodeling. Hyaluronan (HA) is a nonsulfated glycosaminoglycan ECM component that functions as a structural cushion in its high molecular mass (HMM) but has been implicated in metastasis and other disease processes when it is degraded to smaller fragments. However, relatively little is known about the role HA in mediating inflammatory responses in allergy and asthma. In the present study, we used a murine Aspergillus fumigatus inhalational model to mimic human disease. After observing in vivo that a robust B cell recruitment followed a massive eosinophilic egress to the lumen of the allergic lung and corresponded with the detection of low molecular mass HA (LMM HA), we examined the effect of HA on B cell chemotaxis and cytokine production in the ex vivo studies. We found that LMM HA functioned through a CD44-mediated mechanism to elicit chemotaxis of B lymphocytes, while high molecular mass HA (HMM HA) had little effect. LMM HA, but not HMM HA, also elicited the production of IL-10 and TGF-β1 in these cells. Taken together, these findings demonstrate a critical role for ECM components in mediating leukocyte migration and function which are critical to the maintenance of allergic inflammatory responses.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Scott A Hoselton
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Steve B Wanjara
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jennifer Carlson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Glenn P Dorsam
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jane M Schuh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
14
|
Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease. Immunobiology 2014; 220:575-88. [PMID: 25582403 DOI: 10.1016/j.imbio.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
Abstract
Asthma is frequently caused and/or exacerbated by sensitization to allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen, leading to a disease course that is often very difficult to treat with standard asthma therapies. As a result of interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to allergens may experience a greater degree of tissue injury followed by airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. In addition, turnover of extracellular matrix (ECM) components is a hallmark of tissue injury and repair. This review focuses on the role of the glycosaminoglycan hyaluronan (HA), a component of the ECM, in pulmonary injury and repair with an emphasis on allergic asthma. Both the synthesis and degradation of the ECM are critical contributors to tissue repair and remodeling. Fragmented HA accumulates during tissue injury and functions in ways distinct from the larger native polymer. There is gathering evidence that HA degradation products are active participants in stimulating the expression of inflammatory genes in a variety of immune cells at the injury site. In this review, we will consider recent advances in the understanding of the mechanisms that are associated with HA accumulation and inflammatory cell recruitment in the asthmatic lung.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Scott A Hoselton
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Glenn P Dorsam
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jane M Schuh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
15
|
B lymphocytes regulate airway granulocytic inflammation and cytokine production in a murine model of fungal allergic asthma. Cell Mol Immunol 2014; 12:202-12. [PMID: 25363529 DOI: 10.1038/cmi.2014.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/02/2014] [Accepted: 09/17/2014] [Indexed: 12/27/2022] Open
Abstract
Sensitization to fungi often leads to a severe form of asthma that is particularly difficult to manage clinically, resulting in increased morbidity and hospitalizations in these patients. Although B lymphocytes might exacerbate asthma symptoms through the production of IgE, these cells might also be important in the protective response against inhaled fungi. Through cytokine release and T-cell interactions, these lymphocytes might also influence the development and maintenance of airway wall fibrosis. J(H)(-/-) mice lack the JH gene for the heavy chain component of antibodies, which is critical for B-cell function and survival. These animals have facilitated the elucidation of the role of B lymphocytes in a number of immune responses; however, J(H)(-/-) mice have not been used to study fungal allergy. In this study, we examined the role of B lymphocytes using an Aspergillus fumigatus murine fungal aeroallergen model that mimics human airway disease that is triggered by environmental fungal exposure. We compared disease progression in sensitized wild-type BALB/c and J(H)(-/-) mice that were exposed to repeated fungal exposure and found no differences in airway hyperresponsiveness, overall pulmonary inflammation or collagen deposition around the large airways. However, the levels of the Th2-type cytokines IL-4 and IL-13 were significantly attenuated in the airways of J(H)(-/-) mice relative to the BALB/c controls. By contrast, levels of the inflammatory cytokines IL-17A and IL-6 were significantly elevated in the J(H)(-/-) animals, and there was significantly more robust airway eosinophilia and neutrophilia than in control animals. Taken together, these findings demonstrate that B lymphocytes help to regulate granulocytic responses to fungal exposure in the pulmonary compartment.
Collapse
|